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Abstract

Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most plant species in terrestrial ecosystems, and
are affected by environmental variations. To reveal the impact of disturbance on an AM fungal community under
future global warming, we examined the abundance and community composition of AM fungi in both soil and mixed
roots in an alpine meadow on the Qinghai-Tibetan Plateau, China. Warming and grazing had no significant effect on
AM root colonization, spore density and extraradical hyphal density. A total of 65 operational taxonomic units (OTUs)
of AM fungi were identified from soil and roots using molecular techniques. AM fungal OTU richness was higher in
soil (54 OTUs) than in roots (34 OTUs), and some AM fungi that differed between soil and roots, showed significantly
biased occurrence to warming or grazing. Warming and grazing did not significantly affect AM fungal OTU richness in
soil, but warming with grazing significantly increased AM fungal OTU richness in roots compared to the grazing-only
treatment. Non-metric multidimensional scaling analysis showed that the AM fungal community composition was
significantly different between soil and roots, and was significantly affected by grazing in roots, whereas in soil it was
significantly affected by warming and plant species richness. The results suggest that the AM fungal community
responds differently to warming and grazing in soil compared with roots. This study provides insights into the role of
AM fungi under global environmental change scenarios in alpine meadows of the Qinghai-Tibetan Plateau.
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Introduction disturbance under climate change scenarios in natural
ecosystems [3,9].
Temperature manipulation studies have shown that warming

affects not only plant productivity, diversity and community

Arbuscular mycorrhizae (AM) are symbiotic associations
between plant roots and soil fungi of the Phylum

Glomeromycota [1]. In the AM association, the plant provides
photosynthetic carbon for the growth and function of AM fungi,
and the plant performance could thus affect AM fungal
community [1-3]. In turn, AM fungi supply soil nutrients to host
plants and hence can exert strong effects on plant communities
[1,4,5] and consequently affect ecosystem processes [6]. It is
accepted that AM associations, as critical links between the
above- and belowground biotic communities in ecosystems,
are affected by environmental variations [3,7,8]. In particular,
with the unprecedented magnitude of global temperature
increase associated with anthropogenic activities, it is of great
concern how the AM fungal community responds to
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composition [10,11], but also AM fungal community structure
and function in ecosystems [12,13]. For example, it has been
demonstrated that effects of warming on AM root colonization
can be positive [13—15], negative [16] or neutral [12,17,18]. In
addition, warming showed positive effects on extraradical
hyphal (ERH) density [14,17] and spore density [15], but a
negative effect on vesicle density [18] or no effect on AM fungal
community composition [12]. Such varying observations
suggest that AM fungi do not always respond consistently to
temperature variation.

As one of the major land uses of natural grasslands,
livestock grazing has affected plant primary production, species
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composition, soil nutrient cycling [10,11] and AM fungi [19,20].
However, the effects of grazing on AM fungal community yield
inconsistent conclusions. For instance, grazing had positive
[19,21,22] and no or negative [23,24] effects on AM root
colonization. Meanwhile, grazing increased AM fungal
abundance and species richness in a temperate grassland of
Yellowstone National Park, USA [25], but decreased AM fungal
spore density in temperate grasslands in Argentina [26] and in
Inner Mongolia of China [27]. Although effects of the warming-
only or grazing-only treatment on AM fungal community have
received considerable attention in soil [19,20,25,27,28] or roots
[12], to our knowledge, the combined effect of warming and
grazing on AM fungal communities in both soil and roots has
not been documented in natural ecosystems.

Accurate AM identification is important in order to understand
AM fungal diversity in natural ecosystems [29]. Since AM
fungal spore occurrence and morphology cannot reveal a
symbiotically active organism community [30], molecular
techniques have thus been developed to overcome the
limitation of morphological identification [31-33]. For example,
primers that target the internal transcribed spacer (ITS) region,
large subunit (LSU) gene and small subunit (SSU) gene of
rDNA have been frequently used to detect AM fungal
communities in ecosystems [32—-35]. However, the ITS region,
LSU or SSU gene alone is unable to resolve closely related AM
fungal species [31]. Recently, new primer pairs SSUm-Af/
LSUm-Ar combined with SSUm-Cf/LSUm-Br have been
developed to amplify ~1,500 bp fragment spanning SSU, ITS
and LSU of Glomeromycota members, the best discrimination
within AM fungal species as well as against non-AM fungi and
plants [29,36,37].

The Qinghai-Tibetan Plateau covers 2.5 million km? in China,
and is dominated by alpine meadow, which is sensitive to
climate change and anthropogenic activities [10]. A controlled
warming-grazing experimental system has therefore been
established in the alpine meadow ecosystem to study the
responses of plants, bacteria, soil properties and carbon
dynamics to warming and grazing [11,38—40]. However,
knowledge of how the AM fungal communities respond to
warming and grazing is limited in this alpine meadow
ecosystem on the Qinghai-Tibetan Plateau.

To better understand the effects of warming and grazing on
AM fungal communities, we studied AM root colonization, ERH
density and spore density in root and soil samples from a 3-
year warming-grazing alpine meadow on the Qinghai-Tibetan
Plateau. The AM fungal community composition was also
examined in both mixed roots and soil using the SSU-ITS-LSU
fragment as an AM fungal barcode [29,36,37]. In this alpine
meadow ecosystem, we tested the following three hypotheses:
H,, the AM root colonization, ERH density and spore density in
mixed roots and soil will be affected by warming and grazing;
H,, the AM fungal community differs between soil and mixed
roots; and H;, the response of the AM fungal community to
warming and/or grazing will differ between soil and roots. The
outcome could provide insights into our understanding of the
role of AM fungi under global environmental change scenarios
in alpine ecosystems.
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Materials and Methods

Ethics statement

The Haibei Alpine Meadow Ecosystem Research Station
(HBAMERS) is run by the Northwest Institute of Plateau
Biology, Chinese Academy of Sciences. No specific permits
are required for the described field studies. The study sites are
not privately-owned or protected in any way, and the field
studies did not involve endangered or protected species.

Study site

The study was conducted at the HBAMERS, northeast
Qinghai-Tibetan Plateau, China (37°37’ N and 101°12’ E, 3,200
m above sea level). This site has a typical plateau continental
climate with a short and cool summer and a long and severely
cold winter. Annual mean temperature is -2°C, and annual
mean precipitation is 500 mm (

> 80% during the summer monsoon season). The plant
community at the experimental site is dominated by Kobresia
humilis, Festuca ovina, Elymus nutans, Poa pratensis, Carex
scabrirostris, Scirpus distigmaticus, Gentiana straminea,
Gentiana farreri, Blysmus sinocompressus, and Potentilla
nivea. The soil is classified as a Mat-Gryic Cambisol [11].

Controlled warming-grazing experiment and sampling

A controlled warming-grazing experiment was established in
the HBAMERS in 2006 [38]. Briefly, the infrared heating system
(a free-air temperature enhancement, FATE) was employed
according to Kimball et al. [41]. The heaters were controlled by
a proportional-integral-derivative-outputs  (PID) system to
ensure constant warming between the heated and un-heated
reference plots. The set point differences of the vegetation
between heated and reference plots were 1.2°C during daytime
and 1.7°C at night. In a two-way factorial design (warming and
grazing) there were four treatments: (1) no-warming with no-
grazing (as a control, C), (2) warming with no-grazing (W) (3),
no-warming with grazing (G), and (4) warming with grazing
(WG). Each treatment had four replicates. A total of 16 plots (3
m diameter each and 3 m separation from each other) were in
a randomized arrangement.

A moderate grazing intensity was set as follows. One adult
Tibetan sheep was initially fenced in the morning of 15 August
2006 for ~2 h in each grazing plot, where the vegetation height
was ~8-9 cm and ~4-5cm before and after grazing,
respectively. Two adult Tibetan sheep were later fenced in the
morning of 12 July, 3 August and 12 September 2007, 8 July
and 20 August 2008, and 9 July and 24 August 2009 for ~1 h in
each grazing plot, where the vegetation height was ~6—7 cm
and ~3—4 cm before and after grazing, respectively.

On 2 August 2009 (23 days after grazing), five soil cores (30
cm depth, 1.8 cm diameter) from each plot were randomly
collected and mixed as one composite sample. Fresh soil
samples were sieved (1-mm sieve) to remove roots and debris.
Fine roots (

< 1 mm diameter) were manually collected, washed with
sterilized deionized water, and blotted dry on filter paper. All
fresh root and part soil samples were then stored at —80°C until
further AM fungal analyses. The remaining soil samples were
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used to measure soil variables including pH, soil moisture
(SM), soil organic carbon (SOC), soil organic nitrogen (SON),
total phosphorus (TP) and total nitrogen (TN) by Rui et al. [39].
Plant variables including aboveground net primary production
(ANPP) and plant species richness at the end of August have
been determined by Wang et al. [11]. Information on these soil
and plant variables is presented in Table S1.

AM root colonization, ERH density and spore density

Fifty fine root fragments (ca 1 cm long) of each sample were
stained with acid fuchsin and the percentage of AM root
colonization was quantified by the magnified line-intersect
method [42]. Extraction of fungal hyphae followed Rillig et al.
[43] with modifications. Briefly, 4.0 g fresh soil was suspended
with 100 ml deionized water and 12 ml sodium
hexametaphosphate (35 g I'). The soil suspension was then
blended for 30 s and settled for 30 min. The supernatant was
poured through a 38-um sieve to retain hyphae, roots and other
particles, and the hyphae were gently transferred into a flask
with deionized water until a final volume of 200 ml. The flask
was then shaken manually for 5 s, and 2 ml was then pipetted
onto a 25-uym filter (Xingya, China). The filter was then dyed
with 1% acid fuchsin and observed under 200 x magnification
(Nikon 80i, Japan). Hyphae were distinguished into mycorrhizal
and non-mycorrhizal hyphae based on their morphology and
staining color according to Miller et al. [44]. AM fungal spores
were extracted from 20.0 g air-dried soil of each sample with
deionized water using the wet-sieving and decanting method
and counted under 50 x magnification [45].

Molecular analysis of AM fungi

Genomic DNA was extracted from 100.0 mg frozen roots
with a DNeasy Plant Mini Kit (Qiagen, Crawley, UK) or from 5.0
g frozen soil with a PowerMax Soil DNA Isolation Kit (MoBio
Laboratories, Inc., Carlsbad, CA, USA) following the
manufacturers’ instructions. The primer pairs SSUmM-Af/LSUm-
Ar and SSUm-Cf/LSUm-Br were used for the first and nested
PCR, respectively [29]. The nested purified PCR products were
transformed into E. coli JM109 for white and blue screening.
For each library, ~90 positive colonies were picked and grown
overnight in liquid Luria-Bertani (LB) medium. Then PCR was
carried out using 1 pl liquid culture of E. coli as templates with
the primer pair T7 and SP6, and the restriction fragment length
polymorphism (RFLP) was performed in a 10 pl reaction
system with the Mbol and Hinfl (Fermentas, USA). One
representative of each PCR-RFLP type from each clone library
was then sequenced with an ABI Prism 3700 Genetic Analyzer
(Applied Biosystems, USA).

The obtained sequences were proofread and trimmed to
remove the vector sequence with the SEQMAN program in the
LASERGENE software Package (DNA Star Inc., Madison, WI,
USA), and then compared with sequences in the GenBank
[46]. Sequences displaying 92-93% similarity were usually
treated as the same OTU for ITS [47], and 97% for the partial
SSU and LSU gene [3,32,33] in previous studies. Therefore,
the SSU-ITS-LSU fragment (~1,500 bp) sequences were
grouped into the same OTU with a 93% sequence similarity
using the Sequencher 4.80 (Gene Codes Corporation, Ann
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Arbor, Michigan, USA). We picked one RFLP type as a
representative sequence for the OTU. Then the sequences of
obtained OTUs and the reference sequences of
Glomeromycota from the GenBank were aligned using the
Mafft-7.017 [48]. The Bayesian (GTR+I+G model) and
neighbor-joining (the Kimura 2-parameter model with 1000
bootstrap replications) phylogenetic analyses were performed
using the MrBayes 3.1 [49] and PAUP4.0 [50], respectively.
Bayesian posterior probabilities (BPP) were obtained from the
50% majority rule consensus trees generated by 1,000,000
generations with 250,000 “burnin”. The trees were rooted with
Paraglomus laccatum. The AM fungal OTUs were assigned to
different families based on the phylogenetic tree. Members of
Glomerales were separated into the Glomus Group A
(Glomeraceae) and Glomus Group B (Claroideoglomeraceae),
and Glomus group C (Diversisporaceae) [51,52]. All sequences
obtained in this study have been deposited in the GenBank
with accession numbers JX096566-JX096630.

Data analysis

Abundance of a given AM fungal OTU is defined as clone
numbers of that OTU in a sample, and abundance of a given
family is the sum of abundance of all OTUs belonging to that
family in a sample. Richness of a given family is all OTU
numbers of that family in a sample. Frequency of a given AM
fungal OTU is defined as the occurrence of that species in all
samples. The AM fungal OTUs which occurred in more than
three samples (frequency > 18.7%) from either soil or roots
were defined as the common OTUs.

A two-way ANOVA was used to test the effects of warming,
grazing and their interaction on AM root colonization, ERH
density, spore density, OTU richness, OTU abundance, and
family abundance. All data were tested for normality and
homogeneity of variance before two-way ANOVA. Of these
data, only the abundance of OTU25 in roots did not meet the
normal distribution before and after transformation, and then
the Tamhane’s T2 post hoc was applied using the original data.
The other variables were then compared among treatments
using Tukey's HSD tests in SPSS 17.0 software. The
difference in the abundance of AM fungi between soil and roots
was assessed by the paired t-test. In order to assess the
efficiency of the clone library, rarefaction curves were
constructed for each treatment using the Estimate S 8.0 [53].

Both in soil and roots, distance matrices of AM fungal
community (sequence number dataset, wisconsin-sqrt
transformed) were calculated by the Bray-Curtis dissimilarity,
and then subjected to non-metric multidimensional scaling
(NMDS) ordinations. Using the ‘envfit' function of the Vegan
package with 999 permutations [54] in R [55], the treatments
were fitted as centroids onto the ordination graphs, and the soil
(SOC, SON, TN, TP, SM and pH) and plant (species richness
and ANPP) variables were fitted as vectors onto the ordination
graphics to understand if the AM fungal community
composition was affected by one of these variables.
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Results

AM root colonization, ERH density and spore density

There were no effects of warming (W), grazing (G) and their
interaction (WxG) on AM root colonization (W:F = 0.29, P =
0.60; G: F=0.00, P = 0.96; WxG: F = 5.39, P = 0.052), spore
density (W:F =3.12, P=0.10; G: F=0.10, P = 0.34; WxG: F =
3.21, P =0.10) and ERH density (W:F = 0.02, P=0.88; G: F =
0.02, P =0.89; WxG: F =0.09, P =0.77). AM root colonization
ranged from 34.8 + 7.2% to 45.1 £ 5.7%, spore density from
13.6 £ 4.2 to 30.8 + 15.3 (spore g' DW), and ERH density from
1.27 £0.16 to 1.34 + 0.37 (m g™' DW) amongst the C, W, G and
WG treatments (means + SD, n = 4).

Comparison of AM fungal community between soil and
roots

A total of 2,560 positive clones were obtained from the 32
clone libraries (16 from soil and 16 from roots). Subsequently,
640 RFLP types (380 from soil and 260 from roots) from these
2,560 clones screened by the Hinfl and Mbol were sequenced.
The BLAST search in GenBank indicated that 632 clones
(98.8% of the total clones) were of AM fungal origin, and the
other eight clones belonged to non-AM fungi (4 clones in
Chytridiomycota, 2 in Basidiomycota, and 2 in Zygomycota).
These 632 AM fungal sequences were grouped into 65 OTUs
according to the 93% similarity threshold and identified as
different taxonomic groups based on the phylogenetic analyses
(Figure S1, Table S2). Among the 65 OTUs, 54 were from soil,
34 from roots, and 23 from both soil and roots (Figure S1). Of
the 54 OTUs from soil, 42 belonged to Glomeraceae (Glomus
Group A), 3 to Claroideoglomeraceae (Glomus Group B), 5 to
Diversisporaceae, 3 to Gigasporaceae and 1 to
Ambisporaceae. Of the 34 OTUs from roots, 25 belonged to
Glomeraceae (Glomus Group A), 1 to Claroideoglomeraceae
(Glomus Group B), 1 to Diversisporaceae and 7 to
Gigasporaceae (Table S2). A rarefaction analysis indicated that
the sampling effort was sufficient to identify the major AM fungi
from soil and roots (Figure S2).

A total of 22 common AM fungal OTUs (frequency > 18.7%)
were determined in soil and roots (Figure 1). Among the 22
common OTUs, the abundance of OTU30 (Diversisporaceae)
and OTU35 (Glomeraceae) were lower in roots than in soil (P <
0.05). However, the abundance of OTU27 (Glomeraceae) was
higher in roots than in soil (P < 0.05). The NMDS analysis
indicated that the AM fungal community composition was
different between soil and roots (r? = 0.39, P = 0.002, Figure
2A).

Responses of AM fungal communities in soil and roots
to warming and grazing

Of the 54 AM fungal OTUs present in the soil, 18 (23.8% of
total clone sequences) were found in C, 30 (25.8%) in W, 24
(24.5%) in G, 28 (25.9%) in WG, and five OTUs were recorded
in all four treatments (Table S2). Of the 34 AM fungal OTUs
present in roots, 20 (26.6% of total clone sequences) were
found in C, 14 (24.9%) in W, 9 (22.1%) in G, 18 (26.6%) in WG,
and 4 OTUs were shared among the four treatments (Table
S2).
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Neither warming nor grazing had a significant effect on AM
fungal OTU richness in soil (P > 0.05, Figure 3A). However,
there was a significant additive effect of the WG treatment
compared to the grazing-only treatment on AM fungal OTU
richness in roots (F = 7.67, P < 0.05), i.e. WG significantly
increased AM fungal OTU richness by 122.9% compared with
the grazing alone in roots (Figure 3B). Meanwhile, warming,
grazing and their interaction had no significant effects on the
AM fungal OTU richness of each family in both soil and roots
(P > 0.05, Table S3). On the other hand, a warming effect (F =
257, P < 0.01) was observed on the abundance of
Glomeraceae in soil, and warming alone significantly increased
its abundance by 187.2% compared with the control treatment
(Figure 4A). By contrast, only an interactive effect between
warming and grazing was observed on the abundance of
Gigasporaceae in both soil (F = 10.5, P < 0.01) and roots (F =
7.7, P < 0.05). For example, the abundance of Gigasporaceae
in soil was significantly decreased by warming alone (81.8%)
and grazing alone (75%) compared with the control treatment;
whereas in roots WG significantly increased Gigasporaceae in
abundance by 248.6% and 248.6% compared with warming
alone and grazing alone, respectively (Figure 4B).

Among the 22 common AM fungal OTUs (frequency >
18.7%), ANOVA results indicated that OTU25 (Gigasporaceae)
and OTU27 (Glomeraceae) showed a biased occurrence
among the four treatments (P < 0.01, Figure 4) in soil or roots.
For example, the abundance of OTU25 in soil was significantly
decreased by warming alone (82.6%), grazing alone (74.4%)
and WG (58.7%) compared with the control treatment (Figure
4C). In contrast, the abundance of OTU25 in roots was
significantly decreased by warming alone (78.3%) compared
with the control, but significantly increased by WG compared
with the control (96.7%), grazing alone (247.1%) and warming
alone (807.7%) treatments (Figure 4C). Although OTU27 in soll
did not show significantly biased occurrence among
treatments, the grazing-only treatment significantly increased
the abundance of OTU27 in roots by 590.5% compared with all
other treatments (Figure 4D).

NMDS analyses indicated that the AM fungal community
compositions were affected by the treatments in both soil (r? =
0.53, P < 0.01, Figure 2B) and roots (r? = 0.44, P < 0.01, Figure
2C). Furthermore, the AM fungal community composition in soil
was related to warming (» = 0.44, P < 0.05) and plant species
richness (r? = 0.43, P < 0.05), and marginally related to soil
moisture (r? = 0.32, P = 0.09) and total P (r* = 0.33, P = 0.08,
Figure 2B). However, the AM fungal community composition in
roots was related to grazing (r* = 0.43, P < 0.05) and marginally
related to total N (> = 0.33, P = 0.07, Figure 2C).

Discussion

A 3-year warming and grazing treatment did not significantly
affect AM root colonization, spore density or ERH density in an
alpine meadow on the Qinghai-Tibetan Plateau, which did not
support our first hypothesis (H,). Similarly, AM root colonization
was not significantly affected by a 1-year-period warming in
grassland ecosystems in York, UK [12] and in California, USA
[17] or by a 2- or 4-year warming in Bouteloua gracilis in
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Figure 1. Common AM fungal OTUs (frequency > 18.7%) recovered from (A) soil and (B) roots. * indicates significant
differences in the abundance of AM fungal OTUs between soil and roots according to the paired t-test at P < 0.05. Bars are

standard deviation of the means (n = 16).
doi: 10.1371/journal.pone.0076447.g001

Colorado, USA [16]. Grazing also had no significant effect on
AM fungal spore density in a mountain grassland ecosystem in
Argentina, South America [26]. A meta-analysis of 33
publications demonstrated that grazing had generally only
decreased AM root colonization by 3% [24]. However, AM root
colonization and ERH density were significantly increased by a
range of warming (5 to 14°C) in greenhouse studies [14,56]. In
addition, AM fungal spore density was significantly affected by
a 20-year grazing experiment in Inner Mongolia steppe, China
[27] and a 40-year grazing experiment in Yellowstone National
Park, USA [25]. These inconsistent results suggest that AM
fungal abundance may have different responses to intensity or
duration of warming and grazing, with an overall increased
response among the longer running experiments.

The AM fungal community was significantly different between
soil and roots in this alpine meadow ecosystem as was
expected (H,, Figure 2A). The conspicuous difference in AM
fungal community composition between soil and roots has
been reported previously [3,34,57—61]. In addition, some AM
fungi had a noticeably biased occurrence in soil or roots, for
example, OTU30 (Diversisporaceae) and OTU35
(Glomeraceae) favoured soil, whereas OTU27 (Glomeraceae)
was abundant in roots. It has been suggested that the
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phenology of AM fungi may generate distinct root and soil
communities, which may help partition fungal niches in time
and space [3,62]. Alternatively, there may be different
ecological and evolutionary forces for structuring soil AM fungal
community compared with roots [3]. Furthermore, we found
much higher AM fungal richness in soil (54 OTUs) than in roots
(34 OTUs). The consistent result of higher AM fungal diversity
in soil than in roots has been also demonstrated in previous
studies [3,34,58-60]. This may be explained by the seasonal
nature of AM fungal communities [60,63,64]. In addition to AM
fungal propagules of current symbionts, formerly active
symbionts could remain in soil compared to the roots [60,64].
The AM fungal community between soil and roots responded
differently to warming and grazing as was also expected (Hj,
Fig. 2B, 2C). The AM fungal community composition in soil was
significantly related to warming and plant species richness (Fig.
2B, Table S1). There was an decrease in plant species
richness with warming [11], which are thus co-relating factors
affecting the AM fungal community; thus lower plant richness
with warming may result in a change of AM fungal community
composition [2,3]. In addition, the AM fungal community
composition in soil was marginally related to soil moisture and
total P (Fig. 2B), which are crucial factors in determining the
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Figure 2. Non-metric multidimensional scaling (NMDS) of AM fungal community composition. AM fungal community
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AM fungal community composition [1,65,66]. However, the AM
fungal community composition in roots was significantly related
to grazing, but not to warming in this alpine meadow (Fig. 2C).
The results of the present study were consistent with previous
studies that AM fungal composition was significantly affected
by grazing in a temperate grassland in the USA [20], but not by
warming in a native grassland in UK [12]. It is possible that
grazing changes the allocation of carbohydrates to roots
[67,68], which may result in a change in the AM fungal
community composition. In addition, the AM fungal community
composition in roots was marginally related to total N (Figure

PLOS ONE | www.plosone.org

2C), in agreement with previous studies, showing that nitrogen
may affect the patterns of AM fungal communities [3,69].
Warming and grazing had no significant effect on the AM
fungal OTU richness of each family in soil and roots (Table S3).
Although warming effect on AM fungal families was not
reported so far, studies of other global change effects on AM
fungal families showed the similar trends for Glomeraceae. For
instance, Klironomos et al. [70] found that richness of
Glomeraceae was not affected by elevated CO, levels, but the
richness of Gigasporaceae declined in soil. In addition, the
abundance of Glomeraceae, Gigasporaceae and some OTUs
showed different responses to warming and grazing in soil and
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Figure 4. Abundance of common families and OTUs in soil and roots among the four treatments. A: Glomeraceae in soil
(above X-axis) and roots (below X-axis); B: Gigasporaceae in soil (above X-axis) and roots (below X-axis); C: OTU25 in soil (above
X-axis) and roots (below X-axis); D: OTU27 in soil (above X-axis) and roots (below X-axis). Bars without shared letters indicate
significant differences at P < 0.05. Bars are standard deviations of the means (n = 4). Abbreviations: C, no-warming with no-grazing;
W, warming with no-grazing; G, no-warming with grazing; WG, warming with grazing.

doi: 10.1371/journal.pone.0076447.g004
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roots (Figure 4). Several studies also found that AM fungal
species varied their responses to elevated CO, [71], grazing
[26] and N enrichment [69]. As there are different colonization
strategies between Glomeraceae and Gigasporaceae [72], it is
likely that AM fungal OTUs that belong to different families
possess functionally diverse traits [73]. However, most AM
fungal OTUs did not show significantly biased occurrence to
warming and grazing in this alpine meadow ecosystem. For
example, the abundance of OTU26, which is closely related to
the globally widespread Rhizophagus intraradices (= Glomus
intraradices) (Figure S1) [52,64,69,74], was not significantly
affected by warming and grazing in soil and roots. Similarly, the
abundance of R. intraradices was not affected by elevated CO,
in a successional grassland [71] but marginally decreased by
simulated N deposition in hardwood forests of Michigan, USA
[69]. Thus, it is possible that R. intraradices shows a wide
tolerance to environmental stress or there is functional diversity
within this species [64,74].

Although the effect of the warming-only [12] or grazing-only
[19,25,27,28] treatment on AM fungal community has been
documented in ecosystems, this study is the first to investigate
the combined effect of warming and grazing on the AM fungal
community structure in an alpine meadow ecosystem on the
Qinghai-Tibetan Plateau. Our results showed no significant
interactive effects between warming and grazing on AM root
colonization, ERH density and spore density. In contrast,
previous studies showed significant interactive effects between
warming and elevated CO, on AM fungal ERH density [56] and
between warming and moisture on AM root colonization [75].
Furthermore, our results did demonstrate significant interactive
effects between warming and grazing on the abundance of
some AM fungal OTUs and families (Figure 4). Significant
interactive effects observed in this and previous studies
suggest that AM fungi may demonstrate complex responses
under multiple global change factors in ecosystems [56].

In conclusion, the AM fungal community composition was
different between soil and roots, and AM fungal OTU richness
was higher in soil than in roots in this alpine meadow
ecosystem as reported in other studies [34,57-59]. The AM
fungal community thus responds differently to warming and
grazing in soil versus roots. These results not only provide new
information about how AM fungi respond to abiotic
environmental stress, but also enhance our understanding of
the role of AM fungi under global climate change scenarios in
an alpine meadow ecosystem on the Qinghai-Tibetan Plateau.
Nevertheless, future studies are warranted to identify seasonal
and/or yearly responses of AM fungal communities to long-term
exposure of warming and grazing since the results of this study
have been only derived from an annual (summer) sampling in a
3-year-period of warming and grazing in this alpine meadow
ecosystem.

Supporting Information

Figure S1. Phylogenetic tree based on ~1,500 bp fragment
of Glomeromycota from soil (circles) and roots (triangles).
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The tree is rooted with Paraglomus laccatum. The GenBank
accession numbers are placed in parentheses after OTUs. The
numbers at each branch point (e.g. 100/100) represent
bootstrap support calculated from 1,000 replicates (left) and
Bayesian posterior probabilities (right). * indicates lack of
support for a particular clade or value < 50%. Bar indicates 0.1
expected changes per site.

(PDF)

Figure S2. Rarefaction curves for AM fungal OTUs
obtained from soil and roots in A: no-warming with no-
grazing; B: warming with no-grazing; C: no-warming with
grazing; D: warming with grazing.

(TIF)

Table S1. Aboveground net primary production (ANPP, g
m2), plant species richness (Richness), soil moisture (SM,
%), soil organic carbon (SOC, mg kg' DW), soil organic
nitrogen (SON, mg kg' DW), total nitrogen (TN, % DW),
total phosphorus (TP, mg kg' DW), and pH value after a 3-
year-period of warming and/or grazing.

(DOCX)

Table S2. Abundance (sequence numbers) of arbuscular
mycorrhizal (AM) fungal OTUs in soil and roots under no-
warming with no-grazing (C), warming with no-grazing (W),
no-warming with grazing (G), and warming with grazing
(WG).

(DOCX)

Table S3. Arbuscular mycorrhizal fungal richness of
Glomeraceae, Claroideoglomeraceae, Diversisporaceae
and Gigasporaceae in soil and roots under no-warming
with no-grazing (C), warming with no-grazing (W), no-
warming with grazing (G), and warming with grazing (WG).
(DOCX)
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