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Directional cell migration in dense three-dimensional (3D) environments

critically depends upon shape adaptation and is impeded depending on

the size and rigidity of the nucleus. Accordingly, the nucleus is primarily

understood as a physical obstacle; however, its pro-migratory functions by

stepwise deformation and reshaping remain unclear. Using atomic force

spectroscopy, time-lapse fluorescence microscopy and shape change analysis

tools, we determined the nuclear size, deformability, morphology and shape

change of HT1080 fibrosarcoma cells expressing the Fucci cell cycle indicator

or being pre-treated with chromatin-decondensating agent TSA. We show

oscillating peak accelerations during migration through 3D collagen matrices

and microdevices that occur during shape reversion of deformed nuclei

(recoil), and increase with confinement. During G1 cell-cycle phase, nucleus

stiffness was increased and yielded further increased speed fluctuations

together with sustained cell migration rates in confinement when compared

to interphase populations or to periods of intrinsic nuclear softening in the

S/G2 cell-cycle phase. Likewise, nuclear softening by pharmacological chro-

matin decondensation or after lamin A/C depletion reduced peak

oscillations in confinement. In conclusion, deformation and recoil of the

stiff nucleus contributes to saltatory locomotion in dense tissues.

This article is part of a discussion meeting issue ‘Forces in cancer:

interdisciplinary approaches in tumour mechanobiology’.
1. Introduction
Cell migration is an essential process during development, tissue maintenance

and immune function, but is also of importance during pathological cell inva-

sion, including cancer metastasis [1]. Whenever cells (of neoplastic origin) move

through connective tissue which consists of spatially and mechanically complex

three-dimensional (3D) protein meshworks [2], they respond to mechanical con-

finement by changing shape. In vivo, migrating cells encounter physical

challenges composed of microstructural extracellular matrix (ECM) networks

and tissue tracks with 1–30 mm width, which are comparable to or smaller

than the cell diameter of migrating cells ranging from 8 to 15 mm [3,4]. The

nucleus is the largest and stiffest cell organelle that reaches around 2- to
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10-fold higher stiffness values than the surrounding cyto-

plasm [5,6] and plays a pivotal role in cell deformation.

Accordingly, under ECM space conditions matching the

nuclear diameter, or by cell-derived proteolytic tissue degra-

dation to create a low resistance path that matches the

thickest cell diameter, cell migration is not impeded [4]. By

contrast, in confining ECM environments, the nucleus will

deform and adapt to the constraints of the ECM, but at

the same time also form a mechanical obstacle which will

gradually slow down migration [4,7–9].

The nucleus is both positioned and transported by the

coordinated functions of the leading edge protrusion, integ-

rin attachment to the surrounding substrate, contractile

actin cytoskeleton fibres, microtubules and the linker of

cytoskeleton and nucleoskeleton (LINC) complex physically

linking the chromatin to the cytoskeleton. This leads to alter-

nating force build-up at the front, and contraction of the rear

concomitant with rear end integrin de-attachment from ECM,

which will move the nucleus forward. Thus, alternating

cycles of mechanical pulling and pushing act upon the

nucleus during cell migration [4,7,10–12]. Previously, we

have proposed a multi-step translocation cycle of the nucleus

during confined three-dimensional (3D) cell migration con-

sisting of (I) pressure application by the external constraint

onto the nuclear membrane in the direction of migration,

(II) beginning deformation of the nucleus by the formation

of a local prolapse slowing down migration, (III) gliding of

the compressed and deformed nucleus through the pore

and (IV) rear release connected to rapid forward pushing

and rounding (recoil) of the nucleus [13]. Implicit to this

cyclic process, the migration delay during phase II is consist-

ent with the ‘physical barrier’ function of the nucleus and

might represent a phase of storage of deformation energy,

which is released as propulsive energy during phase IV, lead-

ing to short phases of increased migration. It is, however, not

clear whether and to what extent and by which physical

characteristics the nucleus contributes to the acceleration of

cell migration.

The overall stiffness, or elasticity, of the nucleus in an intact

cell is dependent on a number of structural determinants,

including A-type lamins that are part of the nuclear lamin net-

work underlying the double nuclear membranes, as well as

the organization of chromatin [14–20]. The chromatin packing

state is variable and changes according to transcriptional

needs, the extent of DNA repair, and the cell cycle phase,

particularly when the diploidic G1 stage undergoes DNA

replication in S phase to reach the tetraploidic G2-phase

stage. Each of these events involves changes in DNA organiz-

ation, with transient and reversible conversions of dense

heterochromatin to more open euchromatin by histone acety-

lation or de-methylation [21–23]. These two latter processes

lead to chromatin decondensation, nuclear softening and

concomitant size increase [24–27]. Conversely, chromatin

condensation increases nuclear compaction and stiffness

in conjunction with a smaller size, as well as migration in

wound healing and transwell chamber assays [20]. However,

how these complex physical alterations of the nuclear interior

impact shape change and migration in 3D confining environ-

ments remains to be assessed. In addition, it is unclear how

softening of the nucleus, i.e. by lamin A/C reduction

[28–30], affects nuclear recoil when cells exit a confined space.

Here, we used independent strategies of altered nuclear

elasticity by chromatin condensation state and lamin A/C
expression, and probed how these affect nuclear deformation

and reshaping, as well as related migration patterns and

rates. By comparing chromatin-compacted G1 cell-cycle

phase cells to cells migrating during interphase or S/G2

phase, or by treating cells with the chromatin decondensating

compound Trichostatin A (TSA), we co-registered speed

oscillations and nuclear deformations. In addition, we devel-

oped and adapted a computational approach to calculate

fluctuations of nuclear shapes during each migration phase.

Our results indicate that deformation of the elastic nucleus

during the passage of a constriction generates a recoil event

that transforms into nuclear reshaping by rounding and, sim-

ultaneously, boosts nuclear propulsion and instantaneous

migration velocity.
2. Results
(a) Stiff G1 cell-cycle phase cells maintain fast

migration in confinement by shape change
To investigate the effect of the cell cycle on 3D migration, we

generated HT1080 cells stably expressing Fucci, a fluorescent

ubiquitination-based cell-cycle indicator [31] (electronic sup-

plementary material, figure S1A). The expression of Cdt1-

Kusabira-Orange2 in G1 cells and Geminin-Azami-Green1

in S/G2/M cells enabled us to visualize the forward pro-

gression of the cell cycle as G1, S-Start and S/G2 phase by

detecting either only red, overlapping red and green, or

only green signal (figure 1a). From all cells of a subconfluent

2D culture that expressed fluorescence, on average 28% of the

cells were in G1, 14% in G1-to-S transition and 58% in S/G2

phase, detected microscopically and generally confirmed by

flow cytometry (electronic supplementary material, figure

S1B). In accordance with earlier findings [26,31,33], the

nuclear area of cells during cycle progression from G1 to

S/G2 phase increased by 23% in cell culture or 53% after

embedding in 3D collagen matrices, respectively (electronic

supplementary material, figure S1C).

To determine the rigidity of the nucleus during cell-cycle

progression in HT1080 cells, we probed cultured Fucci

sensor-expressing cells by atomic force spectroscopy (AFS),

using a bead-coupled cantilever (electronic supplementary

material, figure S1D) [34]. With transition from G1 to S/G2

phase, cell deformation increased by 1.4-fold (figure 1b)

and, consequently, the calculated elastic moduli in G1 cells

(991+415 Pa) decreased by 23% after transit to S/G2 phase

(767+455 Pa), in line with previous data using HeLa cells

[26]. According to increased chromatin condensation in G1

when compared with S/G2 cells, we calculated a 1.4-fold

decrease in dissipation energy in G1-phase cells (electronic sup-

plementary material, figure S1D-G). Collectively, our findings

confirmed that cells in G1 have stiffer and less viscous nuclei

compared to cells in S/G2, consistent with a higher chromatin

compaction status in the G1-phase nucleus.

Next, the impact of cell-cycle progression on HT1080 cell

migration efficacy through collagen lattices was tested.

During polymerization of collagen into fibrillar networks,

interfibrillar spaces of heterogeneous size are formed. Pores

that are smaller than the cross-section of the polarized cell

body will confine the migrating cell, whereas adjacent,

more open spaces will provide sufficient space for forward

movement (figure 1c). Consequently, cell and nucleus will
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Figure 1. Maintenance of migration through confining pores associates with shape change of the small and rigid G1 cell-cycle phase nucleus. (a) Sequence of a cell
nucleus from a Fucci-positive HT1080 cell progressing through the cell cycle, as indicated by changing colour coding over 4 h. This sequence is part of electronic sup-
plementary material, figure S2 and Movie S1. (b) Quantification of cell deformation ( penetration) after 2 nN contact force by a bead-coupled cantilever connected to an
atomic force microscope (quantified from the approach curve; electronic supplementary material, figure S1D). N ¼ 3; 25 – 32 cells per indicated cell-cycle phase. (c) Top,
example of collagen matrix (monitored by scanning electron microscopy as shown in Wolf et al. [4]) showing small pore areas (confining; marked in pink), adjacent to
large pores (marked in yellow). Bottom, cartoon depicting cell and nucleus in collagen of heterogeneous, colour-coded pore areas, including open space for translocation
of cell and nucleus (asterisk). (d – f ) HT1080-Fucci cells migrated in collagen (1.7 mg ml21) in the presence of matrix metalloproteinase (MMP) inhibitor GM6001 (except
where the absence of GM6001 is indicated), as monitored by pathway microscopy. (d ) Examples of migrating cells at different indicated cell-cycle phases. Image bar,
10 mM. (e) Averaged migration speed of single cells from Fucci-red or -green populations from movies of 5 – 24 h length at indicated conditions. Because the S-start
phase covers a short, around 2 h, time period, from here on and in all further experiments G1-phase cells were compared with S/G2 cells only. N ¼ 2 – 3; 40 – 65 cells
per condition. ( f ) Nuclear segmentation of migrating HT1080-Fucci cells. Time in minutes as indicated. (g – j) Nuclear shape analysis. (g) Top, schematic illustration of
the components used for the calculation of the nuclear irregularity index (NII), adapted from Filippi-Chiela [32]. Bottom, calculation of all components that describe a
circle, resulting in a NII of 2.2146. (h) Mean NII values per cell were computed and calculated from each nuclear shape sequence over time. (i) Left, scheme for
calculation of the difference between subsequent NIIs as DNII, where rapid shape change of the nucleus results in a high DNII value. Right, mean values of
DNII from each nuclear shape sequence over time. ( j ) Nuclear fluctuation analysis, sketching the analysis procedure (left), and mean values of the fluctuations
from each nuclear sequence to the next (right). In (h – j), mean value per cell over 36 – 316 min; n ¼ 3; 26 – 38 cells per condition. (k) Summary of speed as a
function of nuclear shape change (DNII) in optimal and confining collagen conditions (data are from (e,i). Dots connected by red line represent G1 cycle cells; by
green line, S/G2 cycle cells; by black line, G1 and S/G2 cycle cells together. (b,e,h,i,j) Black horizontal lines, boxes and whiskers show the medians, 25th/75th,
and 5th/95th percentile (b, 10th/90th percentile), and ***, p � 0.001; **, p � 0.01; *, p � 0.05; ns, non-significant (Mann – Whitney test).
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Figure 2. (Overleaf.) Speed oscillation and rapid nuclear rounding during cell migration in confining pores. HT1080 fibrosarcoma cells moved either in collagen (a – d) or in a
synthetic microdevice (e,f ). (a) Cells migrated in collagen of increasing density and the absence or presence of GM6001 as indicated, resulting in depicted decreasing effective
pore areas (top; [36]). From each cell, speed of nucleus and cell body was quantified from the migration tracks from the centre of the nucleus as well as the cell body that often
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electronic supplementary material, figure S4 and normalized over 55 min. (b – d) Oscillatory speed peaks of both cell and nucleus coincide with nuclear rounding. (b) Upper row,
left, sequences of HT1080 dual-colour cell moving within high-density bovine collagen (3.3 mg ml21) monitored by confocal microscopy at 378C at 5 min intervals [13].
White dots at first and last image and dotted white line indicate position and beeline of the migrated nucleus. Lower row, left, outlines of the nucleus generated from H2B-
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of the nucleus over 5 h (corresponding to electronic supplementary material, Movie S4). (c) Upper graph, step-to-step and average speed quantification from the move-
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in microdevice of 10 and 75 mm2 pore areas (corresponding to electronic supplementary material, Movie S5, part 2). Left, upper row, sequence of migrating cell over
indicated time. White arrowhead, deformed nucleus in pore. Arrowhead in cyan indicates rounding. Lower row, nuclear outlines with centroids as blue dots and trajectories
in red. Arrow indicates long trajectory in cyan that corresponds to nucleus rounding. Right, kymogram visualizing rapid forward movement (arrow) after transmigration of
narrow pore. ( f ) Speed and corresponding shape, with colour coding indicating respective pores in (e). Bottom, speed – nuclear shape change relationship; number in
green, DNII value for peak oscillation. Reprinted modified images in (b) are with permission from Elsevier [13]. All image bars, 10 mm.
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repeatedly deform during migration. In addition, many acti-

vated or cancer cell types, including HT1080 fibrosarcoma

cells, express a range of matrix metalloproteinases (MMPs)

such as MMP-14. These cells migrate through confining col-

lagen matrices by proteolytic remodelling of collagen fibrils,

creating paths with 50–100 mm2 pore areas that match the

respective cell cross-sections [35]. In this setting, MMP

broad-spectrum inhibitor GM6001 inhibits collagen degra-

dation and therefore increases the deformation of cell and

nucleus during migration through confining collagen of

around 5–25 mm2 pore size [36]. To test in context how cell

deformation and migration speed are altered with transit

from G1 to S/G2 phase, migrating HT1080-Fucci cells were

optically separated into Fucci-red, -yellow and -green

(figure 1d ). Proteolytic migration speed of a G1 phase cell

population in 3D collagen lattices was 0.4 mm min21 and

reduced by 18% in S/G2-phase cells, whereas at conditions

of confinement, migration in S/G2 cells was increasingly

compromised by 42%, reaching 0.23 mm min21 (figure 1e).

A similar 50% deceleration in speed, and concomitant area

increase, was confirmed during the migration of a single

cell during transition from G1 to S/G2 phase (electronic sup-

plementary material, figures S2A-B; C, two most upper

graphs; electronic supplementary material, Movie S1). The

reduced migration rates of the S/G2 cell population,

especially in confinement, may result from complex nuclear

properties, including increased nuclear size and chromatin

decondensation during S-phase and prior to mitosis,

combined with reduced cell adhesion and actomyosin-

mediated stiffness [26]. We asked, however, how cells in G1

phase could maintain speed in confinement despite a

comparably stiffer nucleus.

To gain insight into the extent of nuclear deformation

relative to speed changes during migration in confinement,

we thresholded nuclear shapes (figure 1f; electronic sup-

plementary material, Movies S1, right section; S2) and

quantified respective shape changes over time as nuclear

irregularity index (NII; figure 1g) [32]. The NII determines

the level of shape deviation of the nucleus from a circle,

and was chosen over more widely used nucleus roundness

measurements because of its higher sensitivity (electronic

supplementary material, figure S3). Whereas nuclei in

moving S/G2-phase cells were more roundish, nuclei in

G1 phase adopted somewhat more irregular shapes,

which further increased by the presence of GM6001

(figure 1h). The changes between these shapes over con-

secutive time points were similar during proteolytic

migration but, when MMPs were inhibited, increased by

2.4-fold in G1 phase but only 1.3-fold in S/G2 phase cells

(figure 1i). To support these findings on dynamic nuclear

shape changes, we included nuclear fluctuation analysis

(figure 1j, left; electronic supplementary material, Movie S3).

This tool calculates the difference between consecutive nuclear

shapes, and thus the shape change. To exclude errors owing to

a directional change of a cell during migration, nuclear shapes

were rotated for maximal overlap. Again, nuclei in G1 phase

showed more profound shape fluctuations in the presence of

GM6001 whereas S/G2 cell nuclei did not change their

shape at all (figure 1j, right). In combination, these two meth-

odologies complement each other for robust measurement of

nuclear shape change, and are applicable to all types of

shape changes of biological objects over time and location.

Together, in contrast to S/G2 phase or mixed G1/S/G2 cell
populations, G1-phase cells maintained migration speed in

confinement, associated with elastic deformation of the

nucleus (figure 1k).

(b) Deformation – rounding cycles of the nucleus
correlate with speed oscillations

To approach how deformation of the nucleus may support cell

migration, the velocity of cell body, nucleus and the overall

migration efficiency were recorded together with the nuclear

morphology. To collagen lattices of decreasing pore sizes from

around 100 to 10 mm2, HT1080 cells responded with a gradual

decline of overall migration efficacy (‘beeline’; figure 2a), consist-

ent with our previous report [4]. At the same time, the speed of

both nucleus and cell body remained unperturbed owing to

increasing oscillations (figure 2a), with the nuclear shape increas-

ingly co-fluctuating (electronic supplementary material, figure

S4, middle column). These speed and shape fluctuations corre-

sponded to lateral ‘swinging’ of both nucleus and cell relative

to the main axis of movement (figure 2b; electronic supplemen-

tary material, Movie S4; figure S4, left column). In parallel,

increasing nuclear deformations preceded rapid nuclear

rounding (figure 2b, grey filled nuclear outline; c, bottom). At

oscillation peaks, nuclear shape change doubled from 0.62 to

1.37 (figure 2d ), while the cell body remained elongated.

Every nuclear rounding event was precisely accompanied by

an up to sixfold accelerated speed peak, each moving the

nucleus by about half of its diameter forward (figure 2c, top;

b, right). Accelerations versus remaining steps were on average

0.87 versus 0.15 mm min21, increasing overall migration of the

nucleus by 50% (0.23 mm min21; figure 2d ), as well as similarly

the cell body. To support these findings in a migration model

that enabled the visualization of the nucleus through pores of

defined shape and size, a polydimethylsiloxane (PDMS)-

based microdevice was used [37]. As in 3D collagen, migration

through 10 mm2 pores was followed by nuclear rounding and

concomitant speed acceleration, whereas movement through

75 mm2 pores lacked both nuclear shape change and speed

oscillation (figure 2e,f; electronic supplementary material,

Movie S5). Acceleration was several times higher as in collagen

and possibly, owing to the higher elastic energy stored in the

5 mm2 small nuclear deformation, the result of a higher propul-

sive energy release into the barrier-free spacing following the

tight pore. Taken together, cell passage through extracellular

porous confinement coincides with nuclear deformation and

is followed by piston-like acceleration of the nucleus together

with transient rounding.

(c) Saltatory propulsion of the rounding cell nucleus
during migration in confinement is increased in G1-
phase cells

Sustained migration in confined 3D environments in G1 cell-

cycle phase (figure 1k) is in line with a proposed promoting

effect of chromatin condensation on cell migration [20,38], yet

the mechanism of speed gain remains unclear. The above-

described data suggest that the nucleus acts as obstacle

during cell passage through small pores during phase II,

but in addition supports migration in phase IV by pushing

through the confinement and regaining roundish shape

(figure 3a). To further characterize this last step of the trans-

migration process, we mapped nuclear speed and
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lines represent mean, and shadowed coloured area+ s.e.m.; 16 and 18 cells per condition, n ¼ 3. p-value was calculated for speed peaks at 5 min after
pore passage of 10 mm2 when compared with data from 75 mm2 pores. Asterisk indicates decreased speed during passage of small when compared with
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(1.7 mg ml21) and GM6001 where indicated. Analysis of (e) speed, ( f ) DNII as shown in figure 1i, and (g) nuclear fluctuation, as shown in figure 1j, with
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0.01; ns, non-significant (both Mann – Whitney and Kolmogorov test).
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corresponding nuclear shapes (NII) over time, normalized to

the moment of nuclear rounding (phase IV peak) (figure 3b;

electronic supplementary material, figure S5A,B; Movies S2,

S5). This population analysis revealed, after a low-speed

pore negotiation time, increased velocity peaks and, hence,

speed oscillations for a population of single cells migrating

through 10 mm2 pores in engineered microdevices, whereas

no peaks were generated in 75 mm2 pores (figure 3c), consist-

ent with data shown previously [37,39]. A similar stepwise

peak acceleration, even though at lower velocity levels,

was obtained with confinement in collagen (figure 3d ).

In G1 phase when compared with aggregated G1/S/G2

cells, speed peak events were again identified (electronic

supplementary material, figure S5A,B). The individual
step-to-step speeds that G1/S/G2 cells performed during

phase IV in confinement (blue box plot in figure 3e) were

two times higher than the remaining migration steps, but

were exceeded by around 25% in G1-phase nuclei (red box

plot in figure 3e). Similarly, respective nuclear shape changes

(DNII, fluctuation) during phase IV peaks were two- to five-

fold higher in confinement when compared with remaining

events and to phase IV peaks in cells migrating in collagen

in the presence of proteolysis (figure 3f,g). This principle

also held true when relating shape change and speed in con-

finement for a single cell-cycle progressing cell (electronic

supplementary material, figure S2C,D and Movie S1).

Together, despite overall deceleration of cell migration in

strongly confining environments, phase IV peaks support
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intermittent acceleration, and thereby sustained migration, in

G1/S/G2 interphase cells. These accelerations are further

increased in G1 cell-cycle cells only and, again, are associated

with elastic deformation of G1-phase cell nuclei. By contrast,

spatially optimized environments allow for effective speed

throughout all phases of nuclear deformation, resulting in

small or absent speed fluctuations.
ing.org/journal/rstb
Phil.Trans.R.Soc.B
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(d) Experimental chromatin decondensation reduces
shape change and impairs migration

To directly test whether chromatin condensation can promote

phase IV peaks for sustained cell migration in confinement,

we treated cells with chromatin decondensating TSA.

Consistent with nuclear swelling after chromatin deconden-

sation [20], and confirmed here by a relatively low cell

number, nuclear size in G1-phase cells increased after TSA

pre-treatment in a dose-dependent manner, but not yet at a

concentration of 100 ng ml21 (figure 4a). Accordingly,

nuclear elasticity decreased in a dose-dependent manner

(from 1 to 0.6 kPa; figure 4b) [34], confirming data from

HeLa cells [26]. Besides softening of the nucleus, TSA

pre-treatment decreased migration speed in confinement by

33–80% (figure 4c) and speed correlated positively with

nuclear stiffness (figure 4d ). Congruent to lowered elasticity

after chromatin decondensation, nuclei deformed more

slowly during migration and their ability to change shape

reduced by up to 60% compared to an untreated control

(figure 4e,f; electronic supplementary material, Movie S6).

Accordingly, TSA treatment dampened phase IV accelera-

tions (figure 4g), which for a TSA concentration of

100 ng ml21 were not owing to an increase in nuclear size,

but owing to a softened nucleus and a possibly less dynamic

microtubule network, leading to overall decreased migration

rates in confinement. Treatment with 500 ng ml21 TSA

entirely inhibited speed fluctuations, which might, in

addition, be owing to the greatly increased nuclear size.

Together, the data indicate that speed acceleration for

effective migration in confinement requires chromatin

condensation linked to high nuclear elasticity.

Besides chromatin condensation state, lamin A/C contrib-

utes to nuclear rigidity regulation. Downregulation of lamin

A/C softens nuclei and supports migration rates through

small pores [28,40,41]; however, its contribution to nuclear

acceleration in phase IV remains unclear. Depletion of

lamin A/C by RNAi reduced protein expression by 80%

and nuclear stiffness by one third (our AFS analysis; data

not shown), and was associated with a 40% decreased

‘phase IV’ speed acceleration when compared with untreated

cells (figure 4h). These data are in agreement with an

increased deformation of the softened cell nucleus of lamin

A/C-deficient cells when compared with control cells

during and after passage through small pores [37]. The some-

what higher migration rates during the remaining phases

I–III (see asterisk) are indicative for the previously shown

increased migration rate of cells after lamin A/C downregu-

lation in confinement [29,40–42]. Together, the data indicate

that the nuclear deformation energy during high confinement

is released into nuclear rounding during phase IV peaking

and is proportional to lamin A/C expression- and chromatin

condensation-mediated nuclear elasticity.
3. Discussion
Here, we investigated 3D migration patterns of HT1080

fibrosarcoma cells in confining collagen lattices and microfab-

ricated migration devices. The data reveal that cells and their

nuclei do not migrate at a continuous speed, but undergo

speed oscillations with velocities that increasingly deviate

from beeline migration with confinement. Similar data of

increasing nuclear oscillations in confinement presented by

Yamada & colleagues [43] motivated a role of the cell nucleus

in acting as a piston pressurizing the nucleo-anterior cell com-

partment and this way driving cell migration forward. Our

findings complement these data well, stating that nuclear fluc-

tuations were caused by increasing nuclear deformations with

confinement. This led to migration delay during the pore nego-

tiation process in phases I–III, and was followed by a short

speed-up phase during the last transmigration phase IV. Simi-

lar to speed oscillations, nuclear shape changes become higher

in amplitude with increasing confinement, and this could be

attributed to the postulated increasing nuclear recoil phenom-

enon in phase IV after passage through a narrow pore [13].

Nuclear speed acceleration peaks were further responsive to

nuclear elasticity regulation. Whereas with high stiffness

and smaller size (i.e. during the G1 cell-cycle phase) speed

oscillations were increased, conditions that soften the nucleus

(e.g. in S/G2 cell-cycle phase, after experimental chromatin

decondensation by TSA or by lamin A/C depletion)

dampened periodic speed gain after pore passage.

Generally, processes connected with chromatin decon-

densation (e.g. mediated by cell cycle progression or by

respective pharmacological inhibitors) reduce migration,

in accordance with a number of publications. Yano and

co-workers tested migration of Fucci-positive MKN45

adenocarcinoma cell spheroids in confining Gelfoamw gels,

and observed the least effective outward migration for S/

G2/M phase cells [44]. Likewise, by applying a novel nano-

printing technology to generate pores of defined areas on a

smooth grated surface, S/G2 cell-cycle cells showed less

pore engagement and penetration efficiency when compared

with M/G1 and G1 cell-cycle phases [26]. Furthermore, chro-

matin decondensation agents TSA as well as MTA, a general

protein methyltransferase inhibitor, step-wise reduced B16

melanoma migration in a transwell membrane assay of 8

and 5 mm diameter pores [20], in accordance to our results

at comparable pore size ranges in collagen. Of note, stath-

min-regulated microtubule dynamics by acetylation/

deacetyation positively or negatively, respectively, regulates

3D cell migration [45]. Tubulin deacetylation by HDAC6 is

inhibited by TSA [46], and thus delayed migration rates are

likely not only owing to chromatin decondensation and soft-

ening, but also owing to stabilization of microtubules. In their

transwell assay, Gerlitz and colleagues observed that the

migration rate through 8 mm diameter pores was reduced

by TSA to around 75%, but through confining 5 mm pore

diameters to 60%, and by MTA to 70% (8 mm) and 30%

(5 mm pores). These data support a dual effect of TSA, as

well as by MTA, namely on the cell’s general migratory

machinery as well as on the impact of nuclear deformation

by confinement, again affecting migration.

In summary, we investigated the phenomenon of pore

transmigration by speed fluctuation and nuclear recoil in

the context of tumour cell invasion. It will be interesting to

test whether and how such oscillations during phases of
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Figure 4. Altered stiffness, migration and reshaping of HT1080 cells and nuclei after TSA treatment or lamin A/C downregulation. Cells were pre-treated with
indicated TSA concentrations or DMSO alone (indicated as 0 ng ml21 TSA), and were either measured for elastic modulus (b) or migrated in collagen
(1.7 mg ml21) in the presence of GM6001 (a,c – g). For all TSA experiments, except in (b) and (c), Fucci cells were used and G1-phase cells only were selected
for analysis. (a) Nuclear areas after pre-treatment with TSA in collagen. Horizontal black lines show the medians. N ¼ 1; 5 – 19 cells per TSA concentration.
(b) Calculated stiffness at 1.5 nN contact force by bead-coupled cantilever probing using atomic force microscopy. N ¼ 1 – 3; 14 – 37 cells per condition.
(c) Mean cell migration efficacy per cell over 24 h with increasing concentrations of TSA. Cells that underwent mitosis during the recording were excluded
from the analysis. N ¼ 3; 66 – 90 cells per condition. (b,c) Horizontal black lines, boxes and whiskers show the medians, 25th/75th, and 10th and 90th (b)
and 5th/95th (c) percentiles. (d ) Correlation of stiffness with migration efficacy, using the medians and whiskers from (a,b). R2 ¼ 0.92. (e) Representative seg-
mented nuclear sequences from migrating G1-phase (Fucci-red) cells at indicated time steps, in correspondence to Movie S6. Arrows indicate phase IV peak events
based on speed increase and concomitant nucleus rounding. Bar, 10 mm. ( f ) Nuclear shape change during migration by TSA. Mean DNII per cell migrating over
0.3 to 10 h. Zero means no changes between subsequent nuclear shapes 5 – 19 cells per condition, shown as dots. Horizontal black lines show the medians.
(g) Speed peaks, as in figure 3d, at indicated TSA concentrations. Graphs are superimposed from 22 to 38 respective events from each 7 to 19 cells per condition;
n ¼ 1. Mean (coloured solid lines)+ s.e.m. (shadowed coloured areas). Asterisk indicates decreased nuclear speed after TSA treatment before phase IV peak.
(h) Left, lamin A/C expression intensity by western blot after transient downregulation by indicated siRNA (each 10 nM). Right, speed peaks in cells treated
with non-targeting and lamin A/C siRNA after transmigration of 10 mm2 pore in a microdevice. Asterisks indicate increased nuclear pore negotion speed after
silamin A/C treatment before phase IV peak event. Each 21 cells per condition. (g,h right) Dotted vertical lines, speed peak at nuclear rounding; grey-shadowed
areas, phase IV events. ***, p � 0.001; **, p � 0.01; *, p � 0.05; non-significant n.s. (a,b,c,f, Mann – Whitney test; g,h Students t-test).
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active migration are interdependent on cell rear end detach-

ment, and whether they occur also in other biological

contexts, i.e. during development, immune responses, or
tissue repair. Together, this knowledge will have an impact

on the general understanding of cell migration mechanisms

in heterogeneous environments.



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180225

9
4. Material and methods
(a) Fucci plasmid construction and lentivirus

preparation
Plasmids pFucci-G1-Kusabira-Orange2 (Fucci-red) and pFucci-S-

G2-M-Amazi Green1 (Fucci-green) [31] were purchased from

MBL International. The IRES2 sequence was obtained by PCR

using pIRES2-eGFP as template for primers 50- GCG GAA TTC

GTG TGT AGT ACT GTG TGT GGA TCCGCC CCT CTC

CCT C -30 and 50-GCG CTC GAG GTG TGT CCC GGG GTG

TGT CCA TGG TTG TGG CCA TAT TAT C -30 (sequences in

bold represent the IRES2 template-specific segments; underlined

parts indicate restriction sites relevant for subsequent cloning

steps). Obtained amplicon was digested with EcoRI and XhoI

and inserted into pENTR-NotI/XhoI [47], creating pENTR-

IRES2. An XmaI linker oligonucleotide (50-TTA AGA CCC

GGG TC-30) was heated and allowed to cool to room temperature

to obtain a heteroduplex oligonucleotide with AflII-compatible

ends, which was subsequently introduced in the AflII site in

pFucci-G1-Orange2. Consequently, the sequence encoding

human Cdt1 coupled to monomeric Kusabira-Orange2 could

be excised using XmaI and NcoI and transferred into XmaI/

NcoI digested pENTR-IRES2, resulting in pENTR-IRES2-

Orange2. Finally, the part encoding human Geminin coupled

to monomeric Azami-Green1 was excised from pFucci-S-G2-M-

Green by using EcoRI and HpaI, and inserted into EcoRI/ScaI

digested pENTR-IRES2-Orange2. The resulting plasmid

pENTR-Fucci was used as donor in a Gatewayw LR recombina-

tion reaction with destination vector pLenti6.2/V5-DESTTM

(Invitrogen), yielding pLenti-Fucci; a single bicistronic lentiviral

vector that results in dual-colour fluorescent labelling of

live cells that are either in G1 (here referred to as Fucci-red) or

S/G2/M (here referred to as Fucci-green) cell-cycle phase. All

constructs were sequence-verified.

(b) Cell lines, lentivirus production, cell culture and
stable transduction of Fucci construct

The following cells were used: human HT1080 wild-type fibro-

sarcoma cells (ACC315; DSMZ Braunschweig; [4]); HT1080

dual-colour cells expressing cytoplasmic DsRed2 and nuclear his-

tone-2B (H2B)–coupled EGFP [48]; HT1080 cells stably transfected

with NLS-GFP [36] or H2B-mCherry; and HT1080 cells stably

transfected with Fucci sensor. Cells were cultured in Dulbecco’s

modified Eagle medium (DMEM) supplemented with 10% fetal

calf serum (FCS) containing L-glutamine (2 mM), sodium pyruvate

(1 mM) and 100 U ml21 penicillin, 100 mg ml21 streptomycin and

incubated at 378C in a humidified 5% CO2 atmosphere. Before

cell experimentation, the detached and only loosely attached mito-

tic cells were washed away to only include interphase cells into all

further assays.

For the generation of Fucci-positive HT1080 cells, recombi-

nant lentiviral particles were produced, where in 10 cm dishes

with 95% confluent HEK-293FT cell cultures were transfected

overnight with JetPRIME reagent (Westburg) and a mixture of

pLenti-Fucci plasmid and ViraPowerTM Packaging Mix (Invitro-

gen) according to the manufacturer’s instructions. The following

day, medium was refreshed and 48–72 h later virus-containing

medium was harvested, passed through a 0.45 mm pore size

filter and stored at 2808C until further use.

For stable transduction, HT1080 cells were seeded into six

wells at 20–30% confluency, and on the next day medium was

aspirated and 1 ml of viral-containing medium was drop-wise

added to the cells and incubated overnight. On the following

day, the medium was replaced with fresh medium, followed

by selection with 5 mg ml21 blasticidine for 4–5 days after the

transduction. Blasticidine was constantly kept on the cells
during expansion, but removed 1–2 days prior to experimen-

tation. Cells were sorted twice by flow cytometry for red or

green fluorescence, resulting in a stable Fucci-positive cell popu-

lation not higher, however, than around 70%. Dynamic imaging

of 2D cultures revealed an approximated 90% rate of an appro-

priate cell-cycle-related temporal order of Fucci colours (data

not shown). Cell growth characteristics of HT1080-Fucci-positive

cells related to values measured for HT1080 cells previously,

with cell cycle times of approximately 5 h in G1 phase, approxi-

mately 9 h in S/G2 phase and approximately 1.0 h in mitosis

[34,49]. In addition, transfected cells remained functional with

equal migration rates (0.2-0.4 mm min21) when compared with

parental HT1080 cells [4]. These characteristics validate the appli-

cability of the Fucci construct in HT1080 cells for investigating

cell-cycle-related functions.

For transient lamin A/C knockdown, cells were cultured in

antibiotics-free supplemented DMEM in six-well plates (each

250 000 cells) for 24 h. Cells were treated with a pool of small

interfering (si) RNAs consisting of four single RNAs each and

targeting expression of lamin A/C or non-targeting (NT)

negative control (10 nM; on-target plus, SMARTpool;

Dharmacon). The forward 21-nucleotide siRNA sequences

for the NT control were 5-UGGUUUACAUGUCGACUAA-3,

5-UGGUUUACAUGUUGUGUGA-3, 5-UGGUUUACAUGUU

UUCUGA-3, 5-UGGUUUACAUGUUUUCCUA-3; for siLMNA
the forward sequences were 5-GAAGGAGGGUGACCUGAU

A-3, 5-UCACAGCACGCACGCACUA-3, 5-UGAAAGCGCG

CAAUACCAA-3, 5-CGUGUGCGCUCGCUGGAAA-3. siRNAs

were transferred into cells with Dharmafect 4 transfection

reagent according to the manufacturer’s protocol and cultured

with antibiotics-free DMEM for 48 h prior to characterization

and functional studies. Lamin knockdown efficiency was

determined by electrophoresis and western blot analysis from

whole-cell lysates (62.5 mM Tris–HCl; 2% w/v SDS; 10%

glycerol; 50 mM DTT; 0.01% w/v bromophenol blue), followed

by chemiluminescence detection (ECL detection kit; GE Healthcare)

and densitometric analysis (Fiji ImageJ).

(c) Analysis of the cell-cycle stage by flow cytometry
Flow cytometry was performed to determine the relative DNA

amount in respect to Fucci colour within the cell population. Cul-

tured HT1080 cells stably expressing Fucci marker were

detached, re-suspended, and fixed with 500 ml 75% ice-cold etha-

nol for 1 h. Ethanol was carefully washed off and cells were

incubated in 300 ml staining solution (1� PBS; 0.2 mg ml21

RNase A, 1 mM DRAQ5) at 378C for 30 min. Cells were measured

on a CyAn ADP flow cytometer (Beckman Coulter) using spec-

tral ranges 530/40 nm for Azami-Green1, 613/20 nm for

Kusabira-Orange2 and 665/20 nm for DNA marker DRAQ5.

(d) Probing nuclear mechanics by atomic force
spectroscopy

Two days before AFS experimentation, 40 000 cells were seeded

into a Willco dish in 1 ml DMEM/10% FCS and incubated at

378C in a humidified 5% CO2 atmosphere. Twelve hours prior

to the measurements, the medium was exchanged for 1 ml

DMEM/10% FCS containing 10 mM HEPES (Gibco). Where indi-

cated, cells were pre-treated with specified concentrations of

histone deacetylase inhibitor trichostatin A (TSA, Sigma) 24 h

before experimentation. Nuclear deformation measurements

were performed using a Catalyst BioScope atomic force micro-

scope (Bruker, Santa Barbara, CA, USA) combined with a

three-channel confocal microscope TCS SP5 II (Leica, Mannheim,

Germany) for simultaneous brightfield and epifluorescence ima-

ging through a Hamamatsu (ORCA-05G) camera and an air

objective (20�, 0.70 NA). Flexible NP-S cantilevers modified
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with a 10 mm diameter bead were mounted, calibrated by the

thermal noise method [50], and subsequently located over the

cell for repeated probing (three to five times) at an approach

and retraction rate of 10 mm s21 each with a pre-defined force

of 15 nN. The registered force–distance (F-D) curves were trans-

ferred into force-indentation (F-d) curves and used to calculate

the penetration, stiffness and dissipation of the nucleus [34].

The stiffness was calculated by using a custom algorithm written

in IgorPro 6 (Wavemetrics) for fitting the F-d curves with the

Hertz model for spheres in contact with a flat surface [51].

The energy dissipated during compression of the cell/

nucleus was derived by using a custom algorithm written

in Matlab (MathWorks, Inc.) that determined the areas under-

neath the approach and retraction curves. Subsequently, the

residual integral was calculated (Edissipation ¼ Eapproach2

Eretraction), which represents the energy needed to deform

the nucleus; i.e. force (Newton) � distance (meter) ¼ energy

(Nm ¼ J). The adhesion energy Eadhesion, measured as the

area of the adhesion part in the retraction curve, was

excluded because it is a measure of the stickiness of the

bead probing the cell. Finally, to derive the relative dissipa-

tion energy during a probing cycle, Edissipation was divided

by the energy needed to deform the nucleus (Eapproach). The

dissipation energy is an indicator for the viscous component

of the visco-elastic properties of the cell. The elastic part of

the cell is represented by its penetrability.
(e) Three-dimensional collagen assays, time-lapse
microscopy and quantitative cell tracking

Three-dimensional collagen lattices were prepared from acidic

collagen solution (rat tail, Corning; or bovine, Advanced Bioma-

trix) supplemented with Minimal Essential Eagle’s Medium

(MEM; Sigma), HEPES and NaOH (for rat tail collagen) or bicar-

bonate (for bovine collagen) reaching a pH � 7.4, and mixed

with the cell suspension to a final density of 200 000 cells ml21

in collagen of indicated source and concentration. Usually, a con-

centration of 1.7 mg ml21 rat tail collagen was used, unless

indicated otherwise. Where indicated, cells were pre-treated

with TSA for 24 h, and it was confirmed that cells remained

viable, as judged by the absence of abnormal cell morphologies

or blebbing, and as further quantified by a propidium iodide

assay, as detailed in Krause et al. [34]. A 100 ml cell-collagen

mix was added to each well of a 96-well glass-bottom plate,

allowed to polymerize at 378C in humidified 5% CO2 atmosphere

for 20–30 min, and was overlaid with medium. Where indicated,

5 mM GM6001 (Calbiochem) were added to both collagen and

supernatant, and samples were monitored by temperature- and

CO2-controlled live microscopy over up to 24 h in 4 or 5 min

frame intervals. Combined brightfield/fluorescence imaging

was performed on either an Okobab microscope (10�, NA

0.25, Nikon DiaPhot 300, a Hamamatsu ORCA AG CCD

camera, an excitation and emission filter set for FITC and

TRITC, and the 2D time-lapse software Attovision), or on a spin-

ning-disc confocal microscope (Pathway 855; BD Biosciences;

20x/0.40NA air objective; excitation filter sets of 488/10 and

548/20 nm, and emission filter sets of 520/35 nm and 600/

15 nm). Life confocal microscopy for high-resolution imaging

of HT1080 cells was performed in time-lapse z-stack mode

using a temperature- and CO2-controlled stage (378C, 5%), and

images were reconstructed as maximum intensity projections

from all fluorescence and two reflection scans. Migration efficacy

was quantified with the cell tracking program Autozell (v.1.0;

Center for Computing and Communication Technologies (TZI),

University of Bremen, Germany) of XY paths. The average

speed per cell was calculated from the length of the migration

path divided by time. Only viable cells that showed dynamic
changes in cytoplasmic extensions and retractions were tracked

and included into the analysis.
( f ) Microfluidic migration devices
Polydimethylsiloxane (PDMS) microfluidic devices were fabri-

cated and used as previously described [37,52], with a

migration chamber height of 5 mm and a pore width of either 2

or 15 mm, resulting in 10 and 75 mm2 cross-sectional areas. In

brief, the migration devices were coated with 50 mg ml21 rat

tail type-I collagen (BD Biosciences) in acetic acid (0.02 N) over-

night at 48C and rinsed with imaging medium to remove the

coating solution. After loading the cells, devices were incubated

for at least 3 h to allow cell attachment before imaging. Microflui-

dic migration devices were imaged at 378C on an inverted Zeiss

Observer Z1 microscope equipped with a CCD camera (Photo-

metrics CoolSNAP KINO) using a 20�/NA 0.8 air objective.

The image acquisition was automated through ZEN (Zeiss) soft-

ware with imaging intervals of 4 and 5 min collecting images for

DIC and GFP. Time-series images were stabilized using a

custom-written Matlab (Mathworks) script using features of the

PDMS device as fiducials to compensate for the inaccuracy of

the linear encoded microscope stage. Individual cells were

tracked during the process of pore transmigration by using

custom-developed Matlab software [53].
(g) Image analysis
For image analysis, in-focus nuclear areas and dynamic changes

in nuclear shapes over time were analysed using the program Fiji

ImageJ, or Matlab with the in-house built-in software ITNA

(Image and Trajectory Nuclear Shape Analysis; Sussex Univer-

sity). Image stacks were separated into individual channels,

thresholded (mostly by automated thresholding algorithm

Otsu) and nuclear outlines per time point were automatically col-

lected. From these outlines, nuclear area, nuclear irregularity

index (NII), and nuclear fluctuation were calculated. NII analysis

was conducted by computing shape properties using the Ima-

ging Processing Toolbox provided by Matlab [54]. To calculate

fluctuation, the two consecutive images were overlaid with

their centroids and a 18stepwise full-circle (3608) rotation was

performed to find the maximum overlap between these

two shapes (electronic supplementary material, Movie S3). The

resulting fluctuation number was computed through

Fluctuation ¼ A1 þ A2 � 2(A1 > A2)

A1 þ A2
,

where A1, A2 are the areas of the two consecutive nuclear shapes

and A1 > A2 are the maximum intersections found through the

rotation. The value range of this fluctuation number is (0,1).

The value 0 indicates complete overlap of the nuclear shapes,

while the value 1 implies no overlap at all. Phase IV events

were defined as a combination of a NII value decrease (nuclear

rounding) and a speed increase as a function of time, and

selected after visual inspection, and were depicted as speed as

a function of shape change (DNII).
(h) Statistics
Statistical analysis was performed on independent samples with

non-Gaussian distribution, using both the two-tailed non-paired

Mann–Whitney test and the two-sample Kolmogorov–Smirnov

test. Independency of G1- and S/G2-phase samples was con-

firmed by the rejection of the null hypothesis (1% significance

level; i.e. p-value ¼ 0.01) and acceptance of the alternative

hypothesis (99% confidence on the existence of a statistical

significance between G1 and S/G2 phases).
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