
GenomeVIP: a cloud platform for genomic variant
discovery and interpretation

R. Jay Mashl,1,2 Adam D. Scott,1,2 Kuan-lin Huang,1,2 Matthew A. Wyczalkowski,1

Christopher J. Yoon,1,2 Beifang Niu,1 Erin DeNardo,1 Venkata D. Yellapantula,1,2

Robert E. Handsaker,3,4 Ken Chen,5 Daniel C. Koboldt,1 Kai Ye,1,2 David Fenyö,6

Benjamin J. Raphael,7 Michael C. Wendl,1,8,9 and Li Ding1,2,8,10

1McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA; 2Division of Oncology, Department of
Medicine, Washington University, St. Louis, Missouri 63108, USA; 3Stanley Center for Psychiatric Research, Broad Institute,
Cambridge, Massachusetts 02142, USA; 4Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA;
5Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
77030, USA; 6Langone Medical Center, New York University, New York, New York 10016, USA; 7Department of Computer Science
and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912, USA; 8Department of Genetics,
Washington University, St. Louis, Missouri 63108, USA; 9Department of Mathematics, Washington University, St. Louis, Missouri
63108, USA; 10Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA

Identifying genomic variants is a fundamental first step toward the understanding of the role of inherited and acquired

variation in disease. The accelerating growth in the corpus of sequencing data that underpins such analysis is making

the data-download bottleneck more evident, placing substantial burdens on the research community to keep pace. As a

result, the search for alternative approaches to the traditional “download and analyze” paradigm on local computing re-

sources has led to a rapidly growing demand for cloud-computing solutions for genomics analysis. Here, we introduce

the Genome Variant Investigation Platform (GenomeVIP), an open-source framework for performing genomics variant

discovery and annotation using cloud- or local high-performance computing infrastructure. GenomeVIP orchestrates

the analysis of whole-genome and exome sequence data using a set of robust and popular task-specific tools, including

VarScan, GATK, Pindel, BreakDancer, Strelka, and Genome STRiP, through a web interface. GenomeVIP has been used

for genomic analysis in large-data projects such as the TCGA PanCanAtlas and in other projects, such as the ICGC

Pilots, CPTAC, ICGC-TCGA DREAM Challenges, and the 1000 Genomes SV Project. Here, we demonstrate

GenomeVIP’s ability to provide high-confidence annotated somatic, germline, and de novo variants of potential biological

significance using publicly available data sets.

[Supplemental material is available for this article.]

Understanding the relationship between genetics and disease is a
central theme of biomedical research. Enabled by increasingly eco-
nomical next-generation sequencing technologies, many projects
have sought to characterize variation within and across popula-
tions and disease cohorts. Among these are the 1000 Genomes
Project, The Cancer Genome Atlas (TCGA), UK10K, Pediatric
Cancer Genome Project (PCGP), and the International Cancer
Genome Consortium (ICGC), but numerous smaller-scale projects
are also under way. Advances in sequencing technologies and
further economies of scale are expected to increase the collective
corpus of sequence data dramatically, particularly as clinical diag-
nostic sequencing becomes more prevalent while expanding
across data types (methylation,mRNA, andmiRNA) and especially
if widespread screening of asymptomatic individuals is imple-
mented. For example, the PrecisionMedicine Initiative (PMI) envi-
sions a longitudinal collection of genomic data from more than 1
million individuals (Collins and Varmus 2015).

The vast amounts of data produced by today’s sequencing
projects impose logistical challenges in downloading and storing
data prior to passing it through a pipeline of bioinformatics tools
running on local high-performance computing resources, i.e.,
the traditional “bringing data to the tools” paradigm of variant
analysis (Stein 2010). Cloud computing addresses both the com-
putational and storage challenges associated with large data sets
by enabling users to launch on-demand virtualized instances of
computer systems with preinstalled tools and scripts that have
the ability to import source data from and export processed data
to cloud storage. Furthermore, the research community is transi-
tioning to approaches that democratize access to genomic data
(Heath et al. 2014; Stein et al. 2015), resulting in the creation of re-
sources such as the National Cancer Institute’s Genomic Data
Commons (GDC; http://gdc.cancer.gov), a comprehensive cancer
genomics repository. Cloud computing, where analysis is conduct-
ed by “bringing tools to the data,” is viewed as having an
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important role in future bioinformatics analysis (Dudley et al.
2010), which is especially critical for independent scientists and
clinics that are unable to support a local high-performance compu-
tational infrastructure.

Here, we present the Genome Variant Investigation Platform
(GenomeVIP), a system for performing variant discovery, annota-
tion, and interpretation using cloud resources. Its intuitive, light-
weight web interface enables users to detect genomic variants
(single- and multinucleotide variants, short insertions and dele-
tions [indels], complex indels, and structural alterations that in-
clude translocations, inversions, and tandem duplications) in
whole-genome or exome sequence alignment files (BAMs). We
highlight important functionalities of GenomeVIP and examine
its capabilities within the larger context of genomic data process-
ing systems, demonstrating GenomeVIP as an engine for future
cancer and human genetic studies.

Results

GenomeVIP is an open-source, cloud-aware, multiuser platform
with a web interface for performing discovery, annotation, and in-
terpretation of genomic variation. Its sophisticated design brings
powerful cloud resources to bear for task-specific bioinformatics
analyses without any special cloud expertise required by the inves-
tigator. Users can direct GenomeVIP to perform germline, somatic,
and de novo variant calling by selecting software from its palette of
widely used bioinformatics tools and can specify provided best-
practices discovery tool parameter sets or design a custom “execu-
tion profile” by adjusting online or uploading parameters through
the web interface. By providing both high- and low-level access to
tools and parameters, GenomeVIP provides flexibility for use by
computational biologist power users as well as by users having ex-
pert knowledge or particular research needs. Its design and opera-
tional aspects aim to promote the reproducibility, transparency,
and uniformity of the processing of genomic data. Althoughwe fo-
cus onGenomeVIP’s cloud capability, it runs equivalently on local
high-performance computing clusters with local data with prein-
stalled versions of the named tools. The design and implementa-
tion of GenomeVIP and its usage for modern, high sample count
cancer genomics and human genetics research also serves as a
starting point for integration of additional tools and capabilities
and expansion to other cloud-computing platforms.

GenomeVIP architecture

The functionality of GenomeVIP is provided through coordina-
tion among three central components: the user’s web browser,
the GenomeVIP server, and a cloud-computing resource (Fig. 1).

Web browser

The GenomeVIP web browser interface (Fig. 1, top) furnishes user
controls for many tasks, including the following: loading sample
file information; selecting samples; choosing parameters and tools
for discovery, filtering, and annotation; selecting genomic regions;
andmanaging cloud computational and storage resources. The in-
terface is implemented using a combination of HTML, JavaScript,
and cascading style sheets (CSS) and uses a jQuery JavaScript li-
brary to modify web page content and provide cross-browser com-
patibility. In addition, user-generated events and communications
between the browser and the GenomeVIP server are handled by
JSON-formatted AJAX requests, a standard jQuery feature.

Server host

The GenomeVIP server (Fig. 1, middle) runs a secure Apache
HTTPS web server that may be installed and run locally as a real
or virtual machine (VM) or that may be instantiated as a VM on
Amazon Web Services (AWS). Server-side scripts written in PHP
handle user selections and generate content for client-side inter-
pretation and storage within the user’s web browser (Fig. 1, top).
To configure a computation to run on the AWS cloud, users
provide their previously established AWS login credentials, specify
genomic samples, and select one of the predefined analysis pipe-
lines and parameter sets, which may be further customized.
Users then specify storage and computing resources required,
i.e., a VM instance type (giving a certain number of processors
and memory) and the number of nodes or virtual cluster size.
The server automatically builds the necessary configuration files
for the StarCluster (http://star.mit.edu/cluster) and S3 Tools (http
://s3tools.org) cloud toolkits to manage AWS computing and stor-
age resources, respectively. After users submit a computation, the
server performs key tasks: instantiating cloud computing resourc-
es; generating a master script that creates template-subordinate
work scripts to perform the variant discovery, post-discovery pro-
cessing, and storing of results in parallel fashion across genomic

Figure 1. GenomeVIP platform. GenomeVIP consists of three compo-
nents (web browser, server host, cloud), coordinated by various scripting
languages (blue) and cloud toolkits (green). Interactiveweb pages, written
in HTML (with CSS elements) and JavaScript, provide front-end function-
ality. JQuery is a JavaScript library providing methods to modify web
page content with cross-browser compatibility. Server-side PHP modules
utilize StarCluster and S3 Tools cloud toolkits to access EC2 Compute
(gray) and storage resources (yellow) in the cloud. GenomeVIP creates
within EC2 a virtual cluster, based on a machine image with preinstalled
variant detection tools and supporting software (collectively, “Genomics
Tools”) (red), that can access sequence data on S3 and EBS (Elastic Block
Storage) resources (yellow). Secure channels using HTTPS and secure shell
(SSH) protocols allow communication between various components.
Resulting variant call files stored in S3 are accessible via the GenomeVIP in-
terface or the Amazon S3 Console.
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regions and tools; and transmitting the
work scripts to the targeted computing
host for execution.

The cloud

Cloud resources (Fig. 1, bottom) consist
of cloud computational and storage com-
ponents as specified by users on the
GenomeVIP server. Here, Amazon’s
Elastic Compute Cloud (EC2) computa-
tional infrastructure hosts a virtual clus-
ter instantiated by GenomeVIP from a
prebuilt run-time virtual machine (VM)
image containing well-established vari-
ant discovery tools—VarScan (Koboldt
et al. 2009, 2012, 2013), Pindel (Ye et
al. 2009), GATK (McKenna et al. 2010;
DePristo et al. 2011; Van der Auwera
et al. 2013), BreakDancer (Chen et al.
2009; Fan et al. 2014), Genome STRiP
(Handsaker et al. 2011), and Strelka
(Saunders et al. 2012)—with supporting
genomics software and the S3 Tools
cloud toolkit for interacting with the
AWS Simple Storage Service (S3) cloud
(Sarna 2011). GenomeVIP automatically
mounts volumes from Amazon’s Elastic
Block Store (EBS) resource containing
any user-specified BAM alignment and
reference genome files to the cluster.
Examples of mountable EBS volumes
include encrypted volumes created by
users, data providers, or collaborators un-
der the given AWS account and any pub-
lic, unencrypted volumes. (GenomeVIP
does not address access control lists
[ACLs] for data, but we note their use at
the AWS account level may help to en-
force regulatory data access and usage policies.) Files located in
S3 are another source of input. When executed, the master script
automatically submits work scripts as batch jobs to the local job re-
source manager (e.g., SGE on AWS and LSF on local clusters) for
handling job concurrency and dependencies. As work units are
completed, GenomeVIP transmits raw and final results to the spec-
ified storage location (i.e., S3 storage on AWS or a results directory
on local clusters).

GenomeVIP components

The functional units within GenomeVIP collectively implement
variant analysis of genomic data (Fig. 2). They encompass sets of
public tools most trusted and most often relied upon by investiga-
tors for their respective tasks.

Variant detection

GenomeVIP deploys pipelines for germline, somatic, and de novo
variant discoverywith helpermodules for performing filtering and
annotation. The platform incorporates well-established, widely
used tools, i.e., VarScan, GATK, Strelka, BreakDancer, Pindel,
MuTect2, and Genome STRiP, for the detection of single-nucleo-
tide variants (SNVs), small insertions and deletions (indels), and

structural variants (SVs) that include inversions, copy-number var-
iation, tandem duplications, and inter- and intra-chromosomal
translocations. Results are reported in VCF format.

Variant filtering

GenomeVIP provides several user-adjustable filtering modules,
which encapsulate various tool-specific methods or rule-based
heuristics, to refine raw variant calls. Such filters include
VarScan’s own germline and somatic high-confidence filter as
well as a newde novo/family trio filter we developed that considers
the maximum total number of supporting reads in the parents.
The BreakDancer filter we developed removes somatic calls having
read support in the normal or de novo calls having read support in
either parent. Pindel analysis incorporates a unified germline,
somatic, and de novo filter we developed that considers read cov-
erage, variant allele frequency, strandedness, read support, and
homopolymer repeat length. Further details on these three new fil-
ters are provided in Methods. GenomeVIP also provides dbSNP
(NCBI v.142, GRChr37 and GRCh38) and a false-positive filter as
high-level filters. These methods are based in part on published
(Xu et al. 2014) best practices for these tools, our results in
the ICGC-TCGA DREAM Somatic Mutation Calling challenge

Figure 2. GenomeVIP workflows. Three variant-discovery pipelines (germline, somatic, and de novo)
with predicted variant types, including single-nucleotide variants (SNVs), insertions and deletions
(indels), structural variants (SVs); selected filtering features; and post-discovery annotation options pro-
vided by third-party software packages having knowledge of catalogs of genetic variation.
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(http://www.synapse.org/#!Synapse:syn312572/wiki/58893), and
our germline and somatic calling in the ICGC-TCGA Pan-Cancer
Analysis of Whole Genomes Somatic Mutation Calling
Challenge (Pilot-63) Validation project (http://www.synapse.org/
#!Synapse:syn2875157). Finally, GenomeVIP can accept user-des-
ignated VCF files for filtering against a pan-normal data set.

Variant annotation

GenomeVIP furnishes several annotation methods: dbSNP, which
provides various information on all known short sequence
variation; the Ensembl Variant Effect Predictor system (VEP)
(McLaren et al. 2010), including its interfaces to individual tools
like SIFT (Ng and Henikoff 2003) and PolyPhen (Adzhubei et al.
2013), which provides information on the impact of variants on,
e.g., genes, transcripts, protein sequences, and regulatory regions;
and ClinVar (Landrum et al. 2016), which provides interpretations
of the clinical significance of variants.

GenomeVIP dynamic interface

GenomeVIP session configuration spans the spectrum of running
“out of the box” almost wholly on defaults to accepting custom-
ized user instructions for practically every step. Following modern
user application programming practices, the graphical interface is
highly menu-driven. A navigational menu summarizes the core
steps of the configuration and execution process (Fig. 3, top).
Activation of any of these items in the interface (via user mouse
click) updates an adjacent display panel to show the corresponding
options (Fig. 3A–F), eachofwhich is described inmoredetail below.

Accounts

First, users provide their login credentials for AmazonWeb Services
(AWS) or a local high-performance compute cluster, depending on
where the input data are located and thus where the computations
are to be run (Fig. 3A). GenomeVIP employs semipersistent “ses-
sions” to facilitate reuse of instantiated AWS computing resources.
For local clusters, users may submit jobs to specific hosts and
queues.

Select genomes

Next, users specify genomic data sources (Fig. 3B). GenomeVIP rec-
ognizes sequence alignment files in BAM format and reference ge-
nomes in FASTA or compressed FASTA format. On AWS, users may
provide cloud storage volumes with prepared file lists or opt to use
one of the prepared 1000 Genomes Project donor sample sets (i.e.,
pilot phase; phase 1 low-coverage or exome; or phase 3 low-cover-
age, high-coverage, or exome). On local clusters, GenomeVIP can
obtain remote directory file listings directly (via SSH secure shell).
The server parses the data sources and presents the alignment and
reference files for selection. GenomeVIP notes any missing index
or dictionary files and generates directives to create them at run
time as necessary. This framework is sufficiently general to handle
nonhuman genomes wherever supported by the variant detection
tools.

Execution profile

In this series of tabbed panels (Fig. 3C,D), users design an “execu-
tion profile” consisting of their choice of variant detection, filter-
ing, and annotation tools. The “Quick Setup” tab (Fig. 3C)
provides access to several built-in execution profiles, based on

best practices and our own experience that can afford high-quality
calls. A RunMode field sets the study type (i.e., germline, somatic,
or de novo) and filtering and annotation options, and a Parameters
field accounts for the sequence data type (i.e., whole-genome or
exome), depth of coverage (i.e., low or targeted), and palette of ap-
plied filters. Users may also upload execution profiles through
theirwebbrowser, enabling them to readily reuse settings frompri-
or computations to ensure consistency across multiple runs. Users
can select from predefined chromosome sets or specify a custom
list of chromosomes and/or regions by entering details directly
or by uploading a list file of regions. Options within the individual
tools’ tabs or the Post-discovery Analysis tab allow customization
of the current profile (Fig. 3D). For example, the user can include
or exclude particular discovery tools from the analysis or modify
the more commonly altered discovery parameters. GenomeVIP
also utilizes collapsible panels (e.g., Fig. 3D, “Options”) to provide
userswith access to other command line parameters offered by par-
ticular tools. Modules for performing false-positives filtering, in-
cluding filtering by a user-supplied panel-of-normals VCF file,
and annotation by dbSNP, VEP (McLaren et al. 2010), and
ClinVar (Landrum et al. 2016) are available.

Submit

In the final steps of preparing a computation, users select the com-
puting resource and finalize the execution profile (Fig. 3E). On
AWS, users select whether to launch a new virtual computing clus-
ter or reuse an existing cluster and specify the top-level destination
(S3 “bucket”) for storing results and supporting output (see below).
On local clusters, users designate the working directory in which
the computations are executed. Buttons to preview, validate (or er-
ror-check), or download the current executionprofile are available.
These functions also are available to users throughout the config-
uration process to assist them in preparing their job so that it exe-
cutes as intended. Submitting the computation causes a final
validation check to be performed and, if successful, a summary
of the submission is displayed with a jobID for identifying the
computation.

Results

GenomeVIP places various outputs in the location specified by the
user during the Submit step. As shown in Figure 3F, the main re-
sults are placed in a “Results” folder, and the raw outputs and in-
termediate results are stored in folders corresponding to
individual variant tools. As the time needed to complete an analy-
sis is expected to vary significantly depending on the type of anal-
ysis and the complexity of the sample, GenomeVIP uses a “status”
subdirectory with sentinel files indicating which discrete jobs in
the workflow are unfinished. The main location contains a copy
of workflow script (file: ∗.sh) and the execution profile (file: ∗.ep)
serving as a record of the computation. Execution profiles may
be uploaded to GenomeVIP in future computations to ensure uni-
formity in processing across multiple runs. Users may obtain re-
sults and job status information for AWS computations either by
providing the S3 storage location and jobID of the computation
to a running GenomeVIP server, or by logging into the AWS
Console (“dashboard”) to navigating to the S3 storage service.
Either of these methods allows users to download files through
the browser using secure HTTPS protocols. Access to results and
job status for computations run on local clusters can be obtained
in an analogous manner to AWS by providing the working
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directory of the computation to a running GenomeVIP server or
via command-line login to the user’s cluster account.

Options

Features in this panel (not shown) allow users to manage sever-
al advanced features of Amazon cloud operations, such as deac-

tivating the use of encrypted streams for data in transit to and
from AWS S3 cloud storage and terminating instantiated AWS
clusters. Users may launch an updated GenomeVIP runtime
machine image instead of the server’s built-in default by provid-
ing the corresponding Amazon machine image (AMI) identifica-
tion tag.

Figure 3. GenomeVIP screenshots. (A) Accounts. Presentation of the user’s valid Amazon Web Services causes GenomeVIP to generate a semipersistent
sessionID used to store or recall previous cloud resource configurations. (B) Select Genomes. A user-uploaded file listing sequence alignment, reference, and
index files is parsed and displayed for item selection. (C) Quick Setup tab configuration for loading a built-in execution profile with predefined tools and
parameters (Step 1, option 1); a profile may alternatively be uploaded via the interface (Step 1, option 2). Predefined genomic regions may be selected or
uploaded via the interface (Step 2). Clicking the Apply Profile button (Step 3) configures tools listed under the other tabs (gray) with the current predefined
profile and regions, which may be subsequently modified manually under the other tabs. (D) Post-discovery Analysis. Selection of filters and annotation as
part of the execution profile, showing the expanded false-positives filter panel (gray) for customization. (E) Submit. Resource management options are
provided to create new or reuse existing computing instances and cloud storage location. Buttons to preview, download, or error-check the current ex-
ecution profile, or to submit it as a computation, are available. (F) Results. An Amazon cloud storage file listing showing folders for tools’ outputs, job status,
and results. Files .sh and .ep represent the master script describing the computation’s workflow and the execution profile, respectively.
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Discussion

Use with big data

In addition to numerous smaller-scale projects, GenomeVIP has
been used in several major projects, two of which are listed in
Table 1: the International Cancer Genome Consortium (ICGC)
Somatic Pilot and the TCGA PanCan Germline projects. In the
ICGC project, GenomeVIP invoked the native somatic calling ca-
pability of VarScan and Strelka and directed Pindel to generate calls
for each matched pair in cohort mode. Generating these calls con-
sumedmore than 9000 CPU-hours, with the pairs requiring on av-
erage 11.7, 40.8, and 135 CPU-hours for VarScan, Strelka, and
Pindel, respectively. In the TCGA PanCan Atlas germline analysis
project, more than 8000 samples across 22 tumor types were pro-
cessed individually with VarScan, GATK, and Pindel using our
in-house pipeline. Comparison of these local-based calls to those
generated more recently on cloud resources have produced excel-
lent recall rates for insertions and deletions (∼96%) and for sin-
gle-nucleotide variants (>99%), the difference being largely
attributable to the use ofmore recent tool versions. The tool-specif-
ic CPU usage here was 8.2, 5.4, and 10.2 CPU-hours for VarScan,
GATK, and Pindel, respectively.

Comparison to existing cloud pipelines

Genomic sequencing has long been supported by automated pro-
cessing of raw data (Wendl et al. 1998); as a result, a variety of sys-
tems, many of which are deployable on cloud computing
resources, have become available with varying levels of capability,
user convenience, and sophistication. Early entries only targeted
specific parts within the larger process, e.g., applying cloud tech-
nologies to the genome alignment process (Langmead et al.
2009; Schatz 2009; Wall et al. 2010), but recent work has pro-
gressed toward solutions that are more complete. The positioning
of GenomeVIP within this milieu has been guided by its underly-
ing design goal of furnishing an intuitive, graphics-based system to
the nonspecialist biomedical investigator for harnessing well-es-
tablished, task-specific, external tools to analyze WGS/WES data
for somatic, germline, and de novo variants using on-demand
cloud resources. A comparison of features across a selection of
comparable systems is presented in Table 2.

Intuitive, web-based control

Special bioinformatics skills related to transferring large files, data-
base creation, programming, or algorithms are required to use sys-
tems such as Atlas2 Genboree (Evani et al. 2012), the COSMOS
library (Gafni et al. 2014), or the CloudBioLinux tool set
(Krampis et al. 2012), and familiarity with Unix/Linux com-
mand-line functionality is needed to easily run tools like TREVA
(Li et al. 2014), TOGGLE (Monat et al. 2015), HugeSeq (Lam

et al. 2012), GotCloud (Jun et al. 2015), or Churchill (Kelly et al.
2015). Many systems also have more subtle aspects of designing
a calculation, for example, manually discretizing genomic regions
for parallelization (Afgan et al. 2010). GenomeVIP enables com-
plete specification of job execution entirely by web-interface
menu prompting, making it easier for users without considerable
bioinformatics experience to undertake genomic analyses.

Vetted tools

Some approaches rely onnativemethods for processing, e.g., Atlas-
SNP2 and Atlas-Indel2 in the Atlas2 Cloud andMercury (Reid et al.
2014) systems, and almost all lack capability for managing the full
array of biomedically relevant variant types. For example, most
systems (Evani et al. 2012; Li et al. 2014; Jun et al. 2015; Kelly
et al. 2015) cannot handle SVs, andnone treat any type of complex
indels. GenomeVIP follows a UNIX-like philosophy of recruiting
only highly vetted, task-specific external tools and porting them
for cloud compatibility. GenomeVIP runs each tool with fully
specified parameter lists to guard against inadvertent changes of
defaults. It also supports the reuse of custom execution profiles
for repeating an analysis, which may be helpful for performing
longitudinal studies on the same patient or for simply dividing a
large data set into smaller computational sets.

Data privacy protection

The GenomeVIP server uses secure HTTPS by default, with encryp-
tion specifications consistent with HIPAA standards, to communi-
cate with the user’s web browser. The StarCluster toolkit uses
secure shell (SSH) encrypted protocol for communicating with
and transferring files to/from Amazon. The S3 Tools toolkit is con-
figured byGenomeVIP by default to use HTTPSwhen transmitting
data between computing resources and S3 cloud storage and to re-
quest server-side encryption (AES-256 protocol) be applied to new
data stored at rest in S3. When used with a local cluster,
GenomeVIP uses SSH when accessing the remote file system and
when transferring files to/from the cluster.

Example comparison

We compared GenomeVIP directly to another cloud-based analy-
sis system, namely GotCloud (Jun et al. 2015). As the latter does
not readily handle somatic or trio analysis, we have limited the
comparison to germline variants. In particular, we used
GotCloud to repeat the germline analysis of the nine cases from
the 1000 Genomes Project discussed above. Downstream analysis
revealed that dbSNP concordances of GotCloud-generated calls
were 99.0%–99.7% for SNVs and 88.5%–93.0% for indels, both
of whose ranges are comparable to the results from GenomeVIP
(Fig. 4F).

Table 1. Examples of large-scale projects utilizing GenomeVIP

Computational resources (CPU-h) Variants (millions)

Project Samples VarScan2 GATK Strelka Pindel SNVs Indels SVs

ICGC Somatic Pilot-50 50 WGS pairs (tumor/normal) 583 N/A 2041 6770 44 × 105 a 0.94 × 105 a 1.0 × 105 a

TCGA Germline 8695 WXS samples 71,081 47,305 N/A 88,333 4.3 × 109 b 0.9 × 109 b N/A

aUnique, filtered.
bNonunique, raw.
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Methods

GenomeVIP genomic applications

GenomeVIP includes tools to perform germline, somatic, and de
novovariant discoveryand annotation.We illustrate these capabil-
ities with three examples: (1) germline variant discovery from
exome samples from a large cohort; (2) somatic variant detection
on a synthetic matched tumor/normal sample pair; and (3) de
novo analysis of a well-studied family trio from the 1000
Genomes Project. Parameters used are available in Supplemental
Information. In each case, local and cloud deployments of
GenomeVIP produced identical raw calls. We also confirmed the
parallelizability of genomic regions by performing cloud computa-
tions over entire chromosomes and local computations by process-
ing10-Mbwindows spanning the entire genome. Performance and
compute statistics are reported in Figure 4D and Supplemental
Information.

Germline

We selected nine unrelated donors from the 1000 Genomes
Project (Abecasis et al. 2010), three each from three populations
(CHB, FIN, YRI) and directed GenomeVIP to launch VarScan and
Pindel variant callers to perform SNV and indel discovery on
Chromosome 20 using discovery parameters used in a previous
germline analysis (Kanchi et al. 2014). Raw calling performance,
as measured by dbSNP concordance, revealed SNV concordances
ranging from 97.0% to 98.1% and indel concordances ranging
from 92.2% to 96.2%. To validate the germline variants, we then
conducted a downstream principal component analysis of the
SNVs using PLINK (Chang et al. 2015) and found that analysis
faithfully recapitulated the population structures of these three
ethnic groups (Fig. 4A).

Somatic

We called somatic mutations in the matched tumor/normal syn-
thetic DREAM-3 samples, the most complex of the open-access
data sets from the ICGC-TCGA DREAM Somatic Mutation
Calling (SMC) Challenge (Ewing et al. 2015). We directed

GenomeVIP to generate raw calls using VarScan and Strelka with
limited filtering to enable downstream exploration of the effect
of selected false-positive filtering parameters, namely, the number
of supporting reads and read mapping qualities (Methods).
Calculations of true-positive (TP) and false-positive (FP) rates,
based on unmasked regions of a known synthetically generated tu-
mor’s “truth” set (Ewing et al. 2015), for multiple combinations of
parameter sets for the individual, intersected, and combined fil-
tered call sets, is plotted on receiver operating characteristic
(ROC) curves (Fig. 4B). Comparison of unfiltered, novel calls re-
veals comparable TP but significantly different FP rates for
VarScan and Strelka callers. Although Strelka’s TP rates (ranging
from 0.784 to 0.789) and FP rates (ranging from 0.011 to 0.016)
did not appreciably change across the false-positives parameter
landscape investigated, increasing the number of required vari-
ant-supporting reads (VSR) to four for filtering VarScan calls dra-
matically decreased FP rates while also modestly decreasing TP
rates. This contrast in behavior is a result of VarScan having pro-
duced manifold more putative calls than Strelka in the “un-
masked” genomic regions targeted by the evaluator script.
Finally, the intersections of calls from the two callers were found
to be largely invariant (TP, ∼62.7%; FP ∼0.94%), supporting the
view that combining calls frommultiple callersmay be an effective
strategy to identify a core set of high-quality calls while mitigating
against a significant portion of false positives (Cantarel et al.
2014).

This exercise also serves as a case study, showing the creation
of expert knowledge and experience that investigatorsmaywish to
capture for subsequent analyses, such as maximizing sensitivity
for discovery or specificity for diagnostic purposes. Users can
then provide these optimal parameter values as previously de-
scribed to perform a complete run.

A similar approach was used to process WGS tumor/normal
matched pairs from more than 10 different cancer types for the
ICGC Pan-Cancer project. In the initial “Pilot 50” project,
GenomeVIP produced 4.4 million SNV, 94,000 indel, and
100,000 SV filtered calls (Table 1) that we submitted for evaluation
for selection for validation experiments. The comparison between
GenomeVIP’s predictions and those from eight other standard
pipelines showed that GenomeVIP produces results highly concor-
dant with noncloud pipelines (Fig. 4C), suggesting high-quality,
reproducible analysis.

Table 2. Brief comparison of variant discovery frameworks

Pipeline Variants

Software Version Som Germ De novo SNV Indel SV CNV Anno Web GUI
Cloud API-
Aware

Machine
image

available

User-
installed
required

GenomeVIP v1.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓(AWS) optional
TREVA v.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
HugeSeq v2.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Atlas2 Genboree website, accessed

2016-01
✓ ✓ ✓ ✓ ✓

Mercury v3.2.1 ✓ ✓ ✓ ✓ ✓(DNAnexus) ✓(DNAnexus) optional
Churchill v1.8 ✓ ✓ ✓ ✓ ✓
GotCloud v1.14.4,

ami-6ae65e02
✓ ✓ ✓ ✓ ✓(AWS)

TOGGLE v0.2 (2015-10-08) ✓ ✓ ✓ ✓ ✓ optional

Software packages are compared according to the following: the types of pipelines (Som, somatic; Germ, germline; De novo, de novo) and callable
variants (SNV, single-nucleotide polymorphism; Indel, short insertions and deletions; SV, structural variants; CNV, copy number variation) available;
built-in annotation (Anno) options; presence of native or supported web browser graphical user interface (Web GUI) and built-in cloud resource man-
agement tools (Cloud API-Aware); availability of ready-to-run, pre-built machine images; and requirement for manual installation of the software
package itself and/or supporting genomics software.
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De novo SNV mutations in family trios

We analyzed the NA12891-NA12892-NA12878 family trio sam-
ples for de novo single-nucleotide variants usingVarScan and asso-
ciated filtering modules provided by GenomeVIP and compared
the results to experimentally validated germline and somatic de
novo variants (Conrad et al. 2011). GenomeVIP attained 97.8% re-
call (979 of 1001 experimentally validated sites) after predicted
false positives were removed. The additional effect of applying a

variant read-support filter for the paren-
tal genomes showed that exclusion of
variant support in the parents (PVSR =
0) yielded the smallest GenomeVIP call
set (N = 2431) with a recall rate of 95.0%
(Fig. 4E, blue curve); in this set, 41 calls
were validated experimentally as false
positives. Increasing PVSR resulted in
larger GenomeVIP variant call sets by at
least 13% (Fig. 4E, red curve), while im-
proving recall rates only marginally. For
example, at PVSR = 2, at which the recall
rate has plateaued, GenomeVIP made
3302 final calls, of which 42 validated
as false positives. In this example, the
highest balanced accuracy is likely to be
obtained for values of PVSR at or near
zero.

Software availability

The GenomeVIP source code and associ-
ated scripts are freely available for aca-
demic use and are available through
GitHub (https://github.com/ding-lab/
GenomeVIP/) and as Supplemental
Code. Users having AmazonWeb Servic-
es (AWS) login credentials can launch a
GenomeVIP server on the AWS cloud
by instantiating server images located in
the AWS public repository. GenomeVIP
executes computations using a public
run-time AWS image providing a nearly
complete set of the required genomics
software. Software packages on these im-
ages carry their own licensing and usage
terms. For example, GenomeVIP requires
users to provide the location of their own
licensed copy of GATK (version 3.5 and
higher supported). Installation of
GenomeVIP on a local web server allows
users to design and execute computa-
tions on a local high-performance com-
pute cluster using local data or on
Amazon’s cloud using data stored at
AWS; furthermore, GenomeVIP’s inter-
nal configuration files may be edited
manually to point to local versions of
the tools onwhichGenomeVIP depends.
GenomeVIP orchestratesmany tools that
are all upgraded independently, and
these updates will be passed through to
GenomeVIP users in the following
ways: Tool updates not requiring user in-
terface modification will be distributed
in updated runtime images, but those re-
quiring suchmodificationwill require an

updated server image. Tool versions will accumulate rather than be
replaced to preserve backward compatibility. Database updateswill
be managed similarly, although the user can alternatively specify
the location of public or custom annotation VCFs that Genome-
VIP can retrieve via FTP/HTTP or fromAmazon cloud storage.Doc-
umentation, support, and further information is available through
GitHub and the GenomeVIP home page at our Turnkey Variant

Figure 4. Applications of GenomeVIP. (A) Principal component analysis of germline SNV and indel pre-
dictions for nonrelated 1000 Genomes Project Phase 1 samples from three populations: (red) CHB;
(green) FIN; (blue) YRI. (B) True-positive (TP) and false-positive (FP) rates for somatic SNV calls novel
to dbSNP. Performance of VarScan and Strelka callers individually (red, blue) and in combination (green,
purple) are evaluated before and after exploratory false-positives filtering using multiple parameter com-
binations, in which VSR is the minimum number of variant-supporting reads. (C ) GenomeVIP perfor-
mance on ICGC Pan-Cancer Pilot-50 somatic mutation calling for one matched sample pair, in which
the colors correspond to the number of pipelines predicting the same variant. (D) Performance statistics.
(E) De novo recall performance (blue), as compared to published experimental validation results, and fil-
tered call set size (red) for SNV calling in NA12878 as a function of PVSR, the number of variant-support-
ing reads in parental genomes NA12891 and NA12892. (F) dbSNP concordances of germline SNVs and
indels, as called by GenomeVIP (darker shading) and GotCloud (lighter shading), for the samples de-
scribed in A.
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Analysis Project website (http://tvap.genome.wustl.edu/tools/
genomevip/).
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