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*is study exploits a novel enhanced genetic neural network algorithm with link switches (EGA-NNLS) to model the professional
university course evaluating system. Various indices should be employed to evaluate the learning effect of a professional course
comprehensively and objectively, and the traditional artificial evaluation methods cannot achieve this goal. *e presented data-
driven modeling method, EGA-NNLS, combines a neural network with link switches (NN-LS) with an enhanced genetic al-
gorithm (EGA) and the Levenberg–Marquardt (LM) algorithm. It employs an optimized network structure combined with EGA
and NN-LS to learn the relationships between the system’s input and output from historical data and uses the network’s gradient
information via the LM algorithm. Compared with the traditional backpropagation neural network (BPNN), EGA-NNLS achieves
a faster convergence speed and higher evaluation precision. In order to verify the efficiency of EGA-NNLS, it is applied to a
collection of experimental data for modeling the professional university course evaluating system.

1. Introduction

Currently, the quality of colleges and universities is an es-
sential issue. *e learning effect of courses has become an
important criterion for evaluating students’ mastery of
knowledge, and it also reflects teachers’ teaching achieve-
ments and school management. However, the interference of
objective and subjective factors in the real world makes it
challenging to develop a mathematical model for evaluating
the course effect. Some scholars in academia and education
have presented their ideas on constructing an evaluation
system for courses in colleges and universities in recent
years. Meanwhile, some methods have been proposed for
evaluating the learning effect of courses with specific at-
tributes, including analytic hierarchy process, cluster anal-
ysis [1–3], fuzzy comprehensive evaluation method [4–8],
and multiple regression analysis [9–12]. However, since
different colleges and universities have different situations, a
recognized and ideal learning effect evaluation system has
not been constructed. Since it is challenging to obtain the

course evaluation effect through a rigorous mathematical
model, it is crucial to establish an objective, effective, and
easy-to-operate course learning effect evaluation model.

Recently, artificial neural networks (ANNs) have grown
quickly [13–15]. Since this method originates from the
simulation of the brain nervous system, it has strong
adaptability and self-learning ability in a complex envi-
ronment. Meanwhile, another important feature of neural
networks is that they can approximate each nonlinear
continuous function with any precision and simulate actual
systems realistically. *e structure of neural networks can be
regarded as the mapping of an actual system. Due to these
characteristics, neural networks have been widely applied in
various fields, including automatic control [16, 17], artificial
intelligence [18], and fault diagnosis [19]. Different neural
networks can be formed according to the neurons’ topo-
logical structure. At present, the typical network models
involve the backpropagation (BP), the perceptron, the radial
basis function (RBF), the Hopfield, the Boltzmann machine,
and the self-organizing networks. *e mentioned network

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 9564443, 12 pages
https://doi.org/10.1155/2022/9564443

mailto:lsdshiwo@hotmail.com
https://orcid.org/0000-0003-0452-2140
https://orcid.org/0000-0002-4414-954X
https://orcid.org/0000-0002-0031-9359
https://orcid.org/0000-0003-4324-1173
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9564443


models can achieve various goals like pattern recognition,
data clustering, function approximation, and optimization
of computer prediction.

Currently, due to the prevalence of the BP neural net-
work, as one of the widely used neural networks, the
backpropagation neural networks (BPNN) learning ap-
proach has been utilized in most of the previous ANN lit-
erature. Nevertheless, the network structure is fixed in
almost all of the previous studies. Such a fixed structure
cannot provide neural network optimal performance. Al-
though a large network may incur unnecessary imple-
mentation costs, it is challenging to obtain satisfactory
accuracy by adopting a small network. For this reason,
various techniques have been proposed for simultaneous
optimization of the network’s framework and connection
weights, such as the quantum-based algorithm [20], im-
proved genetic algorithm [21], a hybrid Taguchi-genetic
algorithm [22], an evolutionary program called the gener-
alized acquisition of recurrent links (GNARL) [23], the
simulated annealing, and Tabu search algorithms [24].

Besides, the BP algorithm may fall into the local mini-
mum, especially for large and irregular data sets. Genetic
backpropagation neural networks (GA-BPNN) can be ap-
plied to solve this problem. GA-BPNN, which employs the
parallel searching capability of genetic algorithms to im-
prove the ability of BP neural networks in weight learning
[25], has been widely utilized in the relevant literature
[26–28].

*is paper constructs the course learning effect evalu-
ation model via an enhanced genetic BP neural network with
link switches (EGA-NNLS), which depends only on his-
torical I/O data during the evaluation process and signifi-
cantly reduces the cost and complexity compared with the
first principles-based modeling methods.

EGA-NNLS, which combines a neural network with link
switches (NN-LS) with an enhanced genetic algorithm
(EGA) and the Levenberg–Marquardt (LM) algorithm, ex-
hibits the following properties:

(1) *e network’s framework and connection weights
can be adjusted simultaneously.

(2) Compared with the standard GA (SGA), the pro-
posed EGA subject to the course evaluating process
characteristics can achieve a faster convergence rate.

(3) It entirely employs the network’s gradient information.

*ere are three stages while applying the EGA-NNLS.
*e first stage analyzes the influencing factors and the main
contents of the evaluation system of the course learning
effect in colleges and universities. *e evaluation results are
then quantified and divided into several grades. In the
second stage, an initial NN-LS is built, which is learned and
updated by EGA to simultaneously optimize the input-
output relationship and the network framework of NN-LS.
*e following three enhancement approaches are employed
to implement EGA: triple selection operation (TSO), which
can protect high fitness individuals from being randomly
varied by mutation operators and provide performance
superior to the traditional “double selection” [29];

self-tuning crossover operation (STCO), which is extended
from the typical arithmetic crossover operation, but more
appropriate for the course evaluating problem; and the
multispecies approach, which is utilized to solve untimely
convergence problems partially. *e third stage adopts the
Levenberg–Marquardt (LM) algorithm to tune the partial
weight connected network attained at the previous stage to
utilize the network’s gradient data.

*e EGA-NNLS method avoids the impact of the ex-
perts’ subjective factors in the traditional evaluation
methods on the evaluation results and provides a general
model of the course learning effect evaluation system.
*erefore, this method has particular significance in theory
and practice.*e actual data of a university course is selected
to construct the EGA-NNLS, and the efficiency of EGA-
NNLS is demonstrated through the simulations.

*e organization of the current paper is given in the
following. Section 2 briefly describes the problems of the
evaluation system of the course learning effect. In Section 3,
according to the characteristics of the evaluation system, the
EGA-NNLS is constructed to investigate the course learning
effect. Section 4 simulates and analyzes the algorithm. In
Section5, the conclusions of this paper are drawn.

2. Description of the Evaluation System of the
Course Learning Effect

2.1. Connotation and Significance of the System.
*eoretically, the evaluation of the course learning effect in
colleges and universities shall make a comprehensive, ob-
jective, and fair judgment on the courses, teachers, and the
students by using the theories, methods, and techniques of
educational evaluation and teaching according to the poli-
cies, regulations, talent training objectives, and the school
requirements. It provides valuable information for educa-
tional decision-making methods to maximize the develop-
ment of courses with ideal effect. *e effect evaluation
system performs evaluation activities involving many con-
tents and aspects. It is crucial for implementing the national
education guidelines and policies and the microteaching
management of the school and plays the following roles:

(1) Stimulating teachers’ enthusiasm and improving
their quality.
*e evaluation of the course learning effect is an
essential means to stimulate teachers’ teaching en-
thusiasm. It feeds back the scientific and objective
evaluation results to teachers to play their strengths
more actively and provide more knowledge, thinking
enlightenment, and innovation guidance to students.

(2) Improving the teaching quality.
Implementation of the teaching evaluation system
according to modern theories and methods for the
course learning effect evaluation can provide sci-
entific standards for teachers’ teaching quality and
reference standards for students’ acceptance of
knowledge and the rationality of the courses.
Teachers play an essential role in the teaching
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process, dialectically unified with students’ dominant
role in teaching. *e learning effect evaluation can
prompt teachers to clarify their teaching objectives
and tasks and reflect and enhance the teaching
impact and their personal teaching quality.

(3) Strengthening the scientific construction and man-
agement of colleges and universities.
By evaluating the learning effect of each course, the
structure, quality, and working conditions of the
whole teachers can be understood. Also, it is possible
to find out the problems and adjust the teachers’ team
pertinently. According to the scientific index system
and evaluation standard for the course learning effect
and the guiding ideology, principles, methods, and
procedures of the modern education evaluation, ob-
jective and fair conclusions can be drawn to provide a
reliable basis and objective standard for school leaders
to improve the teaching staff structure and implement
the objective management.

2.2. Description of the Problems of the Learning Effect Eval-
uation System. Some of the courses in colleges and univer-
sities are highly theoretical or practical. Since there are courses
about tool use methods, ideology, and methodology, the
evaluation indicators should be selected from the students’
learning process. From the perspective of process manage-
ment, multifactor interaction and multilinks are integrated
into the whole teaching process. *us, it is not easy to classify
different disciplines and compare the learning effects of
various courses, learning links, and learning objects.

Accordingly, the primary factors that can directly reflect
the learning effect and have common features should be
employed to design the evaluation system, enhancing the
system’s practical operability. *e following elements are
often employed in the existing course learning effect eval-
uation system in most practical cases:

(1) Learning attitude.
Whether the learning is seriously taken, whether the
preview is timely, and whether the homework is
finished carefully.

(2) Learning content.
Whether the difficulty of the content is appropriate,
whether the content closely depends on the basic
knowledge, and whether much cross knowledge is
involved.

(3) Learning ability.
Whether the students have a solid foundation of
knowledge, the understanding ability, the ability to
look for information, the practical ability, the ability
to connect theory with practice, and the ability to
understate all individual parts.

(4) Learning methods.
Whether students can flexibly choose methods
according to their own strengths, whether they pay
attention to the cultivation of creativity, and whether

they often consult teachers and interact with
students.

(5) Learning purpose.
Whether to master their own skills for the purpose,
or to satisfy the requirements of teachers, parents, or
examination.

Based on the above five aspects, nine evaluation in-
dices are obtained, as shown in Figure 1. *e above nine
evaluation indices are employed to study the measure-
ment indexes in the proposed learning effect evaluation
system.

3. Learning Effect Evaluation Model Using the
Genetic Neural Network Algorithm with
Link Switches

Based on the analysis in Section 2, the final learning effect of
a course can be evaluated according to the comprehensive
output results of the nine indices of x1–x9 determined
through the learning process, effect, and ability, which can be
described as follows:

I � x1, x2, . . . , x9􏼂 􏼃
T
. (1)

Meanwhile, the final evaluation levels can be divided into
five levels of A–F, from good to bad. For the convenience of
computer simulation, the five output levels are denoted as 3-
bit binary codes. Table 1 shows the correspondence between
the levels and binary codes.

In this paper, the 3-bit binary number of the evaluation
level is taken as the network output, written as

􏽢O(k) � y1, y2, y3􏼂 􏼃′. (2)

*us, the professional course evaluating process is
represented as

􏽢O � f(I), (3)

where I and 􏽢O are denoted as equations (1) and (2),
respectively.

*e experts employ the traditional method according to
the above indices. However, in some specific cases, the
subjective factors of experts can affect the results of this
evaluation method, leading to inaccurate judgment results.
*erefore, the design of a data-based course evaluation
system employs massive data to overcome the defects of
conventional evaluation approaches and obtain more ob-
jective evaluation results.

In order to attain this goal, an EGA-NNLS method is
presented. *rough this method, it is not necessary to di-
rectly analyze the input-output relationship of the course
evaluating model, while a data-driven approach is utilized
for the modeling procedure.

EGA-NNLS comprises three essential components. As
described in Section 3.1, the first component is an NN-LS,
which can produce a partially connected network. *e
second component is an EGA, which is adopted to find the
NN-LS’s optimal weights. EGA is the generalized form of an
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SGA and will be described in Section 3.2. As the final
component, the LM algorithm can further update the NN-
LS, as illustrated in Section 3.3.

3.1. Building NN with Link Switches (NN-LS).
Conventional NNs generally have a fixed framework. Al-
though an extensive network with many nodes and links
may unnecessarily cause high implementation costs, a tiny
network cannot provide satisfactory accuracy.*us, a multi-
input multi-output (MIMO) three-layer neural network
with an adjustable number of links is employed.

Figure 2 shows a standard network with link switches, in
which a switch function can be described as

L(l) �
0, l≤ 0;

1, l> 0.
􏼨 (4)

*e connection weights of the NN-LS are described as
follows:

w
1
ij � L lij􏼐 􏼑 · rij,

w
2
jk � L ljk􏼐 􏼑 · rjk,

(5)

where i � 1, 2, . . . , nI, j � 1, 2, . . . , nh, and k � 1, 2, . . . , no,
where nI, nh, and no stand for the number of input, hidden,
and output nodes, respectively. w1

ij describes the con-
nection weight between i-th input and j-th hidden nodes,
and w2

jk stands for the connection weight between j-th
hidden and k-th output nodes. L(lij) and L(ljk) describe
the link switches, demonstrating the lack or existence of

the corresponding link. For an entirely connected network,
in which all link switches are present, w1

ij and w2
jk will

become the standard connection weights rij and rjk, re-
spectively, similar to the corresponding ones in standard
NN without link switches. For the university professional
course evaluating process, nI and no are chosen as 9 and 3,
respectively.

*e network’s input and output vectors are denoted as
equations (1) and (2), respectively. For the proposed NN-LS,
the hidden layer output is described as

Ohidden(k) � Tan-Sigmoid W
1

· I(k) + b
1

􏼐 􏼑. (6)

Based on Figure 2, the input-output relationship of the
proposed NN-LS is given by

􏽢O(k) � W
2

· Ohidden + b
2
, (7)

where W1 � [w1
ij]i�1,...,9, j�1,...,nh

stands for the weight matrix
of the link between the input and hidden layers, W2 �

[w2
jk]j�1,...,nh,k�1,2,3 stands for the weight matrix of the link

between the hidden and output layers, b1 � [b1j]j�1,...,nh
and

�e evaluation index

Number of attendance x1

Listening to lectures efficiency x2

�e experimental process x3

�e harvest of specialized course knowledge x4

Number of work completed x5

Completion of experiment report x6

�e innovation ability x7

Test scores x8

Practical ability x9

�e learning effect

�e learning process

�e ability to learn

Figure 1: *e evaluation index of course learning effect.

Table 1: *e correspondence between the binary codes and the
course evaluation effect levels.

Evaluation levels Binary codes
A 001
B 010
C 011
D 100
E 101

…

…

…

TSF

TSF: Tan-Sigmoid Function
P: Purlin

: link switch 
: connection weights 

P

TSF

P
TSF

TSF

x1

xnI

yno

y1

b1

b2

Figure 2: Framework of NN with link switches.
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b2 � [b2k]k�1,...,no
describe the biases for the hidden and

output layers, respectively, and Tan-Sigmoid(·) stands for
the tangent sigmoid function defined as follows:

Tan-Sigmoid(x) �
1 − e

x
( 􏼁

1 + e
x

( 􏼁
. (8)

Remark 1. *e transfer function of neural network mainly
includes Purelin, Log-Sigmoid, and Tan-Sigmoid. Among
them, Purelin is only applicable to the samples of linear
mapping relationship. Compared with Purelin, Log-Sigmoid
has a nonlinear mapping ability, but the gradient will dis-
appear in the process of neural network backpropagation,
and the output mean value cannot be zero. Tan-Sigmoid can
avoid the problems of the above two functions, and it has a
fast convergence speed and high precision. *erefore,
equation (6) selects Tan-Sigmoid as the transfer function.

3.2. Adjusting the NN’s Framework by EGA. Generally, the
SGA can be applied to learn the network’s input-output
relationship in most cases. In the current study, the effi-
ciency of SGA can be affected by too many optimal vari-
ables of the algorithm induced by the NN-LS’s link switches
and connection weights. Besides, since the course evalu-
ation process’s characteristics can reduce the diversity of
individuals in the population, the premature problem can
occur within the evolution process, reducing the SGA’s
performance.

For the mentioned reasons, EGA, an extension of the
SGA, is proposed, which aims to effectively optimize the
network framework and connection weight so as to ame-
liorate the premature problem.

To evaluate the algorithm performance, the following
fitness function was selected:

fitness �
1

MSE
, (9)

where

MSE � 􏽘

Ntr

k�1

[ 􏽢O(k) − O(k)]
T

· [􏽢O(k) − O(k)]

Ntr

, (10)

where Ntr is the training set size and O(k) denotes the
measured output at k-th sampling time and is defined as

O(k) � y1(k), y2(k), y3(k)􏼂 􏼃
T
. (11)

For applying EGA, all the constructed NN-LS’s con-
nection weights and link switches presented in Figure 2 are
transformed into the following chromosome:

l
1
ij, l

2
jk, r

1
ij, r

2
jk, b

1
j , b

2
k􏽨 􏽩,

i � 1, . . . , nI, j � 1, . . . , nh, k � 1, . . . , no.
(12)

*en, the EGA aims to find an optimal chromosome (12)
to obtain the maximum fitness (9). And the following part
3.2.1–3.2.3 describes the three enhancement approaches
adopted in the presented EGA.

Remark 2. *e Mean Square Error (MSE) is a widely used
evaluation index, which can avoid the problem that the
positive and negative errors cannot be added together. In
addition, because the error is squared, the role of the error
with a large value in the index is increased, and the sensi-
tivity is improved. Of course, other indicators can also be
used, for example, Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), and Symmetric Mean
Absolute Percentage Error (SMAPE).

3.2.1. Triple Selection Operation. Based on (12), the number
of genes of a single chromosome, namely, the dimension of
one possible solution in EGA, is calculated as

qchr � 2 × nI × nh + nh × no( 􏼁 + nh + nI. (13)

*e number of genes in a single chromosome qchr,
composed of all switches and connection weights, is rela-
tively high even though there exist a few hidden nodes in the
net. For instance, the length of a chromosome can reach 100
for nh > 3. An individual’s fitness can vary sensitively to the
number of genes as qchr grows. In such circumstances, the
high fitness individuals are mostly chosen, but they also can
be randomly varied through the mutation operation. In this
regard, the first approach, named triple selection operation
(TSO), can be employed to partially solve the problems
induced due to the chromosome’s high dimension.

*e schematic diagram of the triple selection operation is
described in Figure 3, in which q stands for the population of
the initial group. *e first choice of all generations starts
from Group 1 with initial q individuals. Group 2 is then
formed by employing the standard “Roulette selection”
approach with the reproduction probability as

probi �
fi

􏽐 fi

, (14)

where fi stands for the fitness of the i-th chromosome.
Group 3 incorporates Group 1 and Group 2 to generate
Group 3 based on the second selection, crossover, and
mutation operations. Rather than being taken as the final
group, Group 4 is incorporated with the initial group again,
and the third selection is then applied to the resultant group
(Group 5). At last, Group 6 is achieved as the group
employed in the next generation.

Remark 3. *e proposed “double selection” approach [29]
may not have enough ability to protect the high fitness
individuals due to the high dimension of the studied
chromosome. In “double selection,” Group 1 directly gen-
erates Group 4. However, an alternative selection operation
is employed in TSO for forming Group 3 from Group 1.
Compared with “double selection,” employing the additional
selection for TSO can increase the probability of the final
group inheriting superior genes. Besides, based on various
experiments, the selection times are more than three, while
the EGA’s performance is hardly further enhanced, and the
computational load will be increased.
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3.2.2. Self-Tuning Crossover Operation and Mutation.
*e selection operation is employed in all generations to
determine the searching orientation direction toward the
best individuals. Nevertheless, not any new individual is
generated. In order to enhance the population’s diversity,
crossover operation is inevitably utilized in the genetic al-
gorithm to interchange genes from the parents attained
within the selection process. *e crossover operation in-
fluences the selected population pairs and adds new indi-
viduals to the population according to the crossover rate Pcv.

*e second approach is called the self-tuning crossover
operation (STCO), which is based on the standard arith-
metic crossover operation and is more appropriate for the
research in this paper. STCO creates three candidate off-
spring and takes two of them with the highest fitness as the
final offspring by completing with each other. Accordingly,
the parents’ data can be entirely employed.

*e following three steps are required to perform the
STCO. Consider that each two selected parents are denoted
by Px � [ga

1 , ga
2 , . . . , ga

qchr
]T and Py � [gb

1, gb
2, . . . , gb

qchr
]T,

where superscripts a and b stand for the indices of the
parents to spread offspring.

Step C1. Calculate the following values:

Gmax � max g
1
1, . . . , g

q
1􏽮 􏽯, . . . , max g

1
qchr

, . . . , g
q
qchr

􏽮 􏽯􏽨 􏽩
T
,

Gmin � min g
1
1, . . . , g

q
1􏽮 􏽯, . . . , min g

1
qchr

, . . . , g
q
qchr

􏽮 􏽯􏽨 􏽩
T

,

(15)

where the superscript q is the number of the population.
Gmax and Gmin stand for the two artificial chromosomes
involving genes with maximum and minimum values within
the total population of this generation, respectively.

For the chosen parents, obtain

Pmax � max g
a
1, g

b
1􏽮 􏽯, . . . , max g

a
qchr

, g
b
qchr

􏽮 􏽯􏽨 􏽩
T
,

Pmin � min g
a
1, g

b
1􏽮 􏽯, . . . , min g

a
qchr

, g
b
qchr

􏽮 􏽯􏽨 􏽩
T

.

(16)

Step C2. Create the following three children:

S1 � α2 · Gmax + 1 − α2( 􏼁 · Pmax � g
2
1, g

2
2, . . . , g

2
qchr

􏽨 􏽩
T
, (17)

S2 � α1 · Px + 1 − α1( 􏼁 · Py � g
1
1, g

1
2, . . . , g

1
qchr

􏽨 􏽩
T
,

(18)

S3 � α3 · Gmin + 1 − α3( 􏼁 · Pmin � g
3
1, g

3
2, . . . , g

3
qchr

􏽨 􏽩
T
,

(19)

where crossover parameters α1, α2, α3 ∈ [0, 1] are randomly
chosen for each generation’s evolution.

Step C3. Compute the fitness of S1, S2, and S3, and select two
of them with the highest fitness as Sa and Sb, respectively.

If f(Sa)>f(Px) and f(Sb)>f(Py), replace Px and Py

with Sa and Sb, respectively.
If f(Sa)<f(Px) and f(Sb)<f(Py), keep Px and Py

unchanged.
Else, replace max f(Sa), f(Sb)􏼈 􏼉 with min f(Px),􏼈

f(Py)}.
Figure 4 presents an example to illustrate the concept of

STCO, where S2 is obtained from Px (blue line) and Py (red
line) using an approach similar to the standard arithmetic
crossover operation. *e main difference is that STCO so-
phisticatedly generalizes the parent group scope for cross-
over operation fromD2 � conv Px, Py􏽮 􏽯 to a broader domain
spanned by D1 � conv Gmax, Pmax􏼈 􏼉, D3 � conv Gmin, Pmin􏼈 􏼉,
and D2. In the sets D1 and D3, two more children, S1 and S3
are generated, as represented in (17) and (19), respectively.
*us, STCO more utilizes the parents’ information com-
pared with the standard arithmetic crossover operation.
Finally, two offspring by STCO with the highest fitness, but
not one by regular crossover operation, are selected.

After the crossover operation, the mutation operation
will be applied to the population, by which the value of a
gene of the population is randomly varied to incorporate
new genetic materials into the population. *e proposed
EGA adopts the nonuniform mutation operation, which is
widely utilized in genetic algorithms.

3.2.3. Multiple Species, Migration, and Real Coding. *e last
improvement approach of the proposed EGA concentrates on
dividing the population into various species. In most cases, the
premature problem, which implicates a trade-off between
exploration and exploitation, generally happens while
employing SGA. *e multiple species approach is utilized to
solve the mentioned premature problem. By utilizing the
mentioned approach, various species’ search procedures can be
applied simultaneously, and falling into local minimum can be
avoided, which is generally induced by one species. Notably,
three species are employed in the presented EGA. Specie 1 and
Specie 2 perform the search individually by concentrating on a
local but refined scope rather than broad scope. Specie 3 is
utilized to merge Species 1 and 2 after completing the EGA.

*e migration operation swaps individuals randomly
between Species 1 and 2 in all generations. *e migration
rate Pmr adjusts the number of individuals moving between
species. Generally speaking, a migration rate of about 5% per
generation is a good choice.

*ere are various encoding algorithms like binary
encoding and real encoding. *e binary coding employs a
simple on/off mechanism. Contrarily, applying binary
encoding to the problems represented by real numbers may

Group 2
(q individuals)

S

Second selection Third selectionFirst selection

Group 1
(q individuals)

Group 3
(2q individuals)

Group 4
(q individuals)

Group 6
(q individuals)

S
Group 5

(2q individuals)

*

Figure 3: Schematic diagram of TSO. S stands for the Roulette
selection, and ∗ stands for three operations, including selection,
crossover, and mutation.
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cause the “hamming cliff” phenomenon. In such circum-
stances, the real encoding should be employed just as we
implement in the current paper.

3.2.4. Layout of EGA and Benchmark Tests. Figure 5 de-
scribes the primary layout of the EGA.*e fitness function (9)
and the number of populations are employed to produce the
initial population randomly. In virtue of the multiple species
technique presented in the last part, the original population is
randomly categorized into two species. *e mentioned two
species evolve separately using the presented TSO and STCO
for a given number of generations. After that, the above two
species are merged into Specie 3. Moreover, in this study,
various crossover probabilities (described by P1

cv and P2
cv) and

mutation probabilities (described by P1
mu and P2

mu ) are
adopted for two species in all generations.

*e efficiency of the EGA is verified by four benchmark
test functions to be applied in the next section. *e
benchmark functions are presented as follows:

Function 1:

f1(x) � x · sin(10πx) + 2, −1≤x≤ 2, (20)

where the maximum value is at f1(1.8506) � 3.8503.
*e fitness function: fitness1(x) � f1(x).
Function 2 (De Jong function):

f2(x) � 􏽘
n

i�1
x
2
i , − 5.12≤xi ≤ 5.12, (21)

where n� 3 and the minimum value occurs at f2(0, 0, 0) � 0
*e fitness function: fitness2(x) � 1/(1 + f2(x)).
Function 3:

f3(x) � 􏽘
n−1

i�1
(100) · xi+1 − x

2
i􏼐 􏼑 + xi − 1( 􏼁

2
x
2
i ,

−2.048≤xi ≤ 2.048,

(22)

where n� 2 and the minimum value is at f3(0, 0) � 0.
*e fitness function: fitness3(x) � 1/(1 + f3(x)).
Function 4 (Shubert function):

f4 x1, x2( 􏼁 � 􏽘
n

i�1
i · cos (i + 1) · x1 + i( 􏼁( 􏼁

· 􏽘
n

i�1
i · cos (i + 1) · x2 + i( 􏼁( 􏼁,

− 10≤x1, x2 ≤ 10,

(23)

where n� 2 and the minimum is at
f4(−1.1432, −0.8003) � −186.7309.

*e fitness function: fitness4(x1, x2) � −f4(x1, x2).
*e EGA employs the mentioned four test functions.

*e results are compared with those attained by the SGA
with arithmetic crossover and nonuniform mutation. For
every test function, the population size is 200 for EGA and
SGA. *e algorithm takes 80 iterations. *e crossover
probability is chosen as 0.6 for SGA and 0.6 and 0.8 for
Species 1 and 2 in EGA. *e mutation probability for
functions is set at 0.04 for SGA and 0.04 and 0.06 for
Species 1 and 2 in EGA. Figure 6 presents the population’s
average fitness results obtained with EGA and SGA.
Generally, it can be found that the population’s average
fitness value of EGA (solid black line) is better than that of
SGA (red dashed line).
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Figure 5: *e layout of the proposed EGA with triple
selection operation, self-tuning crossover operation, and three
species.
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3.2.5. Tuning the NN-LS’s Framework and Connection
Weights through EGA. After describing the EGA in part
3.2.1–3.2.4, the EGA can be used to adjust the proposed NN-
LS framework and connection weights.

In each generation of EGA, the best chromosome of the
contemporary population is chosen, and then all genes in
this chromosome with the highest fitness through the
population are derived. Specifically, the values of link
switches L(lij) and L(ljk) can be chosen either 0 or 1
depending on lij and ljk, which are available for each value of
i, j, and k. Accordingly, the existence of w1

ij and w2
jk can be

verified. In this regard, the framework of the NN-LS may
change generation by generation to attain the optimum
solution.

As presented in Figure 7, the original entirely connected
feed-forward NN becomes a partially connected one after
learning by EGA. Accordingly, the NN’s implementation
cost is reduced in terms of computing time.

3.3. Further Tuning the Connection Weights via the Lev-
enberg–Marquardt Algorithm. As discussed in Subsection
3.2, the NN-LS framework and connection weights are tuned
simultaneously by employing the presented EGA. Various
performed tests indicate that higher accuracy can be ob-
tained by NN-LS incorporated with EGA instead of the SGA.
However, after EGA learning, the solution of maximum
fitness function (9) may fall within the vicinity of the global
minimum; therefore, in order to obtain the optimal solution,

it is necessary to adopt a gradient-based algorithm to further
update the weights in the neighborhood. *e L-M algorithm
is the most widely used algorithm with local search ability,
which can effectively reduce the search conditions of GA and
improve the stability of GA [30, 31]. Compared with other
methods, the LM algorithm has faster convergence speed
and accuracy and has been used to solve practical problems
such as information physics system [32] and concrete
compressive strength [33]. In order to attain higher effi-
ciency, the (active) connection weights can bemore tuned, as
introduced in this subsection.

*e steps of the L-M algorithm are listed in the
following:

Step L1. Build a new connection weight vector as

X � x1, x2, . . . , xm􏼂 􏼃
T
. (24)

With EGA, the nonzero initial values W1,
b1j , j � 1, . . . , nh, W2, and b2k, k � 1, . . . , no, can be obtained.

Calculate the following performance index, which
evaluates the square error between the net’s output and
measured output,

R (X) � 􏽘

Ntr

k�1
[􏽢O(k) − O (k)]

T
· [ 􏽢O(k) − O (k)], (25)

where Ntr stands for the size of the training set. R(·) can be
regarded as a function with respect to the new weight vector
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Figure 6: Average fitness of the population: SGA versus EGA. (a) Test function 1. (b) Test function 2. (c) Test function 3. (d) Test function 4.
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X defined by (24). O(k) represents the training set’s k − th

measured output vector.
Here, updating the L-M algorithm is in batch mode.

Define the following new error vector:

E � e1,1, . . . , eno,1, e1,2, . . . , eno,2, . . . , e1,Ntr
, . . . , eno,Ntr

􏽨 􏽩
T
,

(26)

where e1,j, . . . , eno,j denote all elements of 􏽢O(j) − O(j).

Step L2. Noticing that the error vector E is also a function of
X, calculate the Jacobian matrix as

J(X)≜∇E(X) �

ze1,1

zx1

ze1,1

zx2
. . .

ze1,1

zxm

ze2,1

zx1

ze2,1

zx2
. . .

ze2,1

zxm

⋮ ⋮ ⋮ ⋮

zeno,Ntr

zx1

zeno,Ntr

zx2
. . .

zeno,Ntr

zxm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

Let

ΔXk � − J
T

Xk( 􏼁 · J Xk( 􏼁 + μk · I􏽨 􏽩
− 1

· J
T

Xk( 􏼁 · E Xk( 􏼁,

(28)

where μk denotes a parameter to be tuned, and then update
the connection weights Xk+1 as

Xk+1 � Xk + ΔX. (29)

Step L3. Tune the parameters in (27) as follows:
If R(Xk+1)≤R(Xk), then μk � μk/α.
If R(Xk+1)>R(Xk), then μk � μk · α, where α describes a

positive constant.

Step L4. Stop if |R(Xk+1) − R(Xk)|< ε.
For calculation of J(Xk) in Step L2, the chain rule can be

employed, by which Xk+1 can be updated by the standard BP
method.

3.4. EGA-NNLS. By synthesizing NN-LS, EGA, and L-M
algorithm in Subsections 3.1∼3.3, the following two stages
can describe the EGA-NNLS algorithm:

Stage 1. Tuning the framework and weights of NN-LS si-
multaneously via EGA.

Calculate nI, nh, and no to construct a three-layer NN-LS.
*en, all switches, weights, and bars within the NN-LS are
mapped into a chromosome as (12) with the fitness function
defined as (9). Accordingly, the initial population with a
fixed number of individuals is randomly generated. *e
proposed EGA is then adopted to adjust the framework and
weights of NN-LS simultaneously until converging the
population’s average fitness.

Stage 2. Further updating the nonzero connection weights.
When the first stage finishes, the structure of NN-LS is

determined. In order to further search for the optimal
nonzero weights, the L-M algorithm is applied.

Remark 4. For many problems such as the one discussed in
(9), the nonzero connection weights tuned by EGA can be
directly regarded as the final values of the network. However,
the second stage is necessary for the studied problem, in
which EGA-NNLS is incorporated with L-M.

4. Simulations

In order to verify the EGA-NNLS, this section performs
simulations using the actual data of the evaluation effect of a
particular university course. In the simulation process, the
units of each evaluation index are unified, and the data are
normalized to avoid the influence of data dimensions. *is
paper employs 40 groups of data samples, of which 30
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groups are training set samples, and the other ten are the
evaluation set samples. Table 2 list the ten sets of test data to
verify the effectiveness of the EGA-NNLS for predicting the
learning effect. Based on the above data, EGA-NNLS is
established, and the simulation parameters are listed in
Table 3.

After setting the simulation parameters, EGA-NNLS is
established.*is paper takes a real number between −1.5 and
1.5 as the network output value. *e binary code result can
be obtained after rounding the absolute value of the network
output result.

After completing the training of EGA-NNLS, the ten
groups of test data listed in Table 2 are utilized to evaluate the
efficiency of EGA-NNLS, and Table 4 lists the final results. It
can be seen that the network output values after rounding
are consistent with the actual binary code value in the ten
groups of data for simulation.

Figure 8 illustrates the performance function variations
during the training process. Two weight updating algorithms
are utilized in this paper. One is the proposed EGA-NNLS
algorithm, and the other is the traditional BP algorithm. As
shown in Figure 8, the performance functions of the two
algorithms gradually decrease during the training process.
However, compared with the conventional BP algorithm, the
EGA-NNLS achieves the desired training accuracy after the
second iteration (goal� 10−2, as shown in Table 3). *ere-
fore, the superiority of the EGA-NNLS algorithm to the
traditional BP algorithm is demonstrated in terms of effi-
ciency and convergence speed.

It can be seen from the above simulation that EGA-
NNLS can evaluate the learning effect. Compared with the

traditional expert evaluationmethod, EGA-NNLS avoids the
influence of subjective factors on the evaluation results.
Meanwhile, the performance function of the EGA-NNLS
network has a faster convergence speed in the training
process than the conventional steepest descent BP neural
network. Besides, EGA-NNLS can eliminate the adverse

Table 2: *e test set data samples (10 groups).

*e number of the test set samples
1 2 3 4 5 6 7 8 9 10

x1 0.77 0.80 0.85 0.60 0.75 0.72 0.57 0.80 0.85 0.60
x2 0.75 0.72 0.59 0.72 0.77 0.60 0.70 0.72 0.59 0.72
x3 0.82 0.93 0.63 0.67 0.82 0.60 0.62 0.93 0.63 0.67
x4 0.80 0.79 0.72 0.50 0.85 0.70 0.50 0.79 0.72 0.50
x5 0.94 0.68 0.82 0.58 0.92 0.80 0.64 0.68 0.82 0.58
x6 0.71 0.88 0.81 0.84 0.90 0.85 0.71 0.88 0.81 0.84
x7 0.87 0.67 0.77 0.60 0.85 0.71 0.57 0.67 0.77 0.60
x8 0.75 0.74 0.66 0.60 0.70 0.65 0.65 0.74 0.66 0.60
x9 0.83 0.81 0.74 0.59 0.81 0.70 0.53 0.81 0.74 0.59
Expert evaluation level 2 2 2 2 1 3 4 3 2 3
Corresponding code 010 010 010 010 001 011 100 011 010 011

Table 3: *e simulation parameters of the EGA-NNLS.

Symbol Value Symbol Value
nI 9 Ntr 30
nh 8 Nts 10
no 3 P1

cv 0.7
Goal 10−2 P2

cv 0.8
Epochs 300 P1

mu 0.04
Population 200 P2

mu 0.05
Generation 250 Pmr 0.05
α 0.5

Table 4: Comparison of prediction results and actual values of ten
groups of the test set samples by EGA-NNLS.

Sample
number Network output code value Value after

rounding

Real
code
value

1 0.3706 0.9222 0.2093 010 010
2 −0.1556 1.3371 −0.8785 011 011
3 0.3856 0.7784 0.3343 010 010
4 0.0652 1.2600 −0.2607 010 010
5 −0.1387 1.2444 −0.7713 011 011
6 −0.3394 1.0860 −0.6106 011 011
7 0.992 0.38062 0.2093 100 100
8 −0.1756 1.3871 −0.9085 011 011
9 0.3856 0.7784 0.3243 010 010
10 0.0652 1.2600 −0.2607 010 010
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Figure 8: Comparing the performance function variations during
training of the EGA-NNLS network with the BP neural network.
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effect of gradient amplitude on the evaluation results in the
network training process, achieving an accurate course
evaluation effect. *is demonstrates the excellent practica-
bility of the proposed method.

5. Conclusions

*e current work studies the modeling of the evaluation
system of the course learning effect in colleges and uni-
versities. *e existing evaluation system characteristics are
employed to propose the EGA-NNLS evaluation and
analysis system. A particular NN-LS is presented, and three
enhancement approaches are utilized to combine it with the
proposed EGA. Besides, as EGA utilizes the NN-LS’s link
switches, the LM algorithm further updates the network.
*erefore, EGA-NNLS can learn the input-output rela-
tionships and the network framework simultaneously to
model the course evaluation system, while the network
gradient data is also entirely employed. Finally, the efficiency
of EGA-NNLS is demonstrated through simulations of the
actual data.

*e proposed model is general, and the employed al-
gorithm is based on the system data. Compared with the
existing evaluation approaches like the analytic hierarchy
process, fuzzy comprehensive evaluation approach, clus-
tering method, and multiple regression analysis methods,
the proposed model is mainly related to the data than the
model mechanism. *is demonstrates the efficiency and
application value of this study.
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