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A theoretical framework 
for general design of two‑materials 
composed diffractive fresnel lens
Ming‑Yen Lin1, Chih‑Hao Chuang2, Tzu‑An Chou3 & Chien‑Yu Chen3*

Near 100% of diffractive efficiency for diffractive optical elements (DOEs) is one of the most required 
optical performances in broadband imaging applications. Of all flat DOEs, none seems to interest 
researchers as much as Two‑Materials Composed Diffractive Fresnel Lens (TM‑DFL) among the most 
promising flat DOEs. An approach of the near 100% of diffractive efficiency for TM‑DFL once developed 
to determine the design rules mainly takes the advantage of numerical computation by methods 
of mapping and fitting. Despite a curved line of near 100% of diffractive efficiency can be generated 
in the Abbe and partial dispersion diagram, it is not able to analytically elaborate the relationship 
between two optical materials that compose the TM‑DFL. Here, we present a theoretical framework, 
based on the fundaments of Cauchy’s equation, Abbe number, partial dispersion, and the diffraction 
theory of Fresnel lens, for obtaining a general design formalism, so to perform the perfect material 
matching between two different optical materials for achieving the near 100% of diffractive efficiency 
for TM‑DFL in the broadband imaging applications.

Previous researches on diffractive Fresnel lens (DFL)
In the thinning of optical lenses, following the principle of Equal Optical Path Difference, the surface relief of a 
spherical lens with radius R and refractive index n(λ) is processed to construct a Diffractive Fresnel Lens (DFL) 
with multiple concentric Fresnel Zone (FZ) on the  surface1–11, as shown in Fig. 1.

Usually, exploiting the 2pπ phase (where p is a positive integer) as the Equal Optical Path Difference is the 
way to configure a diffractive Fresnel lens (DFL)12–18. The so-called DFL is generally referred to p = 1. Accord-
ing to the basic diffractive optics theory of DFL presented by Dale A.  Buralli12, as shown in Fig. 1, the radial FZ 
structure possesses the following relations.

where  ri is the i-th FZ radius, f 0 is the design focal length, �0 is the design wavelength, �i is the spacing between 
the i-th FZ and the i + 1-th FZ, h is the FZ height, D is the FZ diameter, and  rmax is the outermost FZ radius.

Due to the dispersion, generally the parallel incident white light with different wavelengths, ranging from 400 
to 700 nm, is focused by DFL at different focal points on the optical axis. The optical power varies linearly with 
the wavelength of the incident light, as shown in Fig. 2, where  fR,  fG, and  fB presenting the focal points focused 
by the red, green, and blue light respectively.
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Furthermore, according to the above-mentioned theory of  DFL12, the diffraction focus and efficiency of a 
light source with a single wavelength can be determined by the following equations.

where �0 is the design wavelength, ƒ0 is the design focal length, � is the wavelength, f is the focal length, m is the 
diffracted order, η is the diffractive efficiency, α is the detuning factor, n(λ) is the refractive index of DFL as a 
function of wavelength λ, and n(λ0) is the refractive index at λ = λ0.

For instance, the wavelength dependent diffractive efficiency η(λ) of the optical materials of PMMA (Micro-
chem 495 PMMA  resist19) is calculated by Eqs. (3), (6), and (7) for the design wavelength at λ0 = 0.587 μm, FZ 
height at h = 1.17 μm, and the diffracted order at m = 1, 2, and 3, as shown in Fig. 3.

The calculation results reveal that most of the diffraction energy transmitted from the white incident light 
focused in the diffracted order at m = 1 and only a small portion of the diffraction energy contributed to the 

(5)f =
�0

�

f0

m

(6)η =
[

sinπ(α −m)

π(α −m)

]2

(7)α =
�0

�

n(�)− 1

n(�0)− 1

Figure 1.  Conventional thinning process of a diffractive Fresnel lens (DFL) based on the principle of equal 
optical path difference.

Figure 2.  Optical power of a DFL as a function of the wavelength of the incident light.
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diffracted order at m = 2, 3, while the rest of the energy from the higher diffracted order being not considered 
because of the less contribution to the diffractive efficiency. Furthermore, in the spectrum of visible light, accord-
ing to Eqs. (6) and (7), 100% diffractive efficiency can only be achieved in conditions of the diffracted order at 
m = 1, λ = �0 = 0.587 µm, and α = 1. Equation (6) describes how the diffractive efficiency drops off when the inci-
dent wavelength λ deviates away from the design wavelength λ0. More practically, the overall diffractive efficiency 
is generally evaluated with the mean value of spectrum distribution, as following equations.

where ηm is the averaged diffractive efficiency in the diffracted order at m and ηT is the total averaged diffractive 
efficiency. For the parallel incident white light source, substituting the wavelength at � 1 = 0.4 μm and � 2 = 0.7 μm 
into Eqs. (8) and (9), η1= ~ 85.2%, η2= ~ 8.2%, and η3= ~ 1.2% are obtained in the diffracted order at m = 1, m = 2 
and m = 3 respectively.

Consequently, the total diffractive efficiency from m = 1 to m = 3 comes up with ηT = 94.8%. In other words, 
there is still a certain portion of the incident light transmitted to other higher diffracted order (m > 3). For the 
diffracted order at m = 1 and h = 1.17 μm, about 15% of the incident light energy is disappeared. As a result, such 
light becomes the stray light and eventually deteriorates the imaging quality of DFL.

A solution to make up for the energy loss in the first diffracted order was first presented by Kenneth J. Weible 
in  199920. In their research result, a blazed grating, composed of two optical materials, including glass (Schott 
BaF52 glass) and PC (polycarbonate), was proposed to improve the diffractive efficiency for the diffracted order 
at m = 1 (i.e. α = 1) by exploiting the refractive index difference Δn(λ) =  n1(λ) −  n2(λ) being proportional to wave-
length λ. When the refractive index difference satisfies Δn(λ)/λ=constant at all wavelengths λ in the spectrum of 
visible light, all the incident light energy in the higher diffracted order is all transferred into the first diffracted 
order, as to achieve the objective of 100% diffractive efficiency. Furthermore, B. H. Kleemann mentioned the 
design concepts for the blazed grating composed of two optical materials in  200821 and particularly named such 
structure as Common depth EA–DOEs. In contrast to the term “Common depth”, a singlet DFL composed of 
two optical materials is called Two-Materials Composed Diffractive Fresnel Lens (TM-DFL) in this study.

According to Kenneth’s  research20, two transparent optical materials of  glass22 and  PC23, as shown in Fig. 4a 
and b, are used for explaining the difference in the diffractive efficiency between a Single-Material Composed 
Diffractive Fresnel Lens (SM-DFL), i.e. the conventional DFL, and TM-DFL. For SM-FDL, the average diffrac-
tive efficiency η1 84.9% is calculated by Eqs. (6), (7), and (8) for the diffracted order at m = 1 and the incident 
wavelength at λ = 400–700 nm, as shown in Fig. 4c. Besides, for TM-DFL, the diffractive efficiency η1=94.3%, as 
shown in Fig. 4d, is obtained by the same calculations above with a modified tuning factor α in Eq. (10) which 
contains the refractive index  n2(λ) and  n2(λ0) of the second material.

Although TM-DFL can improve the diffractive efficiency of the conventional SM-DFL, the requirement for 
Δn(λ) ∝ λ is not perfectly satisfied. As a result, it is hard to achieve the theoretical 100% diffractive efficiency.

In fact, Andrew  Wood24 indicated that in the case of SM-DFL composed with materials existing in nature, 
the detuning factor α in Eq. (7) could hardly retain the needs for α = 1 when λ deviated away from the design 
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Figure 3.  Diffractive efficiency η(λ) of PMMA as a function of the incident light wavelength λ at diffraction 
order m = 1, 2, and 3.
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wavelength λ0. Moreover, as previously described, the regular materials, i.e. glass and PC, found by Kenneth J. 
 Weible20 were able to increase the average diffractive efficiency from 85 to 94%, but it still required more effort 
to realize the theoretical 100% diffractive efficiency.

Latest works on the optical design of TM‑DFL: a numerical framework for the design of broad‑
band DOEs. To overcome the above-mentioned problems, Daniel Werdehausen in  201925 proposed to use 
dispersion-engineered nanocomposites for artificially generating a refractive index difference Δn(λ) to satisfy 
the requirement for n(�) ∝ λ. According to this  definition25, the so-called nanocomposites are produced by add-
ing a proper volume fraction of nanoparticles with a diameter smaller than 5 nm, such as Diamond,  ZrO2,  TiO2, 
ITO (indium tin oxide), and AZO (aluminum-doped zinc oxide) (presented as green stars), to the existing poly-
meric materials, such as PMMA (poly(methyl methacrylate)), COP (cyclic olefin copolymer), PC (polycarbon-
ate), and PS (polystyrene) (presented as blue stars), to adjust the optical parameters of materials  nd,  vd, and  Pg,F. 
Though such new  nd,  vd, and  Pg,F (presented as orange points) do not exist in nature, they can be tailored within 
a certain range (presented as pink area) in both the Abbe diagram and partial dispersion diagram, as respectively 
shown in Fig. 4a and  b25. For instance, by adding  TiO2 nanoparticles with different volume fraction to the poly-
meric material PC, the distribution of  nd-vd can extend to cover a region in 17 <  vd < 28 and 1.6 <  nd < 1.85 while 
the distribution of  PgF-vd covers a region in 17 <  vd < 28 and 0.58 <  PgF < 0.65.

Furthermore, the same research team in  202026 proposed a design method of mapping and fitting based on 
the numerical computation for matching the material refractive index of TM-DFL to achieve the light diffractive 
efficiency higher than 99.9%. According to DOEs’ phase profiles change across the different dispersion  regimes26, 
the material parameters of material 1(Mat.1) are first selected and set at  nd,1 = 1.8,  vd,1 = 60, and  Pg,F,1 = 0.55. By 
the method of mapping, the material parameters  nd,2,  vd,2, and  Pg,F,2 of material 2(Mat. 2) are discretely varied to 
calculate the distribution of the average diffractive efficiency η in the Abbe diagram. Similarly, the distribution 
of the average diffractive efficiency η in the partial dispersion diagram is calculated and drawn. For later discus-
sion, the diffractive efficiency η

(
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The major feature of the mapping method is to discretely modulate  nd,2,  vd,2,  Pg,F,2 of Mat. 2 in a large region 
to calculate and set up both diffractive efficiency map of η

(

nd,2, vd,2
)

mat1
 and η

(

Pg,F,2, vd,2
)

mat1
 , so to find the 
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is named as Abbe characteristic curve of the near 100% of diffractive efficiency, or Abbe characteristic curve 
in brief, while the other one in η
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Figure 4.  Difference between SM-DFL and TM-DFL. (a) material composed of a SM-DFL (b) material 
composed of a TM-DFL (c) diffraction efficiency of SM-DFL at m = 1 (d) diffraction efficiency of TM-DFL at 
m = 1.
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100% of diffractive efficiency, or partial dispersion characteristic curve in brief. Finally, the most suitable material 
parameters  nd,2,  vd,2, and  Pg,F,2 can be determined by comparing the producible nanocomposites for completing 
the optimal match of parameters in two nanocomposite materials.

Furthermore, applying the mathematical fitting to the Abbe characteristic curve, a natural exponential func-
tion is obtained, as below.

where a = 1.839, b = 0.9919, and c = 0.8782. Note that these values are determined only for  nd,1 = 1.8,  vd,1 = 60, and 
 Pg,F,1 = 0.55. To acquire the general relationship between a, b, c, and the material parameters of MAT.1, ten of the 
Abbe characteristic curves with different values of  nd,1, ranging from 1.5 to 2.0, are used to fit to obtain the  nd,1 
dependence of a, b, and c as below.

However, the fitting to the partial dispersion characteristic curve, is not  discussed26.

Major issues left by latest works. In summary, to achieve the optical parameters match for two nano-
composite materials in TM-DFL, the above-mentioned design method of mapping and fitting by the numerical 
 computation26 confronts the following issues.

(1) The methods of mapping can obtain a single Abbe characteristic curve and partial dispersion characteristic 
curve through a big volume of numerical computations at a time while losing efficiency and accuracy.

(2) The fitting method can describe the Abbe characteristic curve as Eq. (11) which is a function of  nd,1 in a 
special form of a natural exponential function with 1/3 power. In addition to the fitting accuracy or error, 
it is not a general equation for the analytical evaluation of the system. The so-called “analytical evaluation” 
refers to analyze the variance in the entire system caused by the parameter variation without using mas-
sive numerical computations. In other words, it is a qualitative and quantitative way to get insight into the 
general physical behaviors of a system by theoretical formulas.

(3) Three coefficients a, b, and c of the Abbe characteristic curve merely contains  nd,1 of Mat.1 without any 
further relation with  vd,1 and  Pg,F,1 of Mat.1.

(4) There is no fitting applied to the partial dispersion characteristic curve for the analytical evaluation on the 
relationship among parameters, i.e.  (nd,1,  vd,1, and  Pg,F,1) and  (nd,2,  vd,2, and  Pg,F,2) between two materials.

New method: a theoretical framework for general design formalism. In contrast, we present a 
new method of analytical evaluation based on theoretical formulas in this study. More exactly, two characteristic 
curve formulas of the near 100% of diffractive efficiency are derived from the theories of Cauchy’s equation, 
Abbe number, and partial dispersion as well as the diffractive theory of Fresnel lens. Besides, to achieve the 
purposes of the perfect parameters match between two optical materials in TM-DFL and the objectives of the 
general analyses on the optical behavior of TM-DFL, it completely solves the above-mentioned disadvantages of 
the numerical computation-based methods of mapping and fitting.

For the optical theory of DFL, the previous theoretical Eqs. (1)–(9) completely describe the relationship 
among the diffractive efficiency, the wavelength of the incident light, and material refractive index, where 
Eqs. (1)–(4) provide the design of the geometric shape of Fresnel lens, Eqs. (5)–(7) provide the focal length and 
diffractive efficiency after the incident light interactive with DFL, and Eqs. (8)–(9) provide the overall evaluation 
of diffractive efficiency.

For DFL, 2π phase shift is the necessary condition for reaching 100% diffractive efficiency which can be 
acquired when h�n(�0) = �0 , where h is the FZ height, Δn(�0) = n(�0)-1 is the refractive index difference, 
n(�0 ) is the material refractive index of DFL at = �0,� is the wavelength of the incident light, and λ0 is the design 
wavelength. Further, “1” in the Δn is the refractive index of air. That is, the incident light directly contacts the 
air after going through DFL. Since the refractive index of air is almost irrelevant to � , it is no way to satisfy the 
condition Δn() ∝ � . Consequently, the diffractive efficiency drops off significantly when λ deviating away from 
λ0. Therefore, TM-DFL is used to effectively overcome the efficiency issue caused by the refractive index of air. 
For this purpose, Eq. (3) is modified as below to generate a 2π phase shift when TM-DFL is used to replace DFL.

where n1(�0) and n2(�0) are the value of two material refractive indexes in TM-DFL at = �0.
Moreover, the detuning factor α in Eq. (7) also needs a modification as in Eq. (10). Practically, the two opti-

cal materials used for TM-DFL have to satisfy the following requirements, including (1) optically transparent 
in the visible spectrum, (2) practical in mass production, and (3) Δn(λ)∝ . As the transparent materials existing 
in nature can hardly satisfy all the above conditions, especially for (3). Consequently, an optical material with 
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an artificially tailorable refractive index, such as nanocomposite, is necessary for the realization of TM-DFL. 
The core of this research is to build up a theoretical foundation for the design of TM-DFL with the near 100% 
of diffractive efficiency by connecting theories of Cauchy’s equation, Abbe number, partial dispersion, and the 
diffractive theory of Fresnel lens all together to derive the equation of Abbe characteristic curve and partial 
dispersion characteristic curve as below.

Solution for coefficients of Cauchy’s equation. In general, the refractive index n(λ) of transparent 
optical materials in the spectrum of visible light can be calculated by Cauchy’s Eq. (16).

where n(λ) is the refractive index depending on the light wavelength, λ is the wavelength of light in vacuum, 
and A, B, C are coefficients. Moreover, the dispersion of transparent optical materials can be defined with Abbe 
number and partial dispersion, as below.

where  nd,  nF,  nC, and  ng are the refractive indices of materials at the wavelengths of the Fraunhofer d, F, C and 
g spectral lines (referring to wavelength λd = 587.56 nm, λF = 486.13 nm, λC = 656.28 nm, and λ g = 435.83 nm). 
First,  nd,  nF,  nC,  ng and λd, λF, λC, λg are substituted into Eq. (16) to obtain the following equations.

Coefficients A, B, and C are solved as below.

where

Coefficients A, B, C of Cauchy’s equation in Eqs. (23)–(25) clearly present the refractive index as a function 
of  nd,  vd,  Pg,F, and wavelengths of Fraunhofer d, F, C, and g spectral lines.
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Derivation of Abbe characteristic curve. As mentioned above, Eq. (6) is a general equation of diffrac-
tive efficiency while Eq. (10) defines the detuning factor α of TM-DFL which is a function of refractive index 
difference Δn(λ). For all wavelengths in the spectrum of visible light, the FZ height satisfying Δn(λ)h=λ is the 
key to direct the diffraction energy of all wavelengths toward 100% of diffractive efficiency at the diffracted order 
m = 1. By substituting α = 1 and λ0 = λd into Eqs. (10) and (15) the following equation is obtained.

By expanding Eq. (30), it obtains

For TW-FDL, Eqs. (30)–(31) related to the TM-DFL describe the necessary conditions to achieve the near 
100% of diffractive efficiency for all wavelengths at � = 400–700 nm and the diffracted order at m = 1. According 
to the definition in Eq. (17), let the Abbe number  vd,2 of Mat.2 be defined as below

where  nd,2,  nF,2, and  nC,2 are the refractive indices of Mat.2 at the wavelengths of the Fraunhofer d, F, and C spec-
tral lines. Substituting Eq. (31) into Eq. (32), it obtains

where  nFC,1 =  nF,1 −  nC,1, λFC = λF − λC, and  nd,1,  nF,1, and  nC,1 are the refractive indices of Mat.1 at the wavelengths 
of the Fraunhofer d, F, and C spectral lines. Following equation is reformed by multiplying  (nd,1 − 1)/(nd,1 − 1).

Substituting Eq. (34) into Eq. (33), it obtains

where  vd,1 is the Abbe number of Mat.1. Accordingly, both formulas (33) and (35) depict the same Abbe charac-
teristic curves for TM-DFL with the same calculated results. However, formula (35) provides a clearer scope to 
know how  nd,2 is affected by  nd,1 and  vd,1 of Mat.1. More accurately, formula (35) can be considered as a general 
formula of  nd,2 as a function of  vd,2,  nd,1,  vd,1, λ F, λC, and λd. A general form of a function of  nd,2 is defined as below.

Unlike the conventional methods based on numerical computation, formulas (33) and (35) can accurately and 
immediately calculate and draw the Abbe characteristic curve in the Abbe diagram without the need for numer-
ous numerical computations. The general behavior of  nd,2 in Eq. (36) will be elaborated in the later discussion.

Derivation of partial dispersion characteristic curve. According to the definition in Eq. (18), let the 
partial dispersion  Pg,F,2 of Mat.2 be defined as below.

where  ng,2,  nF,2, and  nC,2 are the refractive indices of Mat.2 at the wavelengths of the Fraunhofer g, F, and C spec-
tral lines. Substituting Eq. (31) into Eq. (37), it obtains

where λgF = λg − λF and  nd,12 =  nd,1 −  nd,2. Similarly, substituting Eq. (34) into Eq. (38), it obtains

Accordingly, both formulas (38) and (39) depict the same partial dispersion characteristic curves for TM-DFL 
with the same calculated results. However, formula (39) provides a more clear scope to know how  Pg,F,2 is affected 
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by  nd,1,  vd,1 and  Pg,F,1 of Mat.1. More accurately, formula (39) can be considered as a general formula of  Pg,F,2 
since it is a function of  nd,1,  vd,1,  Pg,F,1,  nd,2,  vd,2, λF, λg, λd. A general form of a function of  Pg,F,2 is defined as below.

Unlike the conventional methods based on numerical computation, formulas (38) and (39) can accurately 
and immediately calculate and draw the partial dispersion characteristic curve in the partial dispersion diagram 
without the need for numerous numerical computations. The general behavior of  Pg,F,2 in formula (39) will be 
elaborated in the later discussion.

Usually, as mentioned previously, the analytical evaluation is a way to look into the general physical behavior 
of a system, such as  nd2 and  Pg,F,2 in formula (36) and (40), by applying the partial differential to the system at 
each parameter, such as parameters of optical materials of TM-DFL, so to understand the system response Δnd2 
and ΔPg,F,2, given as below.

Clearly, It is no necessary to apply the same process of partial differential to both  nd2 and  Pg,F,2 against the light 
wavelength λd, λF, λC, and λg because it is no reason to change the definition of Fraunhofer line.

In summary, in contrast to the conventional  method26, formulas (33), (35), (38), and (39) presented in this 
study can obtain the Abbe and partial dispersion characteristic curves of TM-DFL without numerous computa-
tions. Further, an analytical evaluation for getting more insight into the general physical behavior of TM-DFL 
is elaborated on below.

Results
Hereafter, based on an example of TW-DFL26, we first present a quantitative result in comparison with the one 
obtained by the conventional method.

According to the example, the optical parameters of Mat.1 are first selected and set to  nd,1 = 1.8,  vd,1 = 60, 
and  Pg,F,1 = 0.55. Then, by the numerical computation based mapping method, the Abbe and partial dispersion 
diagrams are produced to generate the Abbe and partial dispersion characteristic curves. Finally, the maximum 
achieved diffractive efficiency can be found at η =  ~ 99.1%,  nd,2 = 1.7,  vd,2 = 18.4 for the Abbe characteristic curves, 
and η =  ~ 99.9%,  vd,2 = 15.2,  Pg,F,2 = 0.3 for the partial dispersion characteristic curves. Meanwhile, the Abbe char-
acteristic curve is fitted by Eq. (11) to obtain the coefficients a = 1.839, b = 0.9919, c = 0.8782.

In contrast, in our studies, the Abbe and partial dispersion characteristic curves are obtained by our formulas 
(35) and (39) respectively, as shown in Fig. 5a and b. There are two Abbe characteristic curves on the same Abbe 
diagram shown in Fig. 5a, where the green solid line is our result guaranteed by the near 100% diffractive effi-
ciency at each point on the curve while the yellow dotted line is the fitting result of above-mentioned  research26. 
Apparently, the smaller  vd,2 the larger difference shows the qualitative difference between the two methods. Also, 
a quantitative difference of the mean value is calculated to 0.0064. In the industrial measurement of the refractive 
index, this value of 0.0064 is large enough to be easily measured (note: the measurement precision of the Abbe 
refractometer in the market is 0.0002). In other words, the mapping and fitting methods cause non-negligible 
errors. Regarding the partial dispersion characteristic curve depicted on the partial dispersion diagram in Fig. 5b, 
it is no way to do the analytical comparison since no fitting data provided by the above-mentioned  research26.

Discussions
In summary, a theoretical formula-based analytical method is proposed in our studies to improve the disadvan-
tages of the numerical computational-based mapping and fitting method. More definitely, the theory of Cauchy’s 
equation, Abbe number, partial dispersion, and the diffractive theory of Fresnel lens are blended into optically 
connecting two different nanocomposite materials in TM-DFL for achieving the near 100% diffractive efficiency 
with all wavelengths in the visible spectrum at the first diffracted order. In addition to perfectly matching opti-
cal parameters between two materials without numerous computations, it also satisfies the objective of general 
analysis for TM-DFL in both quantitative and qualitative evaluations. The major features of the optical behavior 
of TM-DFL in our study are elaborated below.

Feature 1: The general behavior of  nd,2  (vd,2): dependent on  nd,1 and  vd,1 only, but independent 
on  Pg,F,1. As shown in Fig. 6a, the Abbe characteristic curves of Mat.2 in the Abbe diagram is calculated by 
formula (35) for  nd,2(vd,2) at  nd,1 = 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, and  vd,1 = 50, 40, 30. When  vd,2 is fixed, it shows a 
feature: the larger  nd,1, the larger  nd,2. When  nd,1 is fixed,  nd,2(vd,2) is split into a subset of lines at  vd,1 = 30, 40, 50, 
for showing another feature: the less  vd,1, the larger  nd,2. Apparently, the Abbe characteristic curves of Mat.2 is 
nothing to do with  Pg,F,1 because  Pg,F,1 is not included in formula (35).

Feature 2: the general behavior of  Pg,F,2  (vd,2): dependent on  Pg,F,1 and  vd,1 only, but independ‑
ent on  nd,1. The partial dispersion characteristic curve of Mat.2 in the partial dispersion diagram is calcu-
lated by formula (39). Despite  nd,1 being an explicit parameter in formula (39), the final calculation is irrelevant 

(40)Pg,F,2 ≡ Pg,F,2(nd,1, vd,1, Pg,F,1, nd,2, vd,2, �d , �g, �F)

(41)�nd,2 ∼=
∂nd,2

∂nd,1
�nd,1 +

∂nd,2

∂vd,1
�vd,1 +

∂nd,2

∂vd,2
�vd,2

(42)�Pg,F,2 ∼=
∂Pg,F,2

∂nd,1
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to  nd,1. To analytically prove the independence of  nd,1, first we need to prove ΔPg,F,2/Δnd,1 = 0 at all Δnd,1 and 
ΔPg,F,1 = Δvd,1 = Δvd,2 = 0, as below.

By taking the partial derivative of  Pg,F,2 in formula (39) to  nd,1 and  nd,2, it obtains

Since  nd,2 is a function of  nd,1, taking the partial derivative of  nd,2 in formula (35) to  nd,1, it obtains

Substituting Eq. (44) into Eq. (43), it obtains

The sum of terms in the square brackets in Eq. (45) is always zero after completing the calculation with all 
parameters in the square brackets. Further, results showing the independency of  nd,1 by the direct calculation 
of  Pg,F,2  (vd,2) in formula (39), under conditions (1)  nd,1 = 2, 1.75, 1.5,  vd,1 = 50, and  Pg,F,1 = 0.7, 0.55, 0.35 and (2) 
 nd,1 = 2, 1.75, 1.5,  vd,1 = 30, and  Pg,F,1 = 0.7, 0.55, 0.35, are done and shown in Fig. 6b and c respectively. Accord-
ingly,  Pg,F,2  (vd,2) depends on  Pg,F,1 and  vd,1 only, but not depend on  nd,1.

(43)�Pg,F,2 =
( 1
vd,1

Pg ,F,1 −
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Figure 5.  Abbe and partial dispersion characteristic curves. (a) our result of Abbe characteristic curve in 
comparison with the conventional one (b) our result of partial dispersion characteristic curves.
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Figure 6.  Dependence of  nd,2  (vd,2) and  Pg,F,2  (vd,2). (a)  nd,2  (vd,2) is dependent on  nd,1 and  vd,1 only but 
independent on  Pg,F,1, where  nd,2 is split into a subset of lines at  vd,1 = 30, 40, 50 when  nd,1 is fixed. (b, c)  Pg,F,2  (vd,2) 
is dependent on  Pg,F,1 and  vd,1 only but independent on  nd,1 where  Pg,F,2 is constant when  nd,1 is varied in the wide 
range from 2 to 1.5.
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Feature 3:  Pg,F,2(vd,2) is linear, i.e. ΔPg,F,2/Δ  vd,2 = constant. By taking the partial derivative of  Pg,F,2 in 
formula (39) to  vd,2 and  nd,2, it obtains

Since  nd,2 is a function of  vd,2, taking the partial derivative of  nd,2 in formula (35) to  vd,2, it obtains

Using Eq. (34) to replace  nFC,1 in Eq. (47), then substituting Eq. (47) into Eq. (46), the local slope of  Pg,F,2 is 
obtained as below.

Let’s move back to the partial dispersion characteristic curve  Pg,F,2 in Fig. 6b. In the previous discussion, we 
know that  Pg,F,2 depends on  Pg,F,1 and  vd,1 only, but not depend on  nd,1. Here, we are going to prove one more 
feature of the linearity in  Pg,F,2. Referring to Table 1, there are three columns, represented as  Pg,F,2(i) being a 
simple form used to replace the term of  Pg,F,2(vd,2(i)), show the data of  Pg,F,2 at different row i which is calculated 

(46)�Pg,F,2 =
Pg,F,2

vd,2
�vd,2 +

�gF

�d
vd,2

nd,2(vd,2)− 1
�nd,2 −

Pg,F,2

nd,2(vd,2)− 1
�nd,2

(47)
�nd,2

�vd,2
=

nFC,1 − �FC
�d

(nd,1 − nd,2)

1− �FC
�d

vd,2

(48)
�Pg ,F,2

�vd,2
=
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+

�gF

�d
vd,2 − Pg ,F,2

nd,2 − 1
×
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�d

(nd,1 − nd,2)

1− �FC
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Table 1.  Equivalent results of the local slopes, i.e. ΔPg,F,2(i)/Δvd,2(i) = S(i) = constant, calculated by formula (39) 
and Eq. (48) show the linearity of  Pg,F,2

MAT. 1

nd,1 = 2.0–1.6

Pg,F,1 = 50

Vd,1 = 0.7 Vd,1 = 0.55 Vd,1 = 0.35

i Vd,1(i) Pg,F,2(i) ΔPg,F,2(i)/Δvd,2(i) S(i) Pg,F,2(i) ΔPg,F,2(i)/Δvd,2(i) S(i) Pg,F,2(i) ΔPg,F,2(i)/Δvd,2(i) S(i)

MAT. 2

1 100.0 1.07825 0.00757 0.00757 0.78795 0.00476 0.00476 0.40087 0.00102 0.00102

2 95.0 1.04043 0.00757 0.00757 0.76415 0.00476 0.00476 0.39578 0.00102 0.00102

3 90.0 1.00260 0.00757 0.00757 0.74036 0.00476 0.00476 0.39069 0.00102 0.00102

4 85.0 0.96478 0.00757 0.00757 0.71656 0.00476 0.00478 0.38561 0.00102 0.00102

5 80.0 0.92695 0.00757 0.00757 0.69277 0.00476 0.00476 0.38052 0.00102 0.00102

6 75.0 0.88913 0.00757 0.00757 0.66897 0.00476 0.00476 0.37543 0.00102 0.00102

7 70.0 0.85130 0.00757 0.00757 0.64518 0.00476 0.00476 0.37035 0.00102 0.00102

8 65.0 0.81348 0.00757 0.00757 0.62138 0.00476 0.00476 0.36526 0.00102 0.00102

9 60.0 0.77565 0.00757 0.00757 0.59759 0.00476 0.00476 0.38017 0.00102 0.00102

10 55.0 0.73783 0.00757 0.00757 0.67379 0.00476 0.00476 0.35609 0.00102 0.00102

11 50.0 0.70000 0.00757 0.00757 0.55000 0.00476 0.00476 0.35000 0.00102 0.00102

12 45.0 0.66217 0.00757 0.00757 0.52621 0.00476 0.00476 0.34491 0.00102 0.00102

13 40.0 0.62435 0.00757 0.00757 0.50241 0.00476 0.00476 0.33983 0.00102 0.00102

14 35.0 0.58652 0.00757 0.00757 0.47862 0.00476 0.00476 0.33474 0.00102 0.00102

15 30.0 0.54870 0.00757 0.00757 0.45482 0.00476 0.00476 0.32965 0.00102 0.00102

16 25.0 0.51087 0.00757 0.00757 0.43103 0.00476 0.00476 0.32457 0.00102 0.00102

17 20.0 0.47305 0.00757 0.00757 0.40723 0.00476 0.00476 0.31948 0.00102 0.00102

18 15.0 0.43522 0.00757 0.00757 0.38344 0.00476 0.00476 0.31439 0.00102 0.00102

19 10.0 0.39740 0.00757 0.00757 0.35964 0.00476 0.00476 0.30931 0.00102 0.00102

20 5.0 0.35957 NA NA 0.33585 NA NA 0.30422 NA NA
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by formula (39) with the related material parameters  nd,1,  vd,1,  Pg,F,1,  nd,2,  vd,2, included in formula (39). Another 
three columns, represented as S(i), show the data of the local slope directly calculated by Eq. (48) with the related 
material parameters nd,1, vd,1, Pg,F,2, nd,2, vd,2 included in Eq. (48). Further, more three columns, represented as 
ΔPg,F,2(i)/Δvd,2(i), show the local slope by directly dividing ΔPg,F,2(i) =  Pg,F,2(i) −  Pg,F,2(i + 1) by Δvd,2(i) =  vd,2(i) −  
vd,2(i + 1). As a result, the quantitative calculations in Table 1 illustrate the linearity of  Pg,F,2 when the equality of 
ΔPg,F,2(i)/Δvd,2(i) = S(i) = constant is satisfied at all i = 1, 19.

Feature 4: precision (error) of theoretical arithmetic. Further, let’s check out how well the material 
parameters  nd,2,  Pg,F,2,  vd,2 in Mat.2 can match up with the predetermined materials  nd,1,  Pg,F,1, and  vd,1 in Mat.1 to 
satisfy the near 100% diffractive efficiency.

According to Cauchy Eqs. (16)–(29),  n1 ( � ) of Mat.1 and  n2(� ) of Mat.2 can be calculated by both the pre-
determined  nd,1,  Pg,F,1,  vd,1 and the calculated  nd,2(vd,2),  Pg,F,2(vd,2) respectively. Then, the detuning factor α(� ) is 
calculated by substituting  n1(� ) and  n2(� ) into Eq. (10). Finally, according to Eqs. (6) and (8), the diffractive 
efficiency ηm is calculated to achieve 99.95% (corresponding to the term “near 100%” used in our research) at 
the diffracted order m = 1 and wavelength from λ1 = 400 nm to λ2 = 700 nm. Regarding the difference in 0.05% 
diffractive efficiency, it is reasonable to infer that the error of 0.05% is caused by the miss of the higher approxi-
mation terms in the Cauchy Eq. (16). For the exact 100% diffractive efficiency, it can be simply obtained in the 
following way. Following the same treatments mentioned above, after  n1(� ) of Mat.1 being obtained, the FZ 
height h is calculated first by substituting  nd,1 and  nd,2 into Eq. (30), then  n2(� ) is obtained according to Eq. (31). 
Finally, do the same works again to get α(�) = 1 and η(λ) = 100% at all the wavelength in the visible light spectrum.

Feature 5: the optical behavior of convergence and divergence. In general, for the conventional 
DFL, the diffractive efficiency is determined by the FZ height h, the refractive index difference Δn, and the inci-
dent light wavelength λ while the optical focusing power is determined by the Δn and the curvature 1/R of the 
surface relief of DFL. Let’s take up the example used in Fig. 5a and b to further probe into the focusing power 
related to TM-FDL. As shown in both Figs, the Abbe characteristic curves  nd,2(vd.2) and the partial dispersion 
characteristic curve  Pg,F,2(vd,2) are calculated according to formula (35) and (39) respectively. Also, following 
the previous treatments given in Feature 4 above, an FZ height h is plotted with the respect to  vd.2, as shown in 
Fig. 7a, by employing Eq. (30) for matching h with Δn(λ) at λ = λd, i.e. h(vd,2) = λd/(nd,1 –  nd,2(vd,2)) where  nd,1 ≡  n1 
(λd) and  nd,2 ≡  nd,2(vd,2), to guarantee the near 100% diffractive efficiency at the first diffracted order and all wave-
lengths of the incident light in the visible spectrum. Interestingly, there exists a singularity of h at  vd,2 = 60 where 
 vd,2 =  vd,1 and  nd,2 =  nd,1. Consequently, the optical behavior of TM-DFL is categorized into three regions as below.

(1) Transparent region: As shown in Fig. 7a, TM-DFL becomes optical transparent when  vd,2 =  vd,1 = 60 and 
 nd,2 =  nd,1 = 1.8. In other words, both FZ height h and focal length  f0 approach to infinity when TM-FDL is 
composed of two same optical materials,

(2) Focusing region: As shown in Fig. 7b and c, TM-DFL is equipped with the focusing power when  vd,2 <  vd,1, 
h > 0,  nd,2 <  nd,1, and  Pg,F,2 <  Pg,F,1

(3) Divergent region: As shown in 7(b) and 7(c), TM-DFL is equipped with the divergent power when  vd,2 >  vd,1, 
h < 0,  nd,2 >  nd,1, and  Pg,F,2 >  Pg,F,1

Conclusions
In our studies, we develop a theoretical framework to obtain a general formalism for the design of TM-DFL in 
broadband imaging applications. Unlike the existed approach of the numerical computation based methods of 
mapping and fitting, the optical theories related to Cauchy’s equation, Abbe number, and partial dispersion, as 
well as the diffraction theory of Fresnel lens, have been perfectly blended into a new foundation for working 
out a TM-DFL with a precise material matching that can theoretically achieve a near 100% diffractive efficiency. 
The derivation of Equations for the calculations of  nd,2(vd,2) and  Pg,F,2(vd,2) is elaborated. Also, physical behav-
iors of  nd,2(vd,2) and  Pg,F,2(vd,2) are illustrated and proved, including (1) the independence of  Pg,F,1 in  nd,2(vd,2), 
(2) the independence of  nd,1 in  Pg,F,2(vd,2), (3) the linearity and constant slope of  Pg,F,2(vd,2), (4) beyond 0.05% of 
the theoretical error in the calculation of diffractive efficiency, and (5) the optical behavior of convergence and 
divergence. We believe that our new approach will be an effective and precise way to achieve a near 100% dif-
fractive efficiency for the design of TM-DFL.
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Figure 7.  Optical behavior of convergence and divergence in TM-DFL. (a) FZ height h is calculated and 
plotted as a function of  vd.2, where TM-DFL becomes optical transparent when  vd,2 =  vd,1 = 60. (b, c) TM-DFL is 
equipped with the focusing power when  vd,2 <  vd,1, h > 0,  nd,2 <  nd,1, and  Pg,F,2 <  Pg,F,1, while TM-DFL is equipped 
with the divergent power when  vd,2 >  vd,1, h < 0,  nd,2 >  nd,1, and  Pg,F,2 >  Pg,F,1.
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