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Background: Vitamin D deficiency has been associated with multiple diseases, but the causal relevance and un-
derlying processes are not fully understood. Elucidating the mechanisms of action of drug treatments in humans
is challenging, but application of functional genomic approaches in randomized trials may afford an opportunity
to systematically assess molecular responses.
Methods: In the Biochemical Efficacy and Safety Trial of Vitamin D (BEST-D), a double-blind, placebo-controlled,
dose-finding, randomized clinical trial, 305 community-dwelling individuals aged over 65 years were randomly
allocated to treatmentwith vitaminD3 4000 IU, 2000 IU or placebo daily for 12months. Genome-wide genotypes
at baseline, and transcriptome and plasma levels of cytokines (IFN-γ, IL-10, IL-8, IL-6 and TNF-α) at baseline and
after 12 months, were measured. The trial had N90% power to detect 1.2-fold changes in gene expression.
Findings: Allocation to vitamin D for 12-months was associated with 2-fold higher plasma levels of 25-hydroxy-
vitamin D (25[OH]D, 4000 IU regimen), but had no significant effect onwhole-blood gene expression (FDR b 5%)
or on plasma levels of cytokines comparedwith placebo. In pre-specified analysis, rs7041 (intron variant,GC) had
a significant effect on circulating levels of 25(OH)D in the low dose, but not in the placebo or high dose vitaminD
regimen. A gene expression quantitative trait locus analysis (eQTL) demonstrated evidence of 31,568 cis-eQTLs
(unique SNP-probe pairs) among individuals at baseline and 34,254 after supplementation for 12 months (any
dose). No significant associations involving vitamin D supplementation response eQTLs were found.
Interpretation:Weperformed a comprehensive functional genomics andmolecular analysis of vitamin D supple-
mentation in a randomized, placebo-controlled trial. Although this study was limited to mostly Caucasian indi-
viduals aged over 65 years, the results differ from many previous studies and do not support a strong effect of
vitamin D on long-term transcriptomic changes in blood or on plasma cytokine levels. The trial demonstrates
the feasibility of applying functional genomic and genetic approaches in randomized trials to assess molecular
and individual level responses.
Key Result: Supplementation with high-dose vitamin D in older people for 12 months in a randomized, placebo-
controlled trial had no significant effect on gene expression or on plasma concentrations of selected cytokines.
Trial Registration: SRCTN registry (Number 07034656) and the European Clinical Trials Database (EudraCT Num-
ber 2011-005763-24).
. This is an
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Randomized controlled trials afford reliable approaches to under-
stand the causal relevance of drug treatments and can also help our un-
derstanding of disease mechanisms by relating changes in biomarkers
open access article under
with incidence of disease or with surrogate markers of disease.
Advances in molecular methods now permit use of high-throughput
functional genomics strategies in clinical trials. Application of such ap-
proaches has been under-utilized to date, with previous studies focus-
ing on comparisons of transcriptomes to understand mechanisms and
identify novel biomarkers (Beck et al., 2014). Animal and experimental
models of disease pathogenesis have limited ability for translation into
humans, particularly in the context of complex diseases (Seok et al.,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2013, Takao and Miyakawa, 2015), while incomplete knowledge of
mechanisms contributes to inconclusive findings in randomized trials
and the current high failure rate in late stage drug development.
Hence, there is an urgent need to demonstrate the value of combining
functional genomic approaches, including genome-wide genotyping
and gene expression profiling, together with measurements of bio-
chemical and clinical markers in clinical trials to enhance our under-
standing of the pathophysiological processes and mechanisms of
action of novel drug treatments. Such approaches may also allow
high-throughput assessment of cellular and molecular responses at
group and individual levels that can also be integrated with effects on
clinical outcomes data. Hence, integrated analysis may yield clinically
relevant insights about treatment that could guide the design of large
outcome trials.

This study applied functional genomics methods to investigate the
molecular response to vitamin D supplementation. In addition to the
established role of vitamin D in calcium metabolism and bone disease,
accumulating evidence suggests a possible role of vitamin D in immune
function and inflammatory diseases (Bouillon et al., 2008). Previous
studies have investigated the associations of vitamin D with gene ex-
pression (Carlberg et al., 2013, Hossein-Nezhad et al., 2013,
Ramagopalan et al., 2010), but these have typically been cross-
sectional, in experimental models, involved relatively small sample
sizes or lacked placebo controls. Moreover, no previous studies have
assessed the impact of genome-wide genetic variation on responses to
vitamin D supplementation.

The aim of the work described here was to examine the molecular
responses to vitamin D supplementation in a randomized, placebo-
controlled trial. To achieve this, we investigated changes in response
to treatment after 12 months in whole blood transcriptomes and
plasma levels of cytokines, in addition to genetic determinants of indi-
vidual responses on circulating 25-hydroxy vitamin D (25[OH]D) and
genome-wide gene expression, by comparing a total of 305 individuals
allocated to daily treatmentwith vitamin D at either 4000 IU, 2000 IU or
placebo in the BEST-D trial (Hin et al., 2017).
2. Methods

Details of the design, baseline characteristics and data analysis plan
and results of the BEST-D trial have been reported previously (Clarke
et al., 2015, Hin et al., 2017). Briefly, the primary objectives of BEST-D
were to compare the effects on plasma levels of 25(OH)D and to deter-
mine the proportion of participants with plasma 25(OH)D levels
N 90 nmol/L after one year of supplementation with 4000 IU or
2000 IU of vitamin D3 versus placebo. BEST-D was designed as an
intention-to-treat, double-blind, placebo-controlled, dose-finding, ran-
domized clinical trial. Written informed consent was provided by all
participants. BEST-D was approved by the National Research Ethics Ser-
vice (NRES) Committee South Central–Oxford B, the Thames Valley Pri-
mary Care Research Partnership, a Clinical Trial Authorization from
MHRA, and is included on the National Institute for Health Research
(NIHR) Trial portfolio.

Eligible participants were ≥65 years of age, living in the commu-
nity and ambulatory. Participants were randomized in a ratio of
1:1:1 to each group using a minimization algorithm balanced for
age group (65–69, 70–74, ≥75 years), gender, body mass index
(BMI), smoking history, ethnicity and history of fracture. Of 1122 in-
dividuals who were invited to participate, 313 (33%) agreed to re-
ceive a visit from a study nurse for randomization and 305 (32%)
were successfully randomized between 24 September 2012 and 14
March 2013. All data and results were handled according to the
trial and institutional guidelines in secure servers within the Univer-
sity of Oxford. All comparisons were conducted by intention-to-treat
analyses using a pre-specified plan for the molecular data analysis
(Supplementary information).
2.1. Procedures

Briefly, a research nurse visited participants at their homes to obtain
medical history, samples andmeasurements. PAXgene Blood RNA tubes
(Qiagen)were used to ensure RNA stabilitywithout needing immediate
processing. Biological samples were transported at 2–4 °C and then
stored at −80 °C. RNA and DNA samples were processed at the end of
the study as detailed below. Plasma 25(OH)D levels were measured
using an Access 2 immunoassay analyzer (Beckman Coulter Ltd., High
Wycombe, England) complying with the quality assurance DEQAS
scheme. Further details have been described previously (Hin et al.,
2017). Plasma cytokines were measured using a MesoScale Discovery
multi-spot assay system. The V-Plex pro-inflammatory panel 1 kit was
used,with detection antibodies for interferon-gamma (IFN-γ), interleu-
kin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10) and tumor
necrosis factor alpha (TNF-α). In brief, assays were sandwich
electrochemiluminescence (ECL) immunoassays. Between-run preci-
sion over the experiment for IFN-γ was 11.39% at 91.78 pg/mL and
10.73% at 10.73 pg/mL; for IL-6 11.15% at 49.20 pg/mL and 13.02% at
8.85 pg/mL; for IL-8 9.38% at 32.67 pg/mL and 12.76% at 6.75 pg/mL;
for IL-10 13.60% at 22.01 pg/mL and 13.82% at 4.49 pg/mL; and for
TNF-α 12.29% at 11.15 pg/mL and 14.36% at 3.19 pg/mL.

2.1.1. DNA Extraction and Genotyping
Genomic DNAwas extracted from the buffy coat layer using DNeasy

Blood and Tissue Kit (Qiagen), and quantified by NanoDrop (Thermo
Fisher Scientific; Waltham, MA) and Agilent 2100 Bioanalyzer (Agilent
Technologies). 299 samples (of 305 possible) were available for DNA
isolation and were processed over a single batch. Genotyping was per-
formed using the Illumina Infinium HumanOmniExpress-24v1-0
(Illumina) beadchips following the Infinium HTS protocol (Illumina)
at theOxfordGenomics Centre (WHG). Sample concentrationwasmea-
sured using PicoGreen (Thermo Fisher Scientific) and normalized. In
total, 716,503 single nucleotide polymorphisms (SNPs) were geno-
typed. The genotype call rate cut-off was b98%. The overall call rate
was 99.75% with one sample removed at this stage (genotype call rate
96.8%).

2.1.2. RNA Extraction, cDNA Conversion and Microarray Measurements
Total RNA was isolated from whole blood samples using PAXgene

Blood RNA Kit (Qiagen) with recovery of RNA populations of b200 nu-
cleotides and globin messenger RNA clearance using the GLOBINclear
Kit (Ambion). Quantification of RNA and quality measures were
assessed using Agilent 2100 Bioanalyzer (Agilent Technologies) and
Nanodrop (Thermo Fisher Scientific). Complementary DNA synthesis,
labelling and microarray hybridization were performed at the Oxford
Genomics Centre using Illumina Human-HT-12v4 Expression BeadChip
(Illumina). In total, 574 samples were available for further processing
after microarray measurements (of 610 possible from the 305 partici-
pants who completed the study). Thirty samples were not available at
end of study, four samples failed RNA quality metrics before array hy-
bridization and two during array processing. Three additional samples
were identified as of low quality due to low amounts of complementary
RNA upon further inspection. Arrays were run in batches of 96 random-
ized samples.

2.2. Statistical Analysis

2.2.1. A Priori Power for Detecting Gene Expression Differences
Statistical power calculations for gene expression analysis for in vivo

studies are not well documented. We estimated statistical power using
available data from vitamin D treated human cell line experiments
(Ramagopalan et al., 2010, Wang et al., 2005). We estimated that vita-
min D3 supplementation may alter gene expression by 1.5 to 3-fold dif-
ferences. Sample size was prioritized for the main trial outcomes
(circulating levels of 25[OH]D). With a fixed sample size of 100 per
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group for the BEST-D trial, taking a two-sided alpha of 0.05 for a two-
sample t-test, beta of 10%, standard deviation of 0.7, and equal size
group we estimated we would be able to detect effect size differences
inmean gene expression values of 1.25-fold change per gene. For paired
tests, 1.17-fold changes would be detectable at the same beta. These es-
timates assume single gene tests with calculations performed using the
base package in R and pwr (v1.1–3). Calculations using the R package
sizepower (v1.48.0), which is specific for microarray experiments, for
matched samples with the following assumptions: mean number of
false positives = 1, genes not expected to be differentially expressed
= 10,000, mean difference in log-expression between comparison
groups = 1.20, standard deviation = 0.7, and sample size = 100, indi-
cated we had complete power to detect fold changes of 1.2.

2.2.2. Genome-wide SNP Processing and Statistical Analysis
Quality control was carried out using standard approaches

(Anderson et al., 2010, Ritchie et al., 2015) and included assessment of
gender miss-identification; subject relatedness, duplication and diver-
gent ancestry; individuals with elevated missing data rates or outlying
heterozygosity rate; identification of markers (SNPs) with excessive
missing data rates; identification of differing genotype call rates be-
tween groups; SNP quality (filtering of monomorphic SNPs; SNPs with
missing values or nonsense values; low call rate; violation of Hardy-
Weinberg equilibrium; duplication; and minimum allele frequency).
We removed low quality markers followed by individuals.We excluded
non-autosomal variants.We used the following criteria for filtering: call
rates N 98%; minor allele frequency (MAF) N 10%; Hardy-Weinberg
equilibrium threshold of 1× 10−6. This resulted in 19 SNPswith a signif-
icantly different (p-value b.01) missing data rate between cases and
controls (treated vs placebo) being excluded; 4893 variants due to
missing genotype data; 20 variants due to Hardy-Weinberg equilibrium
and 193,723withMAF b 10%. In total, 497,136 variants passedQCfilters.
Of 299 genotyped individuals, eleven were excluded after QC: one indi-
vidual was excluded due to low genotype call rate (b98%); two due to
gender misidentification; two due to relatedness (identity-by-descent
value N 0.1875); three due to ancestry other than Caucasian, and three
due to a high genotype failure rate (≥0.03) and/or a heterozygosity
rate ± 3 SD from the mean (Supplementary Fig. 1).

Linear regression association tests were conducted using frequentist
methodswith PLINK version 1.90 (Purcell et al., 2007).We corrected for
baseline vitaminD circulating levels, vitaminD intake (assessed at base-
line), season (based on date of trial recruitment), gender, age, baseline
BMI, medical history (incident fracture, incident respiratory infection,
diabetes, heart disease, chronic obstructive pulmonary disease, asthma)
and current smoking status. To explore genetic determinants of 25(OH)
D levelswe only considered SNPs previously identified byGWAS (Wang
et al., 2010) and which were included in the genotyping array
(rs12794714 [CYP2R1], rs2282679 [GC], rs7041 [GC] and rs7944926
[DHCR7/NADSYN1]). We utilized an adaptive Monte Carlo permutation
as implemented by PLINK to derive empirically determined significance
values.

2.2.3. Quality Control, Normalization of Microarray Data and Differential
Gene Expression Analysis

Quality assessment of gene expression data included visual analysis
of un-normalized data; analysis of built-in control probes; sample out-
lier detection and estimation of the proportion of probes expressed
across samples (Shi et al., 2010a) (Supplementary Fig. 2). Outlier detec-
tion was carried out using arrayQualityMetrics v3.24.0 (Kauffmann
et al., 2009). We removed samples that failed three criteria based on
the package's internal scores of individual array quality, homogeneity
between arrays and between array comparisons.We found that 11 sam-
ples were classed as outliers by all three methods. Outlier thresholds
(sum of the distances to all other arrays, Kolmogorov-Smirnov statistic
Ka and Hoeffding's statistic Da) were calculated by the package based
on the array signal intensity values.
We excluded probes not expressed in at least three arrays with de-
tection p-values b 0.05. Pre-processing and probe filtering included
background correction as described in (Shi et al., 2010b) using built-in
negative controls and VSN normalization. A second procedure based
on quantile normalization (limma neqc function) was used to test the
main results of the differential expression analysis.Weused the package
illuminaHumanv4.db v1.26.0 as well as the manifest file for Illumina
HumanHT-12v4 to annotate gene expression probes. We excluded
probes from further analysis if probe sequences mapped to more than
one genomic location; annealed at regions with SNPs present or
mapped to non-autosomal locations (illuminaHumanv4.db v1.26.0).
When mapping cytokines to their corresponding mRNA transcripts we
found that only IL-10 (ILMN_1674167) did not overlap known SNPs.
Our final results filtered probes overlapping SNPs (Supplementary
Table 1), but exclusion of these did notmaterially alter results. For com-
parison purposes, we present all cytokine transcripts (Fig. 3). Principal
components analysis (PCA) was performed with R's prcomp function
with scaling and centering.

We performed differential expression comparisons using limma
v3.24.15 with linear models fit with empirical Bayes analysis (Smyth,
2004). The primary comparisonwas a difference in difference estimator
(per gene expression probe). We tested for linear or quadratic effects of
vitamin D on expression and on the absolute change in expression. Ad-
ditionally, we performed a linearmixedmodel analysis with the R pack-
age lmerTest (Bates et al., 2015), using person-specific randomeffects to
account for between-person expression heterogeneity and fixed effects
for time and time interacted with 25(OH)D levels. To account for un-
known confounders, we analyzed gene expression differences within
time-points after correcting for the first 10 surrogate variables using
the R packages SVA (Leek et al., 2012) and SmartSVA (Chen et al.,
2017). We present the difference in difference comparisons but did
not find significant changes using other statistical approaches for the
main analysis.

2.2.4. Expression Quantitative Trait Loci (eQTL) Analysis
We used an additive linear model as implemented in the R package

MatrixEQTL v2.1.1 (Shabalin, 2012) with inclusion of principal compo-
nents (PCs) from gene expression samples as covariates. We deter-
mined the number of PCs to correct for by running eQTL analyses with
increasing numbers of PCs until the number of eQTL associations was
maximized (Fairfax et al., 2014). Statistics and plots were carried out
at the probe level. We used dbSNP human build 146, probe genomic lo-
cations as provided by Illumina, and p-value thresholds at b1e-8 for
trans and b1e-5 for cis. We used MatrixEQTL's calculation of the false
discovery rate (FDR) based on the Benjamini-Hochberg procedure. Vita-
min D response eQTLs were defined using fold change values without a
cut-off threshold as input (instead of gene expression values) for asso-
ciation with SNPs (FDR b 5%) after correcting for PCs per group. The
maximum number of PCs to correct for was based on independent
eQTL analyses of baseline and 12-months samples fromgene expression
values.We used R core packages, biglm (v. 0.9–1) and gvlma (v. 1.0.0.2)
to regress PCs from gene expression values. We did not correct for pop-
ulation stratification as genomic inflation was low (1.01, based on me-
dian chi square) and unlikely to reflect population stratification (Yang
et al., 2011, Bulik-Sullivan et al., 2015). Similar to the gene expression
analysis, we tested for errors in the eQTL pipeline. Here we tested our
results directly as comparable experiments have been done previously
in whole blood samples (Westra et al., 2013). Despite differences in
sample size, genotyping platforms and number of SNPs tested we
chose a conservative genomic interval overlap test. We used the tool
GAT (Heger et al., 2013) with the mappable genome as background
and genomic intervals defined as plus and minus 1000 nucleotides for
each SNP and ran the analysis of overlap between our results and
(Westra et al., 2013) with 1000 permutations to obtain empirical p-
values. Linkage disequilibrium (LD) clumping was performed using
PLINK version 1.90 (Purcell et al., 2007) based on HapMap 3 (release
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2) CEU population for eQTL SNPs under FDR 5% with an r2 threshold of
0.1, distance threshold of 10 kb and p-value of 0.0001.

2.2.5. Statistical Analysis of Circulating Cytokines
We imputed missing data using multiple imputation methods with

50 datasets, a maximum iteration of 50 and predictive mean matching
(R packages mice v2.30 and miceadds v2.4–12) (Van Buuren and
Groothuis-Oudshoorn, 2011). No variable had N5% missing values. We
performed analysis of covariance on each of the log natural transformed
values of plasma levels of IFN-γ, IL-10, IL-8, IL-6 and TNF-α, accounting
for the same confounders as in the genotype-25(OH)D analysis and in-
cluding baseline values for every case. Linear regression summary tables
presented were processed with the R package stargazer v2.3.1.

2.2.6. General Software and Plotting
R packages were run with R 3.2.4 (R Core Team, 2016). Custom

scripts, sqlite3 (v. 3.13.0) and data.table (v. 1.9.6) were used for data
processing. Figures were generated using package specific functions
(limma andMatrixEQTL) orwith ggplot2 (v. 2.1.0) and R's base plotting.
Supplementary Fig. 1 was plotted using code from (Anderson et al.,
2010).

3. Results

3.1. Effects of Vitamin D Supplementation on Gene Expression

Following sample processing and quality control, genome-wide
gene expression data on 16,760 probes (12,910 genes) were available
for 298 of 305 participants whowere randomized to the trial (560 sam-
ples, of which 262 had both baseline and 12 month samples) (Fig. 1).
The mean age of study participants was 72 years at randomization,
51% were male and 12% reported prior use of vitamin D supplements
(≤400 IU of vitamin D3 daily) (Clarke et al., 2015). Compliance with in-
structions to take vitamin D supplements or placebowas high,with 90%
(4000 IU), 92% (2000 IU) and 85% (placebo) reporting taking the cap-
sules on all or most days at 12 months (Hin et al., 2017, Clarke et al.,
Fig. 1. CONSORT diagram for the functional genomics analysis of partici
2015). The overall mean plasma level of 25(OH)Dwas 50 nmol/L (stan-
dard error [SE] 1.04) at baseline and treatment was associated with
mean plasma levels of 25(OH)D of 136 (3.94), 106 (2.55) and 50
(1.68) among those allocated to 4000 IU, 2000 IU, and placebo, after
12 months of treatment (unadjusted levels) (Table 1).

We first performed PCA to visualize the relationship between sam-
ples based on gene expression values. Considering all samples or paired
samples within treatment or placebo groups, we found no visual evi-
dence of clustering using up to the first 13 PCs (accounting for 41% of
variance) (Fig. 2, Supplementary Fig. 2A and Supplementary
Figs. 3–6). The top 100 PCs accounted for 60% of the total variance (Sup-
plementary Fig. 3).

We next formally tested the effects of vitamin D supplementation on
genome-wide gene expression considering significantly differentially
expressed probes at an FDR b 5% for any fold change in an unadjusted
model. As expected after successful randomization, we did not observe
any significant differences in gene expression when comparing alloca-
tion groups at baseline (placebo baseline, 2000 IU baseline and
4000 IU baseline) (Supplementary Table 1).

The pre-defined primary outcome sought to determine differences
in gene expression in response to any dose of vitamin D compared
with placebo.We compared differences in transcriptome among partic-
ipants allocated to vitamin D (4000 IU or 2000 IU) at 0 vs 12 months
versus those allocated to placebo. Difference in difference analysis was
estimated using (expression geneA following vitD12months− expression
gene A vitDbaseline)− (expression gene A placebo12months − expression
gene A placebobaseline). We found that 375 probes (for 4000 IU minus
placebo using the difference in difference estimate as above) and 329
probes (for 2000 IU minus placebo) were significantly differentially
expressed following vitamin D supplementation (unadjusted p-value
b 0.05), but none remained significant after taking account of multiple
comparisons (FDR b 5%) (Supplementary Table 1). Use of quantile or
variance stabilizing normalization (VSN) methods for data processing
did not materially alter the results (Supplementary Fig. 7, see Methods
for details). The placebo group, with both baseline and 12 month sam-
pling, is a stringent control that was used to account for the effect of
pants in the BEST-D study. eQTL: expression quantitative trait loci.



Table 1
Basic characteristics, baseline and 12 month values following vitamin D supplementation.

Mean (SD) sem CI95% lower, upper Change from baseline
(mean, SD)

p-value

Placebo 2000 IU 4000 IU Placebo 2000
IU

4000
IU

Placebo 2000 IU 4000 IU Placebo 2000 IU 4000 IU Placebo 2000 IU 4000 IU

Total n 101 102 102 – – – – – – – – – – – –
Female n 49 51 50 – – – – – – – – – – – –
Age 71.58

(5.64)
71.80
(6.15)

71.30
(5.52)

0.56 0.61 0.55 66.24,
76.92

66.46,
77.14

65.96,
76.64

– – – – – –

BMI 28.01
(4.65)

27.37
(4.16)

27.22
(4.72)

0.46 0.41 0.47 22.67,
33.35

22.03,
32.71

21.88,
32.56

– – – – – –

25(OH)D
baseline

47.14
(14.62)

54.85
(22.61)

48.75
(15.16)

1.45 2.25 1.50 41.80,
52.48

49.51,
60.19

43.41,
54.09

– – – – – –

25(OH)D 12
months

50.31
(16.34)

105.80
(25.25)

136.25
(38.81)

1.68 2.55 3.94 44.97,
55.65

100.46,
111.14

130.91,
141.59

3.50
(7.07)

50.94
(21.93)

87.07
(35.18)

5.50E-06 4.69E-41 6.65E-43

IFNg baseline 1.30
(0.70)

1.50
(0.94)

1.42
(0.78)

0.07 0.09 0.08 −4.04,
6.64

−3.84,
6.84

−3.92,
6.76

– – – – – –

IFNg 12 months 1.30
(0.73)

1.53
(0.84)

1.42
(0.81)

0.07 0.08 0.08 −4.04,
6.64

−3.81,
6.87

−3.92,
6.76

0.00
(0.74)

0.07
(0.94)

0.02
(0.91)

0.97 0.48 0.79

IL10 baseline −1.53
(1.12)

−1.40
(1.10)

−1.58
(0.98)

0.11 0.11 0.10 −6.87,
3.81

−6.74,
3.94

−6.92,
3.76

– – – – – –

IL10 12 months −1.40
(0.97)

−1.29
(0.96)

−1.43
(0.87)

0.10 0.10 0.09 −6.74,
3.94

−6.63,
4.05

−6.77,
3.91

0.12
(0.80)

0.16
(0.92)

0.19
(0.87)

0.14 0.10 0.04

IL6 baseline −0.71
(0.67)

−0.60
(0.73)

−0.70
(0.79)

0.07 0.07 0.08 −6.05,
4.63

−5.94,
4.74

−6.04,
4.64

– – – – – –

IL6 12 months −0.72
(0.67)

−0.58
(0.75)

−0.61
(0.66)

0.07 0.08 0.07 −6.06,
4.62

−5.92,
4.76

−5.95,
4.73

0.01
(0.76)

0.03
(0.64)

0.12
(0.67)

0.94 0.59 0.07

IL8 baseline 1.22
(0.58)

1.28
(0.81)

1.31
(0.68)

0.06 0.08 0.07 −4.12,
6.56

−4.06,
6.62

−4.03,
6.65

– – – – – –

IL8 12 months 1.14
(0.88)

1.34
(0.75)

1.34
(0.69)

0.09 0.08 0.07 −4.20,
6.48

−4.00,
6.68

−4.00,
6.68

−0.07
(0.88)

0.06
(0.83)

0.04
(0.57)

0.44 0.46 0.51

TNFa baseline 0.58
(0.33)

0.59
(0.40)

0.59
(0.36)

0.03 0.04 0.04 −4.76,
5.92

−4.75,
5.93

−4.75,
5.93

– – – – – –

TNFa 12 months 0.57
(0.45)

0.59
(0.42)

0.60
(0.34)

0.05 0.04 0.03 −4.77,
5.91

−4.75,
5.93

−4.74,
5.94

−0.02
(0.37)

0.02
(0.34)

0.01
(0.27)

0.53 0.61 0.65

IFNg baseline
(mRNA)

7.04
(0.20)

7.03
(0.21)

7.03
(0.18)

0.02 0.02 0.02 1.70,
12.38

1.69,
12.37

1.69,
12.37

– – – – – –

IFNg 12 months
(mRNA)

7.00
(0.15)

7.03
(0.23)

7.02
(0.22)

0.02 0.02 0.02 1.66,
12.34

1.69,
12.37

1.68,
12.36

−0.05
(0.18)

−0.01
(0.27)

−0.02
(0.22)

0.02 0.63 0.42

IL10 baseline
(mRNA)

6.87
(0.08)

6.86
(0.09)

6.88
(0.08)

0.01 0.01 0.01 1.53,
12.21

1.52, 12.2 1.54,
12.22

– – – – – –

IL10 12 months
(mRNA)

6.86
(0.08)

6.87
(0.07)

6.87
(0.08)

0.01 0.01 0.01 1.52,
12.2

1.53,
12.21

1.53,
12.21

−0.01
(0.11)

0.01
(0.11)

−0.01
(0.12)

0.39 0.49 0.36

IL6 baseline
(mRNA)

6.93
(0.09)

6.93
(0.09)

6.93
(0.08)

0.01 0.01 0.01 1.59,
12.27

1.59,
12.27

1.59,
12.27

– – – – – –

IL6 12 months
(mRNA)

6.93
(0.07)

6.93
(0.09)

6.93
(0.08)

0.01 0.01 0.01 1.59,
12.27

1.59,
12.27

1.59,
12.27

0.00
(0.11)

0.00
(0.12)

0.00
(0.12)

0.82 0.82 0.94

IL8 baseline
(mRNA)

8.06
(0.61)

8.10
(0.61)

7.99
(0.66)

0.06 0.06 0.07 2.72,
13.40

2.76,
13.44

2.65,
13.33

– – – – – –

IL8 12 months
(mRNA)

7.91
(0.61)

7.93
(0.65)

7.90
(0.67)

0.06 0.07 0.07 2.57,
13.25

2.59,
13.27

2.56,
13.24

−0.13
(0.7)

−0.17
(0.73)

−0.08
(0.79)

0.09 0.04 0.34

TNFa baseline
(mRNA)

8.30
(0.28)

8.31
(0.24)

8.32
(0.24)

0.03 0.03 0.02 2.96,
13.64

2.97,
13.65

2.98,
13.66

– – – – – –

TNFa 12 months
(mRNA)

8.35
(0.24)

8.34
(0.24)

8.36
(0.24)

0.02 0.03 0.02 3.01,
13.69

3.00,
13.68

3.02,
13.70

0.05
(0.28)

0.03
(0.28)

0.04
(0.27)

0.12 0.27 0.17

Arithmetic mean, standard deviation (SD), standard error of the mean (sem), 95% confidence intervals (CI95%) and two-sided, univariate, paired t-test p-values shown (baseline versus
12 months within each arm).
Values are for observed data only. Values presented are age in years, body mass index (BMI) in kg/m^2, 25(OH)D in nmol/L.
Circulating cytokine values are natural logarithm transformed. mRNA values are VSN normalized.
P-values are not adjusted for confounding, baseline values or multiple testing.
Regressionmodels and further results are shown in Supplementary Table 1 (gene expression), Supplementary Table 2 (circulating cytokines), Supplementary Table 3 (genetic association)
and Supplementary Table 4 (expression QTL).
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time, placebo itself, technical artefacts or other sources of variation.
After controlling for relevant confounders, there were no differences
in gene expression between individuals allocated vitamin D versus
those allocated placebo. It is possible that reliable detection of gene ex-
pression in response to vitaminD supplementationmay require a larger
sample size (Supplementary Fig. 7).

Subsequent analyses considered less conservative comparisons as
pre-specified (see data analysis protocol, Supplementary Appendix).
We conducted two group comparisons of each arm (4000 IU at
12 months vs 4000 IU at baseline; and separately, 2000 IU at
12 months vs 2000 IU at baseline), but did not find significant
differences in gene expression (FDR b 5%). We also compared 12-
month samples (4000 IU at 12 months vs placebo at 12 months;
2000 IU at 12 months vs placebo at 12 months), but did not observe
any significant differences (FDR b 5%). Likewise, paired analysis for
each of these comparisons did not yield significant differences (Supple-
mentary Table 1).

To maximize power, we combined all vitamin D allocated individ-
uals before and after treatment (2000 IU plus 4000 IU vs their baseline
samples, unpaired), but did not detect significant differences in
expressed probes (FDR b 5%). Paired sample comparisons (n = 186,
joint 2000 IU and 4000 IU) for this grouping indicated some significant



Fig. 2. Global gene expression by allocated treatment with either vitamin D or placebo supplementation was assessed using principal components analysis of variance. Principal
components were calculated based on post-QC and VSN normalized gene expression signals. PC1 and PC2 (representing 15% and 8.5% of variance, respectively) are shown and colored
according to time-point (final visit at 12 months or at randomization [baseline], panel A) and separately by treatment group (placebo, 2000 IU or 4000 IU, panel B).
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differences following vitamin D supplementation (143 probes at b5%
FDR; 292probes at FDR b 10%, fold change range 0.83–1.12, Supplemen-
tary Table 1). However, neither of these analyses took account of the dif-
ferences in the placebo group and, hence, were less robust than the
analyses of differences and random effects detailed above.

We hypothesized that differences in transcriptomes would be more
evident when comparing individuals with low plasma levels of 25(OH)
D. We compared those with pre-treatment plasma levels of 25(OH)D
b 50 nmol/L versus those with 25(OH)D N 50 nmol/L (124 vs 159, re-
spectively, unadjusted model) regardless of the allocated treatment,
and separately, cases of more extreme change (b25 nmol/L vs
N75 nmol/L 25(OH)D, 13 vs 30, respectively). Likewise, allocation to vi-
tamin D had no significant differences in gene expression (FDR b 5%,
Supplementary Table 1). We repeated such comparisons using subsets
with paired samples before and after treatment among individuals
who at baseline were deficient (b50 nmol/L and separately for those
with b25 nmol/L), but did not detect any significant differences in either
subgroup (FDR b 5%, Supplementary Table 1). Finally, although we did
not pre-specify it, we selected individuals whose change (delta) in 25
(OH)D levels was high (vitD12months − vitDbaseline), regardless of allo-
cated treatment. Although this analysis is more likely to be confounded
it provided more power as more individuals with greater differences in
plasma vitamin D in response to supplementation were included. We
chose the median (+44.79 nmol/L) as this yielded the highest change
in the maximum number of individuals (n = 145). As expected, none
of the placebo group had a difference of this magnitude (median:
+2.58 nmol/L). In paired analysis we found five genes significantly dif-
ferent at an FDR of b5% (Supplementary Table 1), but the effect sizes for
these genes were small (fold change range: 0.81–1.12) and further
work is needed to replicate such associations in other trial populations.
Finally, given that gender specific effects have been noted previously
(Pasing et al., 2017), we analyzed segregated samples (women only
andmen only) but did not find significant differences in paired analysis
(women n = 144, men n = 141).

3.2. Changes in Plasma Cytokine Levels Following Vitamin D
Supplementation

In addition, we assessed whether supplementation with vitamin D
had any significant effect on plasma levels of cytokines (Table 1). Con-
sistent with lack of effect on gene expression results in the present
and other previous studies (Ter Horst et al., 2016), we did not identify
any significant effects of vitamin D supplementation on plasma levels
on cytokines. Likewise, we found no significant correlations between
plasma levels of 25(OH)D and plasma levels of IFN-γ, IL-10, IL-8, IL-6
or TNF-α at 12 months (Supplementary Figs. 8 and 9). Multivariate re-
gression models testing the effect of supplementation after 12 months
for either dose of vitamin D on changes in plasma cytokine levels
(IFN-γ, IL-10, IL-8, IL-6 or TNF-α) after accounting for known con-
founders and baseline values did not show significant changes (Fig. 3
and Supplementary Table 2).

3.3. Individual Responsiveness to Vitamin D Supplementation: Impact of
Genotype

This study lacked power to assess differences in the effects of treat-
ment with vitamin D by differences in genome-wide genetic variation.
We restricted our analysis to SNPs with prior evidence of association



Fig. 3.Boxplots of plasma cytokine levels and their corresponding transcripts before and after 12months of vitaminD supplementation by allocated treatment. Gene expression (RNA) and
circulating cytokine (protein) levels did not show changes after supplementation when accounting for baseline levels, known confounders and placebo (see Methods). VSN normalized
mRNA levels (top row) and log-transformed protein levels (bottom row) of cytokines in whole-blood at baseline and 12 months (y-axis) for each trial arm (x-axis: red (left) = placebo,
green (middle) = 2000 IU, blue (right) = 4000 IU).

Fig. 4. Genetic association analysis following vitamin D supplementation. Boxplots of rs7041 (GC) showing post-supplementation plasma levels of 25(OH)D by allocated treatment.
Associations with rs7041 are statistically significant at both 6 (p = 0.001, panel B) and 12 months (p = 0.023, panel C) at 2000 IU using permutation to derive empirical p-values after
adjusting for baseline 25(OH)D levels and other relevant variables (see Methods and Supplementary Table 3). x-axis: genotypes, red (left) = CC, green (middle) = CA and blue
(right) = AA. y-axis: 25(OH)D circulating levels (nmol/L) at baseline (A), 6 months (B) and 12 months (C).
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with plasma 25(OH)D levels frompopulationGWAS (Wang et al., 2010)
(rs12794714 [CYP2R1], rs2282679 [GC], rs7041 [GC] and rs7944926
[DHCR7/NADSYN1]) for which we had genotyping data available. Previ-
ous studies in twins suggested that summer levels of 25(OH)Dwere not
strongly influenced by genetic variation (Orton et al., 2008, Karohl et al.,
2010). Our pre-specified analysis assessed the hypothesis that genotype
may modulate the response to vitamin D supplementation. We ana-
lyzed 25(OH)D levels following treatment with measurements at 6
and 12 months, using baseline vitamin D and other variables as covari-
ates in a linear regression model (see Methods). We found that rs7041
(located on chromosome 4, GC) was significantly associated with re-
sponse to vitamin D treatment with low dose vitamin D (2000 IU) at 6
and 12 months (permuted p values 0.001 and 0.023 respectively)
(Fig. 4 and Supplementary Table 3). At high dose (4000 IU), we found
no significant effects of rs7041 (or other SNPs). Although higher doses
may abrogate the genetic effect, larger studies with greater statistical
power are needed to confirm or refute this hypothesis.

We next considered whether there was evidence that genetic deter-
minants of gene expression were modulated by supplementation with
vitamin D by adopting a genetical genomics approach. Genetic variation
is known to be an important determinant of individual gene expression
and to be highly context-specific (Gibson et al., 2015).We hypothesized
that genetic variation may be an important contributor to individual
gene expression differences in response to vitamin D. Although our
study did not detect differences in gene expression after supplementa-
tion, we carried out an expression quantitative trait analysis as pre-
specified given that individual level effects on gene expression depen-
dent on genotype may still occur. Following sample processing and
quality control, we analyzed genotyping data on 497,136 variants for
288 individuals.We tested for evidence of associationwith gene expres-
sion using an additive linear model for 14,972 probes, including the top
PCs as covariates after maximizing for cis-eQTLs in each group (see
Methods). We defined expression associated SNPs (eSNPs) as cis-
eSNPs (those located within 1 Mb of the gene expression probe) or
trans-eSNPs (located N1 Mb of the gene expression probe). At baseline,
we found 31,568 cis-eQTLs (18,245 LD clumped index SNPs and 3278
unique probes) and 34,254 (19,345 LD clumped index SNPs and 3390
unique probes) at 12-months (unique SNP-probe pairs, 2000 IU and
4000 IU groups jointly tomaximize sample size, FDR b 5%) (Supplemen-
tary Table 4). There was a significant and positive overlap with compa-
rable previously published data for whole blood eQTL (Westra et al.,
2013) indicating high reproducibility despite large differences in sam-
ple size (1.75 fold-change overlap, q-value b 0.001). To investigate re-
sponse eQTLs present in samples from vitamin D supplemented
individuals, we performed an analysis that took into account both effect
size (gene expression differences) and statistical significance by
obtaining eQTLs from the fold changes between treated (joint 2000 IU
and 4000 IU 12 months' supplementation) and their baseline values
after correcting for PCs as outlined above.We found no significant asso-
ciations involving response eQTLs (FDR b 10%, Supplementary Table 4,
Supplementary Fig. 10).

4. Discussion

Overall, the present study demonstrated that allocation to high-dose
oral vitamin D3 in 305 older people had no significant effect on gene ex-
pression or plasma levels of cytokines when measured after 12 months
despite achieving significantly higher plasma25(OH)D levels (Hin et al.,
2017). To our knowledge, this is the largest randomized, placebo-
controlled trial that assessed molecular changes and genetic effects fol-
lowing vitamin D supplementation.

Previous studies lacking appropriate randomization or use of pla-
cebo controls may have been confounded by time. Both seasonal and
age related effects on gene expression have been reported previously
(Dopico et al., 2015, deMagalhaes et al., 2009). Careful design and anal-
ysis are required; data analysis protocols can be pre-specified with
blinding maintained. We demonstrated no significant effect of supple-
mentation with either 2000 IU or 4000 IU of vitamin D on genome-
wide gene expression or on plasma levels of IFN-γ, IL-10, IL-8, IL-6
and TNF-α after one year of supplementation. The results of the present
study suggest that plasma levels of vitamin D after supplementation can
be modified by genetic variation, in agreement with a recent trial in a
different population (Yao et al., 2017).

The findings of the present study agree with themain results of a re-
cent trial assessing the effect of vitamin D supplementation on gene ex-
pression in subjectswith reduced glucose tolerance (Pasing et al., 2017).
Interestingly, this study observed differences in sub-group analyses by
gender and circulating vitamin D quintiles. The trial had a smaller sam-
ple size, focused on a different population and lacked baseline controls
however.

The present studyhas several limitations.We did not collect samples
within the first few hours or days following intervention and cannot ex-
clude early transcriptomic changes. Indeed, other studies have observed
changes in chromatin accessibility at candidate regions following vita-
min D supplementation in peripheral blood mononuclear cells (Seuter
et al., 2016). Similarly, other tissues and specific cell types may show
differences not observable in whole blood samples. We cannot address
whether inflammatory processes deplete plasma levels of vitamin D,
but our results do not support the hypothesis that long-term supple-
mentation modulates plasma levels of cytokines. The study popula-
tion included Caucasian, community-dwelling older individuals.
Younger individuals, those with particular diseases or different eth-
nicities may respond differently. Although we did not find differ-
ences for those with baseline vitamin D deficiency, our study was
not designed to target this group. Larger studies may find significant
differences, albeit of likely smaller effect, and focused studies may
identify changes in specific cell types or observe differences in indi-
viduals with vitamin D deficiency.

This study demonstrated that genome-wide genetic variation, tran-
scriptome andgenetics of drug induced gene expression profiling can be
integrated with biochemical and physiological measurements in the
context of a randomized trial and may add important molecular and
mechanistic insights. Interdisciplinary and collaborative efforts can
guide the design and conduct of trials which require careful sample,
data collection and analysis.

Further studies are needed to replicate the null associations and to
assess why there were no long-term detectable differences after vita-
min D treatment on gene expression. Physiological mechanisms that
regulate themetabolism of vitaminDmay achieve a steady state. Higher
plasma levels of 25(OH)D may allow resources to be mobilized when
needed. Changes in chromatin may better reflect effects of vitamin D
supplementation (Carlberg et al., 2018). Upregulation of catabolic en-
zymes, unobserved confounding, and tissue specificity, among others,
may account for the null findings. The present study highlights the dif-
ficulty in translating results frommodel organisms, in-vitro and ex-vivo
studies and argues for further integration ofmolecular and clinical stud-
ies from in vivo observations.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.04.010.
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