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Abstract: Detecting the spatial heterogeneity in the potential occurrence probability of water disasters
is a foremost and critical issue for the prevention and mitigation of water disasters. However, it is
also a challenging task due to the lack of effective approaches. In the article, the entropy index was
employed and those daily rainfall data at 520 stations were used to investigate the occurrences of
rainstorms in China. Results indicated that the entropy results were mainly determined by statistical
characters (mean value and standard deviation) of rainfall data, and can categorically describe the
spatial heterogeneity in the occurrence of rainstorms by considering both their occurrence frequencies
and magnitudes. Smaller entropy values mean that rainstorm events with bigger magnitudes were
more likely to occur. Moreover, the spatial distribution of entropy values kept a good relationship
with the hydroclimate conditions, described by the aridity index. In China, rainstorms are more to
likely occur in the Pearl River basin, Southeast River basin, lower-reach of the Yangtze River basin,
Huai River basin, and southwest corner of China. In summary, the entropy index can be an effective
alternative for quantifying the potential occurrence probability of rainstorms. Four thresholds of
entropy value were given to distinguish the occurrence frequency of rainstorms as five levels: very
high, high, mid, low and very low, which can be a helpful reference for the study of daily rainstorms
in other basins and regions.
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1. Introduction

Water disasters, triggered by rainstorms, have been becoming a major type of natural hazard
worldwide [1,2], and have thus received extensive attention in recent times. Over the last decade,
rainstorms and water disasters increasingly occur in many basins and regions [3], especially in July
and August of every year in monsoon-affected areas. In China, the annual human fatalities (>300) and
economic losses (>US$40 billion) caused by water-related disasters occupy more than half of the total
losses from all types of natural disasters [4].

Due to obvious spatial heterogeneity in the geographic and hydroclimate conditions,
the occurrence frequencies of rainstorms and water disasters and their magnitudes vary with regions in
China [5,6]. To formulate proactive and effective adaptation strategies for the control of water disasters,
it is a critical issue to accurately identify and regionalize the key regions where water disasters with
high magnitudes frequently occur. However, rainstorms and water disasters usually occur on short
(hourly, daily and weekly) time scales and in local regions, where hydroclimate stations are scattered
or even missing, causing difficulties in obtaining enough observed data. The drastic spatiotemporal
variability of water disasters cannot be easily captured from the limited observed data. Therefore,
it is still a challenging task to accurately detect the spatial heterogeneity in the potential occurrence
probability of water disasters.
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To meet the need, many indices have been proposed and used to quantify the potential occurrence
probability of water disasters, whose intensity, frequency and duration are usually considered
together [7,8]. The occurrence frequency and (both total and average) magnitude are commonly
used two indices [3]. Statistical characters (mean value, variation coefficient, skewness coefficient,
etc.) of hydroclimate data are also widely considered to describe the spatiotemporal variability of
water disasters [9]. However, each index can only describe certain characteristics of water disasters,
and the values of various indices usually have different spatial distributions [10], causing confusion of
the spatial heterogeneity in the occurrence probability of water disasters. When using some indices
together to investigate the occurrence probability of water disasters, the results cannot be easily
integrated to get a uniform conclusion. Thereby, more effective indexes which can synthetically reflect
the results of different indices should be established to meet the urgent needs.

In information theory, the entropy index is a primary measure of uncertainty degree, such as
disorderliness, randomness, and irregularity [11,12]. Higher entropy reflects more random system and
less useful information in it. In contrast, for those systems with lower entropy values, they include more
useful information and show more regular variability. Information theory has been widely applied
in hydrology for detecting hydrological variability [13], derivation of hydrological distributions,
estimation of models’ parameters and uncertainty [14,15], and others [16,17]. Here, the main objective
is to explore whether the index of entropy can be an effective measure for quantifying the spatial
heterogeneity in the occurrence probability of rainstorms, as an important indicator of water disasters.

2. Data and Methods

The daily rainfall data measured at 520 meteorological stations during 1961–2013 are used to
analyze rainstorms in China. These meteorological stations are more distributed in the out-flowing
river regions in the mid and southeast part of China, where rainstorms and water disasters occur
frequently under the effects of Southeast Asian monsoon and tropical cyclones. Those dry days
(with a magnitude smaller than 0.1 mm) in the daily rainfall data at each station are removed first to
eliminate their influence on the analysis of rainstorms [18], and the residual values are called daily
rainy data (DRD).

The Shannon entropy index, with an explicit definition and being easily calculated [19], is used to
quantify the statistical characters of DRD. The Shannon entropy (E) can be calculated as:

E(x) = ∑[f (xi)log2(f (xi))], (1)

where f (xi) is the probability density function (PDF) used to describe the random characteristics
of the DRD variable x with the length of n (i = 1, 2, . . . , n). Then, the relationship between the E
values and the statistical characters of DRD, as well as the occurrence frequencies and magnitudes of
different rainfall extremes, are investigated to explore the efficiency of the entropy index. The spatial
difference in hydroclimate conditions, quantified by the aridity index (AI), is considered to explain the
physical causes of the spatial distribution of entropy values. The AI is defined as the ratio of annual
precipitation to annual potential evaporation at each station [20], and it can reflect the average water
budget conditions in a region.

3. Results and Discussion

Figure 1 presents the spatial distribution of the entropy values of DRD in China, with a regular
increasing pattern from southeast to northwest. DRD has an entropy value of 1.1~1.6 in the southeast
part of China, including the mid- and lower-reaches of the Pearl River basin, the Southeast River basin,
the lower-reach of the Yangtze River basin, and the Huai River basin. In the semi-arid and semi-moist
transition zones coving the Songliao River basin, the Hai River basin, and the mid-reaches of the Yellow
and Yangtze River basins, DRD has an entropy value of 1.6~2.0. There is a special local region in the
up-reach of the Pearl River basin in Southwest China, where DRD has relatively bigger entropy value
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compared with the surrounding regions. Comparatively, DRD has an entropy value bigger than 2.0 in
Northwest China. The spatial distribution of the entropy values of DRD on the whole accords well
with the hydrographic features in China, which are determined by the typical terrain conditions, i.e.,
high in the West and low in the East, and the climate conditions of the Southeast Asian monsoon [21].
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Figure 1. Spatial distribution of the entropy values of daily rainfall data in China. Dry days in the
daily rainfall data at each station are removed and then the residual is used to calculate entropy
values. The daily rainfall data measured at 520 meteorological stations in China are considered
here. 1, the Northwest Inland River basin; 2, the Southwest River basin; 3, the Yangtze River basin;
4, the Yellow River basin; 5, the Haihe River basin; 6, the Songliao River basin; 7, the Huaihe River
basin; 8, the Southeast River basin; and 9, the Pearl River basin.

To verify the efficiency of the entropy index, the relationship between the entropy value and the
statistical characters (standard deviation and average magnitude) of DRD, as well as its sample sizes
(i.e., fraction of recorded days) and total magnitude at each station, are analyzed. Results indicate
that the entropy value has no relationship with skew characteristics of DRD, and thus, it is omitted
here. Interestingly, Figure 2 shows that along with the increase of the standard deviation value and
magnitude (especially average magnitude) of DRD, the entropy value correspondingly decreases.
Entropy value of DRD also decreases with the increase of its occurrence times. As a result, it was
found that the entropy value may be determined by statistical characters (especially the mean value
and standard deviation) of DRD, but not by either of these statistical factors alone. Thus, the index
can synthetically reflect the occurrence of rainy days and rainfall magnitudes. Small entropy values
indicate that rainfall events with big magnitudes are more likely to occur, and so reflect more obvious
variation in the rainfall process.

To further verify the efficiency of the entropy index to present the potential occurrence of
rainstorms, two ranks of rainstorms, with a daily magnitude of 25~50 mm (denoted as P25) and
bigger than 50 mm (denoted as P50), are further considered here. P25 and P50 are commonly used to
quantify the intensities of different rainstorms in China [22], and their relationship with the entropy
value of DRD is analyzed. In Figure 3, both the occurrence times (i.e., fraction of recorded days) and
average magnitude of the P25 and P50 rainstorms consistently increase with entropy value decrease.
The occurrence frequencies (occurrence times divided by total rainy days) of P25 and P50 rainstorms
also increase with the decrease of entropy values (Figure 4). Therefore, smaller entropy values mean
that more rainstorm events with bigger magnitudes are more likely to occur, being consistent with the
results in Figure 2. Based on the spatial distribution of entropy values in Figure 1, it is known that in
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the southeast part of China with smallest entropy values, rainstorm events are more likely to occur;
however, rainstorms are not likely to occur in Northwest China.
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Figure 4. Relationship between the entropy values and occurrence frequency (occurrence times divided
by total rainy days) of P25 and P50 rainstorms. P25 rainstorm means the daily rainfall data with a
magnitude between 25 mm and 50 mm; P50 rainstorm means the daily rainfall data with a magnitude
bigger than 50 mm.

Considering that the occurrence frequencies of rainstorms should be physically related to the
hydroclimate conditions, especially in those monsoon-affected regions in China, it is verified here
by analyzing the relationship between the entropy values and the AI values. Their good negative
relationship is established and can be described by the power function of y = 1.5707 × x−0.141, with the
determination coefficient of 0.70 (Figure 5). Therefore, it is thought that although the occurrences
of rainstorm events are caused by specific physical mechanisms and have different magnitudes and
potential influences, the occurrence frequencies of rainstorms in a certain region is overall determined
by its background of hydroclimate conditions, and those regions with more positive water budget
conditions would have higher occurrence probabilities of rainstorms. From the results, it is known that
the entropy results have reliable hydroclimate bases, and the entropy index is an effective measure to
present the occurrence probability of rainstorms and its spatial heterogeneity.

In order to distinguish the regions where rainstorm events have different potential occurrence
probabilities, the matching condition between the spatial distribution of entropy values and the
locations of nine major basins in China is mainly considered, and then the value range of entropy
is basically divided into five segments as <1.4, 1.4~1.6, 1.6~1.8, 1.8~2.0 and >2.0, corresponding
to very high, high, mid, low, and very low probabilities of the potential occurrence of rainstorms
and water disasters in China. The four thresholds of entropy value correspond to the AI values of
2.26, 0.88, 0.38, and 0.18, basically reflecting the hyper-humid, humid, semiarid, and arid conditions,
respectively. The regions corresponding to the five entropy value ranges are shown in Figure 6.
There have been many previous studies about the spatial distribution of extreme rainfall events in
China. They investigated rainstorm events with different temporal resolutions, and estimated their
magnitudes at different return periods using the hydrological frequency analysis approach [21,23,24].
The results found in this study are similar to those in previous studies in terms of the spatial distribution
of rainstorms. Comparatively, the advantage of the present study is its simplicity. It just needs to
use the index of entropy to analyze daily rainfall data by first removing dry days. The entropy
results are determined by statistical characters of rainfall data and closely related to the hydroclimate
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4. Conclusions

From the above results, it is concluded that the entropy index can be an effective alternative for
indicating the potential occurrence probability of rainstorms. As for China, rainstorm events are more
likely to occur in the Pearl River basin, the Southeast River basin, the lower-reaches of the Yangtze
River basin, the Huai River basin, and the southwest corner of China. The occurrences of rainstorm
events at diverse time scales would have different spatial distributions. Due to the limited observed
data, the spatial distribution of the occurrence probability of rainstorms on smaller time scales was
not analyzed using the entropy index here. However, considering that the entropy results are solely
determined by the statistical characters of rainfall data, and the occurrence of rainstorms on diverse
time scales have certain physical cause-relationships, it is thought that the results from this study reflect
the spatial heterogeneity of the occurrences of rainstorm events in China. The thresholds of entropy
values determined here can also be helpful references for the studies of daily rainstorms in other
basins and regions worldwide. More studies with diverse cases can be conducted to further confirm
the conclusion, especially for the entropy-AI relationship. The relationship between the entropy
values obtained from observed rainfall data and those expected from proper theoretical probabilistic
distribution should also be investigated, for predicting the characteristics of the entropy index and
analyzing its temporal variability.
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