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Abstract: The big data concept is currently revolutionizing several fields of science including
drug discovery and development. While opening up new perspectives for better drug design
and related strategies, big data analysis strongly challenges our current ability to manage and exploit
an extraordinarily large and possibly diverse amount of information. The recent renewal of machine
learning (ML)-based algorithms is key in providing the proper framework for addressing this issue.
In this respect, the impact on the exploitation of molecular dynamics (MD) simulations, which
have recently reached mainstream status in computational drug discovery, can be remarkable.
Here, we review the recent progress in the use of ML methods coupled to biomolecular simulations
with potentially relevant implications for drug design. Specifically, we show how different ML-based
strategies can be applied to the outcome of MD simulations for gaining knowledge and enhancing
sampling. Finally, we discuss how intrinsic limitations of MD in accurately modeling biomolecular
systems can be alleviated by including information coming from experimental data.

Keywords: machine learning; dimensionality reduction; reaction coordinates; collective variables;
Markov state models; maximum entropy principle; experimental data

1. Introduction

The idea of exploiting computers and information technology for assisting the drug discovery
process goes back to the early 1960s when the pioneering works by Corwin Hansch and Toshio Fushita
laid the ground for quantitative structure-activity/property relationship (QSAR/QSPR) models [1,2].
Since then, several computational approaches have flourished and, as soon as adequate computational
resources have reached widespread availability, computer-aided drug discovery (CADD) has become
a valuable asset for both academia and industry [3]. Nowadays, different kinds of computational
methods are virtually employed in all realms of science and, in the field of medicinal chemistry, they are
widely recognized as an integral part of any modern drug discovery endeavor [4]. Many of these
approaches do rely on the availability of experimental data to draw hypotheses, identify patterns,
and make inferences (inductive learning) [5]. Thanks to recent advances in experimental techniques,
like high-throughput screening and array measurements, among others, we are today in the position
of disclosing the full potential of these computational tools [6]. Nevertheless, mining and integrating
large-scale datasets coming from different sources is far from trivial. This issue is a declination of
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the well-known problem of big data, which refers to an overwhelming amount of information (“big”
in terms of volume and diversity) that challenges the possibility of taking advantage of it [7]. It is a
common perception that the current resurgence of artificial intelligence (AI) methods, including
brand new techniques like deep learning (DL) algorithms, will ultimately provide a suitable framework
to address this task [8,9].

Over the past decade, another class of computational methods has gained increasing popularity
in the field of drug discovery and development. These are based on the application of fundamental
theories to predict the properties of materials and can be ascribed to deductive learning [5]. Molecular
dynamics (MD) is one of such approaches that stem from the possibility of simulating the temporal
evolution of systems (in jargon, the trajectory) based on a microscopic description thereof [10].
Given that a suitable representation of intra- and inter-molecular forces is provided (the so-called force
field) and thus interactions between biomolecules are properly modeled, MD allows investigating
molecular-level mechanisms and extracting relevant observables related to the process under
investigation. Protein–ligand (un)binding mechanisms (i.e., “dynamic docking”), binding free energies,
and even kinetic constants are examples of useful outcomes for drug design when MD simulations are
applied to pharmaceutically relevant systems [11–13]. It is therefore not surprising that MD methods
are nowadays routinely employed in drug discovery for complementing experiments and orthogonal
computational techniques like molecular docking and virtual screening [14,15]. Notwithstanding their
descriptive and predictive power, MD historically suffered from two main drawbacks: the limited
accuracy of force fields and the short length of simulations compared to the real physical time required
to observe the investigated biological events. Thanks to the advancements in high-performance
(HPC) and/or distributed computing, the second issue is alleviating, as the gap between experimental
and computational timescales is constantly decreasing. The straight drawback, however, is that
trajectories and output data, in general, are steadily growing in size, calling for adequate strategies
for extracting relevant information when the big data regime approaches. Even from this standpoint,
AI-based methods are optimally equipped to cope with such increased complexity. It is worth
highlighting that machine learning (ML) has long been adopted by the MD community to analyze
simulations of biomolecular systems [16]. Nevertheless, not only today are these approaches becoming
routine for processing MD-derived data, but the growing awareness of their potential is also boosting
their development for gathering insight in an automated fashion, for informing subsequent simulations,
and even for analyzing and guiding the dynamics in a seamless way (see Figure 1, paths “1” and “2”).
Prominent parallel processing strategies are also starting to be explored for dealing with large-scale
MD data analysis [17]. These include efficient tools such as Hadoop, an open-source implementation
of MapReduce [18], which, differently from classical HPC frameworks with dedicated storage nodes,
are instead based on localized storage on the compute nodes. By leveraging on such architectures
that facilitate access to data, the performance of analysis algorithms can be remarkably improved.
While such applications to MD-generated data are still in their infancy, they have the potential to
become remarkable instruments as hardware resources lead towards the big data domain. A detailed
discussion of this topic is out of the scope of the present review and will thus not be covered.

The big data problem refers not only to the quantity and diversity of data but also to their rate of
production and trustworthiness of their sources (also known as “veracity”). In this context, it is worth
highlighting that a class of emerging analysis methods is explicitly concerned with the combination
of MD-derived data and experimental information to deal with the above-mentioned force field
issue. Specifically, such strategies aim at reducing systematic inaccuracies due to the limitations of
the force field used to model the biomolecular systems [19]. Albeit not strictly inside the ML domain,
these approaches represent an innovative way of making sense from MD trajectories or guiding new
simulations by enforcing the agreement with available experimental knowledge (see Figure 1, path “3”).
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Figure 1. Pictorial representation of data exploitation in molecular dynamics (MD) simulations. Note
that the source of data can be either computational (the very output of MD simulations, paths “1”
and “2”) or experimental (path “3”). Path “1” refers to the use of machine learning (ML) methods
for the conventional analysis step performed a posteriori once the MD data have been generated.
Path “2” depicts a loop where ML methods enter during the simulations to inform subsequent MD runs
(specifically consisting of simulation runs, data generation, and ML-based data analysis). This loop can
be either discontinuous (MD/ML resampling) or seamless (on-the-fly MD/ML).

In this review, we summarize the different classes of ML methods applied to the analysis of
MD trajectories (hereafter referred to as MD/ML approaches) holding great potential in the field of
biomolecular simulations. Here, we stress that some of these methods have been widely employed for
decades, like clustering and principal component analysis (PCA), while others have been introduced
only very recently, and their application to real-life drug discovery cases is yet to come. Finally,
we provide an overview of the emerging methods to include experimental information in MD
simulations for better modeling biomolecular systems.

2. Learning from Molecular Dynamics Trajectories

Molecular dynamics is concerned with the time evolution of systems under the classical laws
of motion. The integrator is at the very heart of any MD engine, as it takes care of solving Newton’s
equations iteratively for discrete steps in time (i.e., the time-step). To satisfy a stable and accurate
integration, one needs to choose the time-step to be significantly smaller than the characteristic
oscillations of the system under consideration, typically 1–2 fs. This has two important implications.
First, reaching experimentally relevant timescales for the events one wishes to investigate (micro-,
milli-seconds, and possibly more) becomes a formidable computational task [15]. Second, for MD to
be informative, the trajectory must be saved to a disk at a sufficiently high pace, thus generating a
huge amount of data that requires further analysis. To deal with the former issue, apart from mere
technological advances, several and highly diversified methods have been developed over the years.
A large class of such methods relies on the notion of reaction coordinates (or collective variables, CVs),
which are functions of the atomic positions whereby the investigated event is accelerated through
external biases in the form of additional forces or potentials. The computation of most common CVs
can be already found implemented either in MD codes, such as NAMD [20,21] and AMBER [22],
or in dedicated software such as PLUMED [23]. Among the most popular approaches exploiting
CVs, we mention umbrella sampling [24], steered dynamics [25,26], adaptive biasing force [27],
and metadynamics [28,29]. Here, for simplicity, we refer collectively to these methods as “biased
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sampling” and we redirect the interested reader to more specific reviews for further details [30,31].
Biased sampling methods can be highly informative because not only do they speed up the observation
of “rare events” but, under proper simulative conditions, they also allow to retrieve the underlying free
energy landscape. Unfortunately, choosing the proper CVs is not always straightforward, and much
chemical intuition and/or trial-and-error procedures are often required [32].

Concerning the second issue, namely coping with a big data scenario, the application of ML
methods can be of great benefit to the analysis of MD trajectories (Figure 1, path “1”). Furthermore,
ML can also be integrated into MD protocols to optimize the production of MD trajectories. In particular,
concerning the latter point, ML methods can help in identifying the CVs required for biased sampling
simulations (Figure 1, path “2”). Notably, this can either be done subsequently, that is running biased
sampling of CVs after they are identified from the analysis of one or more explorative MD simulations
(MD/ML resampling), or via on-the-fly protocols (on-the-fly MD/ML). On-the-fly learning and sampling
approaches probably represent the most elegant way of combining MD with ML, as they relieve the user
of rather subjective choices and often tedious rounds of simulation and analysis. We note that on-the-fly
MD/ML can be also declined in what we call here “guided sampling”. This class of methods bears
some similarities with adaptive sampling procedures like weighted ensemble [33,34], among others.
In particular, they share the feature of taking care of launching and controlling repeated sequences of
multiple MD simulations in an automated fashion. In addition to assisting the identification of CVs,
in this case, ML methods help in optimally identifying the starting states for each sequence of MD
runs. In practice, the states are drawn so as to “guide” the system towards undersampled or even
previously unexplored regions of configurational space, thus achieving a wider exploration without
the need of introducing external biases.

ML methods are generally classified into two broad categories: supervised and unsupervised
learning (Table 1) [35]. While unsupervised learning deals with the identification of patterns among
data, the ultimate goal of supervised learning is to disclose the relationships (if any) between dependent
and independent variables. In this case, the learning procedure is carried out by partitioning
the available dataset into two chunks: the training and the test set. The former is employed to train
the model, while the latter is exploited to validate its performance in predicting the dependent variables
for the subset of data that was not considered during training. It is important to recognize that,
in the context of the analysis of MD trajectories, ML methods most often take as input convenient
representations of the configuration of the system over time, rather than bare atomic coordinates [36].
These representations must satisfy symmetry invariances (rigid body translations and rotations as
well as permutations of identical atoms) and can be described as a vector of features, like dihedral
angles, or CVs in general, like contact maps, and so on. Notably, in the ML jargon, this process of
mapping the Cartesian coordinates into the space of selected features of interest is typically referred to
as “featurization” [8].
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Table 1. Classification of the most popular ML algorithms.

Class Learning Task Method

Supervised Learning

Regression

Linear regression 1

Non-linear regression
Support vector regression (SVR)
Artificial neural network (ANN)

Classification

Logistic regression (LR) 1

Linear discriminant analysis (LDA) 1

Support vector machines (SVR)
k-nearest neighbor (kNN)

Decision trees/random forests
Artificial neural network (ANN)

Unsupervised Learning

Clustering

Hierarchical agglomerative/divisive
k-means/-medoid

Gaussian mixture models (GMM) 1

Density-based (DBSCAN)
Self-organizing maps (SOM)

Dimensionality Reduction

Principal component analysis (PCA) 1

Kernel-PCA (kPCA) 1

Independent component analysis (ICA) 1

Multidimensional scaling (MDS) 1

Isometric feature mapping (IsoMap) 1

Locally linear embedding (LLE)
Diffusion maps (dMaps) 1

Artificial neural network (ANN) 1

1 Examples of this ML method have been described in the context of MD analysis and are reported in the text.

2.1. Unsupervised Learning Methods

2.1.1. Clustering and PCA: The Grand Old Tools of Trajectory Analysis

Unsupervised learning can be distinguished into clustering and dimensionality reduction (Figure 2).
A more technical discussion of the use of these methods in the context of MD simulations can be
found in an excellent review by M. Ceriotti [36]. Briefly, clustering methods attempt to partition
input data into classes where members of the same group can be considered more similar between
them than members belonging to different groups (Figure 2A). To implement the concept of similarity,
one must define a way to measure distances in the feature space. Typically, the pairwise atomic
root-mean-squared-deviation (RMSD) is used to this aim:

RMSDi j =

√
1
N

∑N

k=1

(
xi

k − x j
k

)2
, (1)

where N is the number of atoms in the summation, and xi
k and x j

k are features of the system in two
different configurations, i and j, sampled in an MD trajectory. When dealing with MD simulations,
a common practice is to use atomic coordinates as input features, but other metrics can be envisioned.
In this context, cluster analysis is very helpful for identifying the metastable states (i.e., local free energy
basins) explored during the dynamics and it represents a popular way to analyze MD trajectories [37].
It is out of the scope of the present work to review such kind of approaches, as the variety of
methods and the extent of applications would require an entire article to fully describe them [38].
We limit ourselves by mentioning an on-the-fly MD/ML approach introduced by Tribello et al., where
the sampling is biased making use of a sophisticated clustering procedure (Gaussian mixtures) as a
central ingredient [39]. The method, dubbed reconnaissance metadynamics, accelerates the dynamics
through a repertoire of CVs that are expected to provide the best local approximation of each free
energy well that is visited during the simulation. Cluster analysis is performed at regular intervals on
the collected trajectory, and the identified clusters are then exploited for tuning a one-dimensional CV
that will be used for biasing the dynamics until the next round of analysis [39].
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(panel (A)) and dimensionality reduction (panel (B), principal component analysis (PCA) is displayed
as a representative example).

While clustering helps in identifying groups of configurations basing on feature similarity,
dimensionality reduction (or manifold learning) represents a variety of methods whose aim, as the name
suggests, is to reduce the dimension of the feature vectors [36,40]. In other words, dimensionality
reduction methods seek to find a low-dimensional (low-d) manifold embedded in the high-dimensional
(high-d) space represented by the input data structure [32]. The procedure is rooted in the possibility of
spotting redundancies and correlations that are often found in large data samples [35]. Once the low-d
space is obtained, the interpretability of data is in general improved. One should keep in mind that
such simplification always comes with a certain degree of information loss. Thus, finding an optimal
tradeoff between the two can be difficult in some cases. The forerunner of all dimensionality reduction
methods is certainly principal component analysis (PCA), which has become a popular MD analysis
tool under the moniker of “essential dynamics” [41]. Technically speaking, PCA provides a linear
transformation of the feature vectors in a way that best captures the variance of data. The outcome of
the dimensionality reduction is therefore a set of eigenvectors (or principal components, PCs) ranked by
the decreasing fraction of the total variance explained (eigenvalues, see Figure 2B). While in principle
this can be applied to all sorts of features, it is common practice to apply PCA to atomic coordinates.
Specifically, eigendecomposition can be performed by diagonalizing the covariance matrix of atomic
fluctuations, whose elements are

Ci j =
〈
xi·x j

〉
, (2)

where xi and x j are the positional fluctuation vectors of atoms i and j, while the angle brackets denote
the average evaluated over the entire simulation (ensemble average). We note, in passing, that in

the one-dimensional case, the elements of the normalized covariance matrix (Ci j = 〈xi·x j〉/
√
〈xi〉2

〈
x j

〉
2)

correspond to the Pearson correlation coefficient (r) between the two variables.
From a practical standpoint, this powerful ML analysis tool is used to identify the correlated

motions of proteins or biomolecules in general. This is especially relevant as the projection of
the trajectory on the first few principal components allows a rather straightforward identification of
metastable states and transitions among them without the need of resorting to a cumbersome visual
inspection of configurations. Thus, PCA can be in principle employed to study mechanisms underlying
conformational transitions, ranging from minor local rearrangements up to entire folding processes
(but see below for caveats). As in the case of cluster analysis, even providing a partial list of the most
recent applications of PCA in the context of MD analysis would be unfeasible. We rather highlight
here that the principal components extracted from MD simulations can be thought of as a set of CVs,
and as such, they can be used for biased MD/ML resampling. This idea has been pursued in a form of
restrained dynamics (“essential dynamics sampling” [42]) and metadynamics as well [43]. We note,
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however, that while PCs can be considered as good order parameters whenever they allow to clearly
distinguish among the most relevant states, for a number of reasons, they are not also necessarily good
CVs for biased sampling. Indeed, despite its conceptual simplicity and ease of use, which pushed
the implementation in several MD analysis tools over the years [22,23,44–48], PCA is not free from
limitations. A technical drawback is related to the fact that PCA is typically fed with the Cartesian
coordinates of a given subset of atoms (usually the backbone or Cα atoms in the case of proteins).
In order to remove irrelevant motions like rigid body translations and rotation, it is customary to align
the frames of the trajectory on a reference structure, which is often times the starting configuration or
an average conformation. Thus, the results of the dimensionality reduction are somewhat dependent
upon the choice of both the reference structure and the atoms used for finding the optimal alignment.
A possibility to bypass this problem is choosing a different feature space, like internal coordinates [32].
For example, PCA on dihedral angles can be performed [49,50], and this approach has been recently
used by Ferraro et al. to rationalize the change in the efficacy of a series of congeneric modulators of
the dopamine D3 receptor [51].

A more elegant choice over PCA, however, is taking advantage of multidimensional scaling
(MDS), a distinct, but somehow related ML tool. Differently from PCA, MDS (sometimes also referred
to as principal coordinate analysis [52]) operates directly on pairwise distances between conformations
(like the RMSD), thus avoiding the optimal alignment problem. Hence, in MDS, the problem can be
reformulated as finding the embedding that best preserves the distances evaluated in the high-d space.
MDS comes in two flavors: the original algebraic formulation, also known as “classical” MDS, and an
optimization procedure through iterative algorithms (distance scaling, or “metric” MDS). The idea
behind classical MDS is to transform the distance matrix into an inner product matrix that can be
further diagonalized as in PCA. The ground for this reasoning is that, in Euclidean space, distances
(Di j) are related to inner products as follows:

D2
i j =

∣∣∣xi − x j
∣∣∣2 = |xi|

2 +
∣∣∣x j

∣∣∣2 − 2〈xi·x j〉. (3)

Thus, after a procedure called double centering which takes care of the fact that inner products
depend on the origin while distances do not, by inverting this relationship, one obtains the desired
inner product matrix [52]. The set of obtained eigenvectors has much the same significance as in
PCA, even though MDS is considered more general as it can also be applied to non-Euclidean high-d
spaces [32]. Conversely, still under the assumption of a linear projection, in the simplest form of metric
MDS, one rather optimizes the loss function [36]:

l2i j =
∑

i j

(
Di j − di j

)2
, (4)

where Di j and di j are the distances in the high- and low-d spaces, respectively. An important requirement
of dimensionality reduction methods is the ability to map new high-d data points into a previously
obtained embedding. This is the so-called “out-of-sample” problem that affects MDS and related
methods. We note that PCA is devoided from this limitation, as new data points can be easily projected
on to the PCs using the same linear transformation employed to carry out the dimensionality reduction.
To the best of our knowledge, the first application of linear MDS in the analysis of MD trajectories
was reported by Troyer and Cohen as early as 1995 [53]. More recently, Pisani et al. reported on an
interesting application of MDS for mapping the conformations explored by the CDK2 protein kinase
during MD simulations [54]. Notably, the embedding was constructed using a pool of experimentally
derived structures, and an appropriate out-of-sample extension was devised to map the trajectories
points on the previously derived low-d space [54].

Another quite serious problem with PCA is that, by construction, principal components only
provide a linear mapping of the high-d space of input data. Thus, meaningful results can only be
obtained if input data are linearly correlated. While at the bottom of free energy wells the motion
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of biomolecules might satisfy the quasi-harmonic approximation, in general, this assumption is no
longer valid in the proximity of transition state regions. This means that studying complex and highly
non-linear rearrangements like protein folding, while technically feasible, can lead to arguable results.
For the same reason, while PCA can be used to gain mechanistic insight at a qualitative level, it should
not in general be used for extracting rates related to the process under investigation. The same
reasoning applies to linear MDS.

2.1.2. Beyond Linear Dimensionality Reduction

The concept of non-linearity in dimensionality reduction methods can be implemented in several
ways. Perhaps, the simplest way to achieve this is through kernel PCA (kPCA) that can be thought of
as a generalization of PCA. The idea behind kernel methods is to exploit a non-linear transformation of
the input data into some feature space Φ(x) of higher dimensionality, with the hope of finding linear
correlations in this new space. In particular, the kernel is a function that represents the inner product
in the feature space:

k
(
xi, x j

)
= Φ(xi)·Φ(xi). (5)

By diagonalizing the matrix whose elements correspond to this product, one obtains principal
components like in PCA, but in this case, one attempts to capture non-linearity in the high-dimensional
space through the definition of the kernel itself. The advantage is that one does not need to explicitly
compute the mapping function Φ(x), as the kernel matrix can be readily obtained by the input
data using a polynomial, exponential, or sigmoid function. Indeed, the covariance matrix that is
diagonalized in PCA can be considered as the simplest possible kernel function (the inner product).
As an example, Antoniou and Schwartz successfully employed a polynomial kernel (k

(
xi, x j

)
=

(
xi·x j

)n
)

to extract the CV describing the enzymatic reaction of the lactate dehydrogenase enzyme [55].
From a different standpoint, non-linearity can also be addressed within the MDS framework.

Non-metric MDS (nMDS) can be considered as a form of non-linear MDS. Instead of attempting to
preserve pairwise distances, it focuses on preserving their ranking in the high-d space. This is a useful
approach to be considered when, rather than the exact value of the distance, the relationship among
input data is thought to be more relevant. nMDS has been adopted to map the configurational space of
the villin headpiece during folding trajectories that were previously generated through exceptionally
long MD simulations for that time [56], and it was found to be superior to PCA and conventional cluster
analysis [57]. Differently, Sketch Map is a non-linear metric MDS method introduced by Ceriotti et al.
that seeks to preserve middle-ranged proximities in a way to collapse or amplify distances for points
that are found below or above some characteristic length that is specific for the considered data
structure (and that must be priorly assessed) [58]. The non-linear mapping is obtained through a
modification of the loss function usually employed in metric MDS (Equation (4)):

l2i j =
∑

i j

[
F
(
Di j

)
− f

(
di j

)]2
, (6)

where F and f are sigmoidal functions that are dependent on the choice of the aforementioned
characteristic length. The rationale behind this approach is that, for complex molecular transitions
like those observed in typical MD simulations, the noise in data due to thermal fluctuations will
prevail in the proximity of minima, while undersampling will characterize the transitions between
them [59]. Thus, by properly tuning the characteristic length, only the essential features of the high-d
space will be preserved in the low-d embedding providing, as the name implies, a sketch of the entire
energy landscape is visited by the system. Sketch Map comes with an efficient optimization strategy
based on the selection of “landmark” (i.e., representative) points in the high-d space as well as a
procedure to cope with the out-of-sample problem [58,59]. In the original implementation, Sketch Map
was tested to reduce the dimensionality of the polyalanine-12 peptide using the 24-dimensional
space of the backbone dihedral angles as input features [58]. Later, the same authors extended
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the methodology to carry out biased MD/ML resampling of a previously generated embedding in
analogy with metadynamics (therefore, the method was called field-overlap metadynamics) [60].
Recently, among the several applications, Bellucci et al. applied Sketch Map to describe conformational
changes of the 16–22 segment of the β-amyloid peptide upon binding to a gold surface [61].

Isometric feature mapping (Isomap) is another non-linear dimensionality reduction method that
builds on MDS [62]. Rather than evaluating the Euclidean distance in the high-d space, Isomap
estimates the geodesic distance, which is the distance along a straight line in a curved manifold.
In particular, the geodesic distance is computed finding the shortest path through a network analysis
performed on the high-d space (Figure 3) [62]. This approximation holds only in the limit of very
dense sampling, and, when this requirement is fulfilled, the computation becomes highly inefficient.
A variant of the original algorithm specifically designed for big datasets such as the output of MD
simulations is the so-called scalable Isomap (ScIMAP) proposed by Clementi and co-workers [63].
ScIMAP alleviates the computational burden by choosing random landmark points and approximating
the distances only between these points and the remaining ones, instead of calculating all the pairwise
shortest paths [63]. This method has been used to map the conformational space and compute
the conformational free energy of coarse-grain models of the Src homology domain 3 (SH3) protein
and a 22-residues β-hairpin [63,64]. Isomap has also been extended for its use in the context of biased
MD/ML resampling simulations. Notably, the out-of-sample problem and the requirement of a smooth
mapping of the configurational space for computing biasing forces (i.e., the differentiability) have been
elegantly bypassed by Spiwok and Králová [65] through a generalization of the path CVs previously
introduced by Branduardi et al. [66]. These variables are nowadays referred to as “Property Maps”
within the PLUMED community [23,67], but we highlight here that an Isomap embedding can also be
used as a CV space through the more general “Smooth and Nonlinear Data-Driven CV” (SandCV)
formalism developed by Hashemian et al. [68]. Finally, we mention that Isomap was recently used by
Schuetz et al. to map the unbinding pathways of drug-like molecules from their target as obtained by
high-effective temperature MD simulations [69]. The projection of these pathways onto the low-d space
was then clustered using the Fréchet distance as a metric with the aim to gain insight on the unbinding
mechanism of the considered molecules [69].
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Figure 3. Schematic representation of the difference between the Euclidean and geodesic distance (green
solid and red dashed lines, respectively) evaluated in a curved manifold. The network-based nearest
neighbor approximation of the geodesic distance provided by Isomap is also shown (red solid lines).

Aside from the above-discussed methods, the issue of non-linearity in dimensionality reduction
can be addressed from another perspective. Starting from the limitations of conventional PCA,
namely the linear approximation and the often overlooked problem that by construction only collinear
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motions can be detected as correlated (see Equation (2)), Lange and Grubmüller devised a generalized
measure of correlation which rests on statistical mechanics arguments and information theory [70].
This generalized correlation coefficient (rMI) builds on Shannon’s mutual information (MI) between
random variables, and, in analogy with the Pearson correlation coefficient r, it is conceived to return a
value of 1 for fully correlated motions and 0 when no correlation is found [70]. By minimizing this MI
measure in a procedure known as full correlation analysis (FCA), one obtains maximally uncoupled
collective coordinates [71]. This is a form of independent component analysis (ICA, see below).
Differently from PCA, where eigenvectors are ranked according to the amplitude of motion, the authors
proposed a ranking based on the anharmonicity of the modes as assessed through the estimate of their
negentropy [71]. For the investigated systems, FCA modes turned out to better describe conformational
states and provided a better description of the transition pathway among basins than PCA, suggesting
an improved ability to capture functional motions over linear methods [71]. As an example, FCA has
been successfully employed to detect functional motions of the HIF-2α PAS-B domain that are possibly
involved in assisting ligand (un)binding [72].

2.1.3. Including Dynamical Information into Geometric Dimensionality Reduction

All the methods described in previous sections are based on (linear or non-linear) static properties
of the high-d space. A step forward towards a complete mechanistic interpretation of the simulated
events can be taken by including some dynamical information on the derivation of the reduced
dimensionality space. Diffusion maps are one such example that attempt to preserve the dynamic
proximity between configurations visited in the high-d space [73]. To do so, diffusion maps employ a
Gaussian kernel (hence, it corresponds to a form of kPCA):

k
(
xi, x j

)
= e−

RMSD2
i j

2ε2 , (7)

where ε is a characteristic timescale below which the metric can be considered a meaningful
representation of the transition between the two configurations xi and x j [32,73]. With this definition of
the kernel, the principal components correspond to the eigenvectors of the Fokker–Planck equation,
and therefore they should provide a faithful interpretation of the dynamics of the system. Specifically,
apart from the trivial zeroeth mode, the lower ranked diffusion coordinates (DC) correspond to
the slowest collective motions of the system, and they can be used as CVs for further sampling [32,73].
Several variants of diffusion maps have been proposed over the years, including the locally scaled
diffusion map (LSDMap) by Clementi and coworkers which is an extension of the original method
specifically designed to cope with noisy data like that of MD simulations [74]. In particular, the authors
introduced an algorithm for detecting the intrinsic dimensionality and the local timescale for each
configuration, thus avoiding artifacts in the embedding arising from a uniform choice of the ε
parameter [74]. LSDMap allowed the authors to extract well-behaved CVs and to estimate rates
through Kramers’ rate theory [13,74]. Notably, the DCs captured by LSDMap are global coordinates
representing the slowest modes of the entire molecule, while the definition of “local” information
would be required for efficiently guiding the dynamics through on-the-fly MD/ML sampling. This idea
is exploited in the so-called diffusion map-directed MD (DM-d-MD), where local DCs are estimated by
periodically computing DCs, and restarting the simulation in the slowest mode [75]. In an extended
version (extended DM-d-MD), the method was combined with a reweighting scheme ensuring
the possibility to recover the Boltzmann distribution despite the artificial dynamics [76]. Another
method that couples MD and on-the-fly non-linear manifold learning based on diffusion maps is
intrinsic map dynamics (iMapD) developed by Chiavazzo et al. [77].

As already stressed, conventional PCA has several drawbacks, including the fact that only a
linear correlation can be detected, and not entirely. Moreover, including dynamic information into
the PCA framework is problematic, as PCs are not necessarily independent (even though they are
orthogonal, see Figure 4). In order to overcome such limitations, Naritomi and Fuchigami introduced
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the time structure-based independent correlation analysis (tICA) method [78]. Differently from
PCA, as already mentioned, ICA is an ML approach that attempts to extract components that are as
statistically independent as possible. The tICA method differs from conventional ICA in that it also
includes information on time dependency among the extracted eigenvectors. Accordingly, the usual
time-independent covariance matrix of Equation (2) is replaced by a time-lagged covariance matrix:

Ci j(τ) =
〈
xi(t)·x j(t + τ)

〉
, (8)

where τ is a given simulation lag time that must be properly chosen. By diagonalizing the time-lagged
covariance matrix, one obtains eigenvectors (independent components, IC) that are no longer orthogonal
to each other. Among the interesting properties of this formalism, we mention that the eigenvalues λi
provide information of the timescales of the associated IC, and in the special case of an autocorrelation
function with a single exponential decay, the corresponding timescale ti can be expressed as

ti = −
τ

lnλi
. (9)
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Thus, not only can tICA be used to gain mechanistic insight regarding the motion, but it is also
useful to get a rough estimate of the associated characteristic timescales [78]. For the analysis to be
robust, however, it is critical to choose the lag time appropriately, as any IC with smaller timescales
than τ might represent an artifact due to thermal fluctuations rather than representing a true mode of
motion [78]. Over the years, tICA has become a popular tool for extracting kinetically relevant CVs
in the community of Markov state models (MSM) analysis [79–82]. Specifically, it has been proven
that tICA can provide an optimal approximation of the true eigenvectors of the Markov transition
matrix [83,84]. In practice, tICA is employed at the very beginning of MSM construction to map
the usually high-dimensional input features into a lower-dimensional space that captures the relevant
dynamics of the system, on which the subsequent clustering to identify the microstates is then
performed. Moreover, it has been recently shown that tICA can be successfully used as CVs for MD/ML
resampling (tICA-Metadynamics) even in a low-data regime [85]. A non-linear extension obtained
through a Gaussian kernel (landmark kernel tICA-metadynamics) has also been proposed [85].
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2.1.4. Neural Networks and Deep Learning

During the last couple of years, active research in the field of dimensionality reduction for
analyzing simulation data has mostly been focused on the investigation of the potential offered by
deep learning methods like neural networks (NN). Among these, auto-associative neural networks
(ANNs, or autoencoders) represent a class of unsupervised ML methods based on the sequential use
of two NNs. The first network is used for encoding the low-d embedding (often called the “latent
space” in this context) from the input features, while the second takes care of decoding the compressed
information of the latent space for reconstructing the original high-dimensionality (see Figure 5) [86].
Each network is composed of a layer of “neurons”, whose activation is defined as

hi = f (wix + bi) = f (
∑N

j=1
wi jx j + bi), (10)

where f is a non-linear activating function (a sigmoid function), x is the input vector, wi j are the elements
of the weight matrix of the layer, and bi is the biases of the layer. A crucial advantage of autoencoders
over the methods discussed in the previous paragraph is that the difference among the original high-d
space of data and the reconstructed version of it can be used as a direct measure of the performance
of the ML method. In this way, autoencoders can be trained to obtain an optimal non-linear low-d
embedding. From a practical standpoint, training the network corresponds to optimizing weights
and biases to minimize the reconstruction error through iterative procedures where each minimization
step is referred to as an “epoch”. To control the magnitude of weights and biases during training,
regularization terms are usually considered [86].
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Figure 5. Schematic representation of an autoencoder. Basing on the conformations sampled through
the MD simulations (protein in blue ribbons with surrounding water molecules), a latent space can be
learned and trained (blue dots in the bottom plot) in a way to reproduce at best the original input data
structure (blurred blue protein on the right). The latent space information can also be used to generate
previously unexplored conformations (red dots in the bottom plot and red protein on the right).
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As previously noted, this is a field that is rapidly evolving. However, without claiming
exhaustiveness, we can identify two major classes of applications of DL in the context of MD
simulations, even though there are no conceptual boundaries between them, and overlaps can be
envisioned. The first focuses on the unsupervised extraction of statistically relevant information like
the equilibrium population of states with a particular emphasis on the estimation of rate constants.
As we discussed in the previous chapter, a “kinetically relevant” low-d embedding is instrumental
to this aim. The second group of methods is more oriented to the automatic extraction of relevant
CVs for on-the-fly MD/ML sampling or later use. In both cases, a mechanistic interpretation of
the events that occurred during the simulation is also guaranteed. Time-lagged autoencoders like TAE,
which extends the domain applicability of autoencoders to the modeling of time-series data, fall in
the first class of methods [87]. Similarly, the variational dynamics encoder (VDE) is able to capture
the relevant dynamics of complex processes through a non-linear embedding by adding Gaussian
noise regularization (the so-called variational autoencoder, VAE) [88]. Closely related to these methods,
the main goal of VAMPnets is rather to replace the well-established pipeline of tICA extraction,
clustering, and MSM kinetic model building through a fully automated deep neural network, relieving
the user from subjective choices and error-prone steps [89].

Concerning the methods focused on CV discovery, we note that the low-d space obtained through
autoencoders is by construction a differentiable function of the input coordinates and it is devoided from
the out-of-sample problem, making this class of ML methods intrinsically superior over conventional
dimensionality reduction methods for CV extraction, MD/ML resampling, and even for on-the-fly
MD/ML sampling. Molecular enhanced sampling with autoencoders (MESA) developed by Chen
and Ferguson is based on successive rounds of non-linear CV discovery and biased sampling of these
CVs [90,91]. Specifically, MESA is an on-the-fly MD/ML-guided sampling protocol which can be
summarized as follows: generation of initial training data through previous unbiased or biased MD
simulations, autoencoder-based CV discovery, boundary detection for identifying unexplored regions
of the CV space, enhanced sampling in the low-d embedding, convergence assessment, and, finally, free
energy estimation. A similar procedure is exploited in the reweighted autoencoded variational Bayes for
enhanced sampling (RAVE) method proposed by Tiwary and coworkers [92]. Conversely, EncoderMap
is an NN method developed by Lemke and Peter which combines the advantages of autoencoders
with the loss function employed by Sketch Map (Equation (6)) to get a better defined and interpretable
low-d embedding [93]. Remarkably, EncoderMap takes full advantage of the potentialities offered
by autoencoders, as it not only allows to obtain a differentiable function mapping from the high- to
the low-d space, but it can also be used for backward mapping. From this standpoint, the mapping
function linking the low-d embedding to the original high-d space can be used to generate previously
uncharted molecular configurations. As the authors stated, this unique feature provided by this class
of methods can be used as a new type of molecular modeling. This possibility was further investigated
in the improved variant EncoderMap(II) implementing the ability to reproduce both short-ranged
and long-ranged features, which is essential for preserving chemical accuracy in the generation of
conformations for large and even multi-domain proteins [94]. From a different standpoint, it is worth
mentioning the release of the python package named Anncolvar from Spiwok and coworkers [95].
This package allows the training of a neural network for CV extraction and resampling within
the PLUMED program [23]. To the best of our knowledge, this is the first example of the implementation
of an autoencoder specifically designed for its use in the field of biomolecular simulations and with an
eye to the community of researchers using enhanced sampling. This further underscores the importance
and popularity gained by these ML methods in the context of MD simulations.

We wish to conclude this section on DL methods with a word of caution. Like clearly stated
by Sultan et al., care must be taken when using autoencoders for analyzing MD trajectories, as their
superior performance compared to more conventional dimensionality reduction methods is not
free from potential pitfalls [96]. Most importantly, the black-box nature of NNs makes it hard to
understand what the autoencoder actually learns, potentially leading to identifying a low-d embedding
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that cannot necessarily be considered a good CV for biased MD/ML resampling [96]. It is also true,
however, that some of the above-reported methods are specifically designed to include the information
of the dynamics, and therefore this risk should be contained. In their work, Sultan et al. introduced a
tICA-VDE extension that is optimally suited to extract relevant and transferable CVs [96].

2.2. Supervised Learning Methods

Compared to the plethora of unsupervised learning methods described in Section 2.1, the use
of supervised ML methods for analyzing and biasing MD simulations is much more limited in
the literature. Typically, the tasks that are considered by supervised learning can be distinguished
in regression and classification (see Figure 6). Regression problems deal with the construction of
quantitative predictive models relating some continuous dependent variables to the independent
variables. In this case, ML methods are used to quantify such a relationship provided that a linear
or non-linear model function is supplied by the user. Conversely, classification problems deal with
the construction of qualitative predictive models able to predict the categorical class labels for a given
observation. Some supervised ML methods, such as decision trees and ANN, can be used for both
classification and regression problems with opportune measures. Other algorithms, such as linear
regression for regression problems or logistic regression for classification problems, cannot easily be
exploited for both types of tasks.
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The use of regression in the context of the analysis of MD trajectories has been pioneered by
Hub and de Groot [97]. The authors observed that, in the context of biomolecular simulations,
dimensionality reduction is often carried out for getting mechanistic insight into the system under
investigation. This is especially relevant in the case of proteins that are typically known to achieve their
biological function, like catalysis, gating, and signal transduction, among others, through collective
atomic motions. When dimensionality reduction is performed with well-established methods like
PCA, however, the collective motions that one gets are by construction the widest ones, but they
are not necessarily directly involved in the biological function [97]. This relation between function
and motion is achieved by introducing a functional quantity f so that for each frame of the trajectory
it can return a single value. This functional quantity can be any observable that might be relevant
to describe the function one wishes to characterize, like atomic distances, binding sites’ volume,
solvent-accessible surfaces, and so on [97]. Then, assuming that f is a linear function of PCs, through a
least-squares optimization procedure, a quantitative model of the observable as a function of the PCs
can be obtained much like in PC regression (PCR). This corresponds to maximizing the Pearson’s
correlation coefficient, but the MI can also be maximized to include the non-linear dependency of f
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as a function of atomic coordinates. The vectors that the method finds out are a linear combination
of PCs, and the one displaying the largest correlation with the given observable is referred to as
maximally correlated motion (MCM). However, as the authors pointed out, this vector is unaware of
the underlying free energy landscape, therefore a sort of correction is also devised in order to obtain a
physically meaningful coordinate that represents the most probable collective motion that determines
the MCM (ensemble-weighted MCM, ewMCM) [97]. In order to avoid overfitting, a cross-validation
procedure is implemented which envisions the partition of the trajectory into a training set and a
test set. The method is called functional mode analysis (FMA), and the MCM/ewMCM can be also
used for MD/ML resampling through biased simulations [97]. The initial assumption that deviations
in f are mostly determined by PCs was later weakened in a generalization of the method (partial
least-squares FMA, PLS-FMA) that simultaneously optimizes both the model and the basis vectors,
yielding to more robust models with a substantially smaller number of components [98]. PLS-FMA was
tested on the T4 lysozyme and Trp cage, and then applied to the yeast and human aquaporin channels
(Aqy1 and AQP1, respectively), and the CLC-ec1 chloride antiporter using the active site geometry,
hydrophobic solvent-accessible surface, channel gating, water permeability, and dihedral angles as
functional observables [98]. Very recently, PLS-FMA has been used to identify allosteric communication
pathways between the activation gate and the selectivity filter of potassium channels [99].

Whenever one wishes to identify motions involved in the discrimination between states, rather than
determining the variation on a continuous observable, classification methods are more suitable than
regression. One such method, linear discriminant analysis (LDA), seeks to identify the optimal
hyperplane separating the two or more groups of data (that, unlike in cluster analysis, must be
known a priori). Accordingly, partial least-squares LDA (PLSA-DA) was used by Peters and de Groot
to analyze a series of bound and unbound ubiquitin complexes [100]. By labeling the trajectories
according to the binding state (−1 for unbound, +1 for bound), they trained a model returning a vector
which maximized the difference of the projection of structures from different classes while minimizing
the difference from the same class. By doing so, they observed that the conformations accessible
to the bound ubiquitin were partially overlapping those of the unbound ubiquitin, suggesting that
conformational selection was the preferred recognition mechanism over induced-fit [100]. The linear
discriminant analysis with ITERative procedure (LDA-ITER) is another method specifically designed to
overcome a potential bias affecting PLS-DA and related to the fact that the projection vector is obtained
through the averaged structures belonging to the two classes, making the results strongly dependent
on the anisotropy of the investigated proteins [101].

LDA has also been recently used to approach the problem of identifying optimal CVs for biased
MD/ML resampling. In particular, this class of supervised ML can be used to train CVs in the special
case of previous knowledge of the end states. From this standpoint, the following methods resemble in
spirit the already mentioned path CV framework [66]. A variant of LDA called harmonic LDA (HLDA)
has been indeed recently introduced by Parrinello and coworkers as a CV suited to distinguish between
two metastable states. This can be derived from short unbiased MD simulations initiated in the end
states and through a series of features for mapping these states in a high-d space [102]. The method
was further generalized to a multiclass problem (MC-HLDA) in order to treat more than two states
simultaneously [103]. The obtained CV space was proven to be effective for reconstructing the free
energy surface of chemical reactions through metadynamics, but was unable to lead to a converged
free energy surface when a more complex problem like the folding of chignolin was considered [104].
Finally, we mention that other supervised ML methods other than LDA (like support vector machines,
and logistic regression) have also been employed for the automatic detection of CVs for MD/ML
resampling [105].

3. Learning from Molecular Dynamics Trajectories and Experimental Data

As hardware capacity advances and methods to improve sampling are optimized, the observation
of biomolecular events on biologically relevant timescales is gradually becoming more accessible [10,106].
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Related to this, possible limitations of the empirical models underlying MD, i.e., the empirical force
fields, also become more evident as a result. In fact, deficiencies can appear when a meaningful
comparison with reference experimental data is conducted. However, such comparison may display
disagreement. While possible limitations in the model become apparent, we can however make optimal
use of the available experimental knowledge to improve the quality of the simulations and account for
deficiencies thereof. Indeed, the combination of experimental and theoretical sources of information
is emerging as an effective strategy to get insights into the structural and functional features of
biomolecules [107–109]. As a final note, we highlight that failures are typically ascribed to the MD
simulations since they are the result of an empirical model. While this is undoubtedly reasonable,
it is nevertheless advisable to include experimental information with criticism, as, in general, any source
of data can be affected by errors of systematic, statistical, and procedural nature.

3.1. Validating MD Simulations through Comparison with Experiments

A typical pipeline when exploiting MD is to first set up and carry out the simulations of
the biomolecular system, then analyze the resulting trajectories to compute relevant quantities of
interest, and finally perform a comparison of the computed outcomes with a measure obtained
experimentally. In such a way, what we do is to validate the results of the simulations against reference
experimental data. To ensure a fair and meaningful comparison, it is essential that the MD runs are
performed under conditions that are as close as possible to those in which the experimental measures
were conducted. In this respect, for instance, it was widely reported over the years how ionic conditions
of the bulk, both in terms of ionic nature and strength, can play a critical role when biomolecular
processes are investigated [110–113]. With such considerations taken into account, the validation
procedure reports on to what extent the empirical model possibly succeeds, or fails, in generating
realistic and reliable results. Figure 7A depicts the fairly simple principle behind this routine procedure.
For each snapshot of the MD trajectory generated by the simulation of a biomolecular system,
we compute an observable of interest that we wish to compare with the experiments. A natural choice
would be, among all the predicted values from the MD simulation, to pick the ones that provide
the best match. The corresponding MD snapshots would thus represent the system configurations
that best reproduce the reference experimental data. However, the experimental measure is most
times conducted on heterogeneous systems, as the equilibrium population typically comprises a
variety of different states of the biomolecule. As a result, the measurement does not reflect a single
configuration but is instead an average over the whole ensemble of states. This is true for popular
methods that are routinely employed to validate simulation data such as nuclear magnetic resonance
(NMR) [114–116], small-angle X-ray scattering (SAXS) [117], double electron–electron resonance
(DEER) [118], and Förster resonance energy transfer (FRET) [119]. Therefore, in order to pursue a
meaningful validation, one should first average the observable value over all the MD trajectory frames
and then compare this result with the reference experimental one.

3.2. Improving the Agreement through Ensemble Reweighting

If the validation procedure reports a disagreement between predicted (from the MD runs)
and measured (in the experiments), one can still make optimal use of the available data through a
reweighting strategy. In particular, the MD trajectory frames can be re-assigned suitable weights
that allow improving the agreement with the experiments. The procedure is illustrated in Figure 7B.
In this scheme, the configurations which are assigned higher weights are those that will contribute more
to the final average, that is to the predicted value for the observable. In other words, such structures
will be more representative of the experimental ensemble. As a result, the inaccuracies deriving
from the employed empirical force field are corrected by including the guidance of the experimental
data, thus improving the agreement. The use of the maximum entropy principle [120,121] is gaining
popularity to implement such a strategy [19,122]. Specifically, given an initial (prior) distribution,
by exploiting the maximum entropy principle, it is possible to identify a new distribution (posterior)
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that is as close as possible to the original one and matches the experimental reference data. In other
words, the initial distribution is subject to the least possible perturbation that allows improving
the agreement with experimental observation. Under the maximum entropy framework, the new
distribution can be represented as

PME(x) ∝ e−λ(s(x))P0(x). (11)
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Figure 7. Using MD simulations in combination with experimental information. (A) Through a
validation procedure, it is possible to estimate the agreement between computed quantities (average
observable s, in the figure) and reference experimental data (sexp). (B) Correction of the sampled
data through a reweighting procedure can improve the agreement between predicted (MD trajectory)
and measured (experiments). (C) Enforcing the experimental information in an on-the-fly fashion,
the sampled ensemble is restrained to best match the experimental one.

This form gives all the possible posterior distributions PME which are the closest to the prior
distribution P0. Here, s(x) is the observable of interest computed for each configuration x sampled
in the MD simulations. Among the posterior distributions PME, the one that gives the best match
with the experiment is sought. Such a latter requirement can be fulfilled by solving a minimization
problem aimed at identifying the suitable value of the parameter λ [19]. This reweighting framework
based on the maximum entropy principle has shown to be effective when applied to biomolecular
systems of a different kind [123–128]. The procedure has been exploited by Bottaro et al. to reconstruct
the conformational ensemble of four model tetranucleotides using extensive atomistic MD simulations
and NMR experimental data [123]. Employing the simulation data alone, a significant disagreement
with respect to the experiments was apparent. Thus, the simulated ensemble was refined through
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reweighting using the NMR experimental data, including nuclear Overhauser effect (NOE) intensities
and scalar couplings, in order to improve the agreement. A similar pipeline using NOEs experimental
data to refine atomistic MD simulations was also pursued on a longer RNA construct, of 29-nucleotide
length, belonging to the SINEUP family [126]. Other applications using NMR data were conducted
on a nonapeptide, where simulated ensembles via MD were used in conjunction with 3J coupling
and RDC data [127], and on an intrinsically disordered protein, where coarse-grained simulations
were reweighted with RDC measurements [125]. Reweighting using hydrogen–deuterium exchange
combined with mass spectrometry (HDX-MS) data was also considered by Bradshaw et al. [128].
The scheme was first explored using artificial HDX-MS representing a conformational ensemble of
the periplasmic binding protein TeaA that rapidly interconverted between its open and closed states.
Such data were used to reweight bias-exchange metadynamics simulations. The procedure was then
applied to the amino acid transporter LeuT membrane protein using experimental HDX-MS data.
Różycki et al. included information from SAXS measurements performed at high-salt and low-salt
concentrations to reweight coarse-grained simulations of CHMP3, a key protein of the ESCRT protein
assembly [124]. As a result of the procedure, further insights into the conformations adopted by
CHMP3 in its activated and autoinhibited states were obtained [124].

Noteworthy, the reweighting procedure is carried out as an analysis on outcome trajectories of
MD simulations, i.e., after the MD runs are performed. Thus, a striking advantage of this procedure
is that it can be repeated using additional experimental data, or different ones, with no need of
performing new simulations. A further aspect is the possibility to include a regularization term, that
can be introduced in the expression to model the experimental error and other sources of possible
errors [19]. Indeed, in this respect, we note that the forward model, which is the form through
which the observable is computed from the MD snapshots, can also incorporate errors. The effect of
including such regularization, which the ML community is familiar with, is to soften the restraint
towards the experimental reference. Thus, while the average computed after applying the reweighting
procedure is going to match the experimental reference by construction, the application of a reweighting
procedure with a regularization term is going to result in a computed average that sits between the one
predicted from the prior with no reweighting and the experimental one. Finally, we note that
the approach is not devoid of limitations. In particular, for a meaningful reweighting to be applicable,
a certain degree of overlap is required between the sampled conformations and those comprised in
the experimental ensemble, which is not the case when the domain sampled by the MD simulations
contains a scarce number of configurations consistent with the experiment, if at all [129,130]. In such
cases, the inapplicability of the reweighting procedure becomes apparent as either a large fraction
of the total weight is assigned to one or few frames, or the minimization is not able to converge to a
suitable λ. An illustrative example of this issue in a one-dimensional model is provided in the insightful
review by Cesari et al. [19].

3.3. Enforcing Experimental Information during the Simulations

Another option that exploits the maximum entropy strategy and that in principle avoids
the just-mentioned condition consists of including the experimental knowledge during the MD
simulations [19,131]. In practice, the ensemble average computed from the simulations is enforced
to match the experimental one in an on-the-fly fashion. This is achieved by modifying the system
potential energy through the inclusion of an additional term, which has the effect of constraining
the system towards configurations in better agreement with the reference experimental data [132,133].
A schematic depiction is given in Figure 7C. While, in principle, such a procedure has the advantage
of producing a sampling domain which is, by construction, more consistent with the reference data,
this nevertheless implies having chosen the target average value for the observable a priori, before
starting the simulation. In other words, in the case where additional or different experimental data
become available, within this framework, a new simulation needs to be performed from scratch.
The approach was successfully applied to RNA nucleosides and dinucleotides to enforce NMR
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experimental data during replica-exchange MD simulations [132]. In particular, the information from
3J scalar couplings was exploited to guide the enhanced sampling simulations. Force field corrections
to match the experimental reference were thus identified and were then validated over independent
NMR solution experiments.

A different approach with the same purpose of instructing MD simulations by taking advantage of
experimental knowledge is based on a multi-replica strategy [134–136]. Specifically, multiple replicas
of the system are simulated with MD at the same time. Then, the average of the interesting observable
over such replicas is enforced to match the experimental value. As a result, a restrained ensemble is
obtained. Notably, in the limit of a large number of replicas employed, the method has been shown to
produce the same ensemble of configurations like the one generated through the maximum entropy
scheme used on-the-fly [131,137,138]. The multi-replica strategy was used by Best and Vendruscolo to
generate an ensemble of structures of the third fibronectin type III domain from human tenascin that
was consistent with available NMR data [135]. Similarly, the conformational variability of the ubiquitin
protein in solution was probed using MD simulations and enforcing experimental information from
NMR relaxation experiments using the multi-replica approach [136]. A more recent study relying
on the use of multiple replicas was conducted by Hermann and Hub, where the strategy was used
to enforce SAXS experimental data in an on-the-fly fashion during MD simulations of intrinsically
disordered proteins [139].

Finally, inspired by this replica approach, the metainference method was further devised [140].
Metainference combines the mentioned multi-replica scheme with Bayesian inference. The inclusion of
the statistical basis of the latter allows one to tune the strength of the restraints towards the reference
experimental data. In such a way, all possible sources of errors, including errors in the experimental data
or in the forward model, are taken into account. The method and its declination where metainference
is combined with metadynamics (metadynamic metainference) [141] have been applied to diverse
biological systems and take advantage of different sources of experimental information. Heller et al.
studied the binding of the small molecule ligand 10058-F4 to the disordered protein c-Myc using
metadynamic metainference simulations with experimental restraining consisting of NMR data,
specifically backbone chemical shifts [142]. In a similar biological context, metadynamic metainference
and NMR chemical shifts were exploited by Hultqvist et al. to get insights into the interaction of the two
disordered proteins CID and NCBD [143]. Backbone chemical shifts were also used by Buckle et al.
to investigate the interaction of the SNa15 peptide with non-native mineral surfaces [144]. Finally,
concerning NMR, RDC data were employed in the metainference framework by Weber and coworkers to
study the conformational space accessible to the LC protein [145]. Interestingly, cryo-EM experimental
data were demonstrated to suitable to be integrated in a metainference scheme. In particular, Bonomi
and coworkers took advantage of cryo-EM information in the effort of characterizing the structure
and dynamics of the integral membrane receptor STRA6 [146]. Another example was reported by
Vahidi et al. in their investigation on the structural dynamics of the ClpP proteolytic complex, where
cryo-EM data were used to perform metainference [147]. Finally, SAXS intensities were also explored as
a source of experimental information to be used with metainference. Paissoni and coworkers exploited
this strategy to investigate the conformational ensemble of K63-linked diubiquitin [148] and to refine
models of nucleic acid-protein complexes [149]. Similarly, Kooshapur et al. used SAXS experimental
data in a metainference framework to derive a structural model of a complex between an RNA-binding
protein and a microRNA [150].

4. Conclusions and Perspectives

In this review, we have summarized the currently available strategies that can be exploited to make
optimal use of a constantly increasing volume of data in the field of molecular dynamics simulations
applied to pharmaceutically relevant biological systems. Specifically, we have shown that this wealth
of data can either be the output of MD simulations or come from experimental sources. The available
information can be then exploited to inform subsequent calculations or to improve the prediction of
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relevant observables. We have also shown that some of the most popular analysis tools that have
historically been employed in the field of MD simulations pertain to the domain of machine learning
methods, and we have provided an overview of the most influential approaches belonging to the classes
of supervised and unsupervised ML methods. For each considered approach, relevant examples of
applications in the field of biomolecular simulations, and more specifically to drug design, have been
briefly discussed when available. Finally, we have summarized the simulative and analysis approaches
that exploit experimental knowledge to improve the quality of computational predictions.

In summary, we have shown how the increasing richness of data (up to the regime of big data) is
prompting a shift in the methodologies employed in the field of molecular dynamics in favor of more
automatized and less human-dependent procedures. This has started to change not only the way we
are analyzing but also the way we are conceiving MD simulations as a whole. In fact, the boundary
between data production (i.e., the trajectory above all) and data analysis, that have traditionally been
considered as separated processes (see Figure 1, path “1”), is getting less sharp in the newest MD/ML
implementations (path “2” in the same figure). Similarly, but from a different perspective, experimental
data, which are usually only considered during force field development, are gaining a key role in
post-processing or even in guiding MD simulations (Figure 1, path “3”). These advances will ultimately
lead to more efficient and/or predictive data-driven MD simulations with important implications for
the entire community of biological simulations, including applications in the field of computational
drug discovery.
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