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Abstract: Severe eosinophilic asthma poses a serious health and economic problem, so new therapy
approaches have been developed to control it, including biological drugs such as benralizumab,
which is a monoclonal antibody that binds to IL-5 receptor alpha subunit and depletes peripheral
blood eosinophils rapidly. Biomarkers that predict the response to this drug are needed so that
microRNAs (miRNAs) can be useful tools. This study was performed with fifteen severe eosinophilic
asthmatic patients treated with benralizumab, and serum miRNAs were evaluated before and
after treatment by semi-quantitative PCR (qPCR). Patients showed a clinical improvement after
benralizumab administration. Additionally, deregulation of miR-1246, miR-5100 and miR-338-3p
was observed in severe asthmatic patients after eight weeks of therapy, and a correlation was found
between miR-1246 and eosinophil counts, including a number of exacerbations per year in these
severe asthmatics. In silico pathway analysis revealed that these three miRNAs are regulators of the
MAPK signaling pathway, regulating target genes implicated in asthma such as NFKB2, NFATC3,
DUSP1, DUSP2, DUSP5 and DUSP16. In this study, we observed an altered expression of miR-1246,
miR-5100 and miR-338-3p after eight weeks of benralizumab administration, which could be used as
early response markers.
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1. Introduction

Asthma is a chronic inflammatory disease of the airways that affects more than
300 million people worldwide [1]. This pathology causes shortness of breath, chest tight-
ness, wheezing and cough, and presents a strong inflammatory component related to T2
immune response [2]. This disease exhibits an elevated heterogeneity and variability, which
means that it is an ineffective asthma control in many cases. Moreover, its great economic
cost on the health system makes it a big problem for government institutions.

Severe asthma comprises a small group of asthmatic individuals, between 5-10% of
people with asthma who have a higher risk of severe exacerbation, clinical worsening
and poor control. Among these patients, an estimated 40-60% have eosinophilic airway
inflammation, which is associated with severe asthma, despite high-inhaled corticosteroids
(ICS) and long-acting 32-agonists (LABAs) therapies [3]. According to the European
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Respiratory Society (ERS) and American Thoracic Society (ATS), severe asthma requires
high doses of ICS, plus a second treatment and/or systemic corticosteroids to aver it [4].
This fact makes traditional treatments ineffective as they have to choose other alternative
therapies, such as biological treatments.

Biological drugs are humanized monoclonal antibodies that block cytokines or recep-
tors of cytokines, improving symptoms in asthmatic patients [5]. Specifically, in severe
eosinophilic asthma, these drugs decrease the eosinophil percentage from peripheral blood
and tissues, with the most used being: two anti-IL-5 drugs (reslizumab and mepolizumab)
and one against the IL-5« receptor (benralizumab), depending on the clinical characteristics
of patients. Benralizumab is a humanized afucosylated monoclonal antibody (IgG1k) that
binds with high affinity to the IL-5x receptor on the surface of human eosinophils and
basophils [6]. This drug induces rapid and complete depletion of blood eosinophils through
antibody-dependent cell-mediated cytotoxicity (ADCC), significantly reducing the number
of exacerbations and improving lung functionality of patients with severe asthma [7].
These results were observed in three different clinical trials that used this pharmacological
approach, namely SIROCCO, CALIMA and ZONDA. These studies showed that the severe
eosinophilic asthmatics can benefit by the action of this treatment, as seen in the reduction
of their exacerbation rate, and the improvement observed in asthma control and quality of
life, while also reducing the dose of the daily oral corticosteroids needed [8-10]. This new
biological drug has also been investigated as a treatment for chronic obstructive pulmonary
disease (COPD) patients with more than 3% of sputum eosinophils with at least one ex-
acerbation, being the results promising for lung function improvement, but not having
any effect in the exacerbation rate, only proving efficacy in the patients with eosinophilic
inflammation [11]. Furthermore, two additional investigations with this treatment in COPD
were depicted in TERRANOVA and GALATHEA studies [12]. Both clinical trials included
COPD subjects with or without a high eosinophil count (>220 per mm?) with frequent
exacerbations, and used different dosages of benralizumab. From the TERRANOVA study,
no effects were observed by this treatment for any of the traits, while GALATHEA showed
similar patterns of no effect by this drug, with only a trend for improvement of exacer-
bations with the 100 mg/dose. Despite several studies demonstrating the efficacy and
security of benralizumab [8,9], it is necessary to search for biomarkers that determine the
early response of patients to this therapy, leading to the personalized choice.

Till now, some works have addressed this topic [13,14], but more studies must be
performed. In this sense, microRNAs (miRNAs) can help to predict the response to benral-
izumab. These small non-coding RNAs have been used as biomarkers in multiple diseases,
including asthma [15]. MiRNA deregulation in pathologic status not only affects several
biologic processes, but they can also be used to characterize and diagnose patients [16],
implying an approach towards personalized medicine. Combining all these premises,
miRNAs could be useful tools to detect the early response of asthmatic individuals to
benralizumab and offers the best therapy for the patient.

In this context, the main aim of this study is to search some miRNAs that could serve
as biomarkers to detect an early response to benralizumab in severe eosinophilic patients.
Additionally, these miRNAs could correlate with some clinical parameters, which would
allow for the observation of patient improvement.

2. Materials and Methods
2.1. Patient Selection

Subjects diagnosed with asthma were recruited from Allergy and Pneumology units of
Fundacion Jiménez Diaz Hospital in Madrid, selecting 15 patients with severe eosinophilic
asthma and 15 mild-moderate asthmatic subjects. All patients belong to the study of the
Mechanisms involved in the Evolution and Genesis of Asthma (MEGA) project, which is a
cohort of asthma patients with varying grades of severity [17]. Asthma severity has been
diagnosed according to the classification of the Global Initiative for Asthma (GINA) [18].
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Fifteen healthy individuals were recruited from the Allergy Department of Fundacion
Jiménez Diaz.

The inclusion criteria were the following: (i) acceptance to participate; (ii) asthma
diagnosis following GINA 2019 criteria [18]; (iii) age between 18-75 years old; (iv) periodic
medical examinations; (v) intravenous administration of benralizumab (30 mg) for severe
uncontrolled eosinophilic asthmatic patients (blood eosinophil count >300 cells/uL) every
four weeks for the first three doses, and then every 8 weeks thereafter; and (vi) patients
with mild to moderate persistent asthma treated with a combination of ICS/LABAs. For
healthy individuals, the only requirement was not having any episodes of asthma.

All subjects gave and signed their informed consent for inclusion before they par-
ticipated in the study. This study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics Committee.

2.2. Sample Collection

Serum was obtained by blood clotting in anti-coagulant free tubes and centrifugation
at 3000 rpm for 10 min at 4 °C, and stored at —80 °C until used. Peripheral blood from
severe patients was recovered at two-time points: before benralizumab injection and
8 weeks after the first doses of the biological drug.

2.3. MiRNA Isolation

MiRNAs were obtained from 200 uL of serum using miRNeasy serum/plasma ad-
vanced kit (Qiagen, Hilden, Germany), as the manufacturer described. Three synthetic
miRNAs spike-ins (SP2, SP4 and SP5) were added to evaluate the optimal RNA extraction
(miRCURY LNA RNA Spike-in kit, Qiagen).

2.4. MiRNA Reverse Transcription PCR (RT-PCR) and Semi-Quantitative Real Time PCR (qgPCR)

Serum miARNSs were obtained by a first step of cDNA retrotranscription using the
miRCURY LNA RT Kit (Qiagen), following manufacturer’s protocol. Briefly, 4 uL of
total RNA were mixed with a reverse transcription enzyme, and with other synthetic
miRNAs: Spike-in (UniSp6) and cel-miR-39-3p, which were used for control of the correct
retrotranscription to cDNA. The total volume was 10 pL. The reaction was performed in a
Veriti 96 well Thermal Cycler (Applied Biosystems, Warrington, UK), for 60 min at 42 °C,
then 5 min at 95 °C, and indefinitely at 4 °C. cDNA was stored at —20 °C until used.

Then, miRNA expression was evaluated by qPCR using miRCURY LNA SYBR Green
PCR Kit (Qiagen) according to the manufacturer’s instructions. In summary, cDNA from
serum miRNAs obtained in the previous phase was diluted 1:30 in RNase free water
(Qiagen). Then, 3 pL of diluted cDNA were mixed with 2X miRCURY SYBR Green Master
Mix and with 1 pL the suitable probes in a final volume of 10 L. The probes used were: hsa-
miR-1246, hsa-miR-1290, hsa-miR-451a, hsa-miR-144-3p, hsa-miR-144-5p, hsa-miR-5100,
hsa-miR-4521, hsa-miR-320a, hsa-miR-320b, hsa-miR-185-5p, hsa-miR-21-5p, hsa-miR-146b-
5p, hsa-miR-486-5p, hsa-miR-629-5p and hsa-miR-338-3p. These miRNAs were selected
based on previous work [16]. Additionally, hsa-miR-191-5p, hsa-let-7a and cel-miR-39-3p
were selected as endogenous controls (Qiagen). Additionally, hsa-miR-23a-3p and hsa-
miR-451a were used as hemolysis controls. All samples were run in triplicate, and the
reaction was performed in a Light Cycler® 96 thermocycler (Roche, Basilea, Switzerland).
The incubation program was carried out for 45 cycles of 95 °C during 10 s and 60 °C for
1 min. DNA melting was performed by heating at 95 °C for 5 s, then 65 °C for 1 min,
and finally at 97 °C for 1 s. Samples were cooled for 10 s at 40 °C. Cycle threshold (Ct)
values were analyzed with LightCycler® 96 SW 1.1 (Roche) software. MiRNA expression
was calculated using the 272¢t method [19], where: ACt = Ctpirna — X(Cthsa-mir-191-5p +

Cthas—let—7a + thel-miR—39-3p)-
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2.5. In Silico Pathway Analysis

Pathway analysis of deregulated miRNAs were performed using the DIANA-miRPath
v3.0 bioinformatic tool [20].

2.6. Statistical Analysis

The results are expressed as mean =+ standard deviation (SD), or median and interquar-
tile range (IQR). Normality was analyzed using the Shapiro-Wilk test. For continuous
variables, parametric data comparison between non-paired groups was performed using
an unpaired ¢ test (compared groups have equal SD) and a ¢ test with Welch's correction
(assumption of population may have different SD), and finally non-parametric and non-
paired groups were compared using the Mann-Whitney test. Comparison between paired
groups was done with a paired f test for parametric data and with a Wilcoxon matched
paired test for non-parametric data. Additionally, Spearman’s (for non-parametric data) or
Pearson’s (for parametric data) correlation were applied for comparison between miRNA
expression levels (ACt) and some clinical parameters.

3. Results
3.1. Benralizumab Improves Asthma Symptoms

To develop this study, fifteen severe eosinophilic patients treated with benralizumab
were recruited. Additionally, fifteen mild to moderate asthmatic individuals and fifteen
healthy subjects were also included in the study. We observed that patients who received
benralizumab were significantly older than mild—-moderate asthmatics, although they did
not present statistical differences in relation to gender (Table 1). It is worth noting that after
eight weeks of treatment, severe asthmatics reduced, in a significant manner, the number
of exacerbations and the eosinophil count, although they did not improve lung function
(forced expiratory volume measured during the first second [FEV1], and FEV; /forced
vital capacity [FVC] ratio) neither asthma control test (ACT) values (Table 1). Finally,
we observed in the asthmatic population that severe asthmatic patients at baseline had
significant higher number of exacerbations, and lower FEV; and ACT values than mild to
moderate asthmatics (Table 1).

Table 1. Clinical and demographic characteristics of the studied patients.

Asthma Asthma (Severe)
(Mild-Moderate) Baseline 8 Weeks p-Value
(n=15) (n=15) (n=15)
Age (years) 2 41.20 + 8.75 46.86 + 11.48 i
Male (%) 3 (20) 6 (40) N.S.
Eosinophils (cell /pL) 300 (200-500) 217 (91-625) 0 (0-90) N.S./**x /%
FEV7 (%) @ 97.99 + 11.70 71.00 £+ 16.56 74.08 £ 17.59 o /2232 /NS,
FEV,/FVC (%) 2 N.A. 63.56 + 10.16 63.11 +9.89 N.S.
Exacerbation per year b 1 (0-1.25) 3 (2-5) 0 (0-0) S TAVAl
ACT 23 (21-25) 11 (9.5-14) 13 (10.5-24.5) 4 /N.S./N.S

2 Results are expressed as mean =+ SD. b Results are expressed as median (IQR). Comparisons were performed in the next order: Asthma vs.
Baseline/Asthma vs. 8 weeks/Baseline vs. 8 weeks. Comparisons between Asthma and Severe Asthma are represented with asterisk:
*p < 0.05, ** p < 0.001, *** p < 0.0001. Comparisons between Baseline and 8 weeks are represented with symbols: ¥ p < 0.001, ¥ p < 0.001.
ACT, asthma control test; FEV, forced expiratory volume measured during the first second; FVC, forced vital capacity; N.A., not available;

N.S., non-significant.

In view of these data, benralizumab is able to improve asthma clinical parameters in
severe eosinophilic patients.

3.2. MiRNA Deregulation before and after Benralizumab Administration

In this study; fifteen severe asthmatic patients were recruited and serum miRNAs were
evaluated at baseline and eight weeks after the first doses of benralizumab were received.
Among the miRNAs checked, we found a significant decrease in the expression levels



J. Pers. Med. 2021, 11,76

50f11

of three miRNAs after eight weeks of treatment: miR-1246 (0.09 £ 0.04 vs. 0.06 £ 0.02
arbitrary units, p < 0.05; Figure 1a), miR-5100 (0.018 &= 0.008 vs. 0.013 £ 0.004 arbitrary units,
p < 0.05; Figure 1b) and miR-338-3p (0.22 4= 0.10 vs. 0.17 & 0.07 arbitrary units, p < 0.05;
Figure 1c). The rest of the miRNAs evaluated did not show any significant differences
(Figure S1). and miR-4521 was not detected (data not shown).
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Figure 1. Serum miRNA deregulation in severe patients treated with benralizumab. Severe eosinophilic asthmatic patients
showed an altered expression of miR-1246 (a); miR-5100 (b); and miR-338-3p. (c) 8 weeks after benralizumab administration.
Also, miR-5100 and miR-338-3p expression levels were higher in severe asthmatics at baseline than in subjects with non-

severe asthma, and miR-1246 showed lower levels in this same group of patients. Severe asthmatics at baseline exhibited
deregulated levels of these miRNA in comparison to healthy subjects. * p < 0.05, *** p < 0.001, **** p < 0.0001.

Additionally, we evaluated miR-1246, miR-5100 and miR-338-3p expression levels
in non-severe asthmatic patients and in healthy non-asthmatic individuals. We observed
significantly higher expression levels of miR-5100 and miR-338-3p in severe asthmatic
patients with respect to patients with mild-to-moderate asthma (p < 0.0001) (Figure 1b,c).
On the contrary, the levels of miR-1246 were lower in severe asthmatics at baseline than
in non-severe patients, reaching significant differences (p < 0.05; Figure 1a). Moreover,
the levels of these three miRNAs were significantly deregulated in severe asthmatics at
baseline compared to healthy individuals (Figure la—c).

These results show that there is an alteration of three miRNAs after benralizumab
therapy in severe eosinophilic patients, which could serve as early response markers
to treatment.
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3.3. Deregulated miR-1246 Correlates with Clinical Parameters

In order to establish some relation between miRNA expression levels and clinical
parameters, we performed a correlation analysis. We compared the expression levels of
miR-1246, miR-5100 and miR-338-3p with several symptoms, laboratory data and clin-
ical parameters from severe asthmatics before and after benralizumab administration
(number of exacerbations, eosinophil count, ACT and FEV;). We highlight that ACt val-
ues of miR-1246 were inversely correlated with the number of exacerbations at baseline
(Figure 2a), which means that the number of exacerbations is increased when miR-1246
levels are augmented. Additionally, ACt values of this miRNA showed a positive cor-
relation with the number of exacerbations and eosinophil count at eight weeks after
treatment (Figure 2b,c), underlying that a higher ACt implies a lower expression level. We
can highlight that these parameters (eosinophil count and number of exacerbation) were
significantly reduced in severe asthmatic individuals after benralizumab therapy (Table 1).
Finally, it is worth noting that the main limitation of these analyses is the weakness that
the correlations between miR-1246 expression and disease parameters showed (correlation
coefficient less than 0.7; Figure 2a—c). In addition, it should be noted that some of the values
seem to be outliers, which may obscure the correlation results (Figure 2c). Therefore, the
number of measurements should be increased to confirm these results.

Baseline 8 weeks
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o (&)
2 2
5§ 5 6-
2 2
g 37 e
g &
w 2- w ’
© © 4
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Figure 2. MiR-1246 correlates with the number of exacerbations and eosinophil count. (a) Deregulated miR-1246 in severe

asthmatic patients at baseline shows a negative weak correlation with exacerbation number. Additionally, positive weak

correlations are observed between ACt values of this miRNA with the exacerbation number (b) and peripheral blood

eosinophil count (c) in patients with severe asthma 8 weeks after benralizumab administration.

On the basis of these findings, we concluded that miR-1246 could be an indicator of
patient improvement.
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3.4. Altered miRNAs are Implicated in MAPK Signaling Pathway

In order to understand the implications on biological processes of miR-1246, miR-5100
and miR-338-3p, an in silico analysis was performed with these three miRNAs. The analysis
revealed that the interaction of the three miRNAs, regulated in a significant manner, the
mitogen-activated protein kinase (MAPK) signaling pathway (p = 0.036). Among the target
genes found, there were some relevant genes implicated in asthma pathogenesis, including
the nuclear factor of activated T-cells, cytoplasmic 3 (NFATC3), mitogen-activated protein
kinase kinase kinase 2 (MAP3K2), dual-specificity phosphatases family (DUSP1, DUSP?2,
DUSPS5 and DUSP16) and nuclear factor kappa (3 subunit 2 (NFKB2) (Table 2).

Table 2. Target genes of miR-1246, miR-5100 and miR-338-3p implicated in the MAPK signaling pathway.

miRNA Pathway Target Genes
miR-1246 TAOK1, TP53, PPP3CA, MAP3K2, RASGRP3, NFATC3
miR-5100 o TAOK1, PLA2G4A, DUSP16
MAPK signaling pathway  pog cACNGS, DUSP2, DUSP5, ELK4, CDC25B, TAOK2, MAP2K3, MAP4K3,
miR-338-3p RASA1, RAPGEF2, NFKB2, MAPKAPK3, ZAK, HSPA8, CACNA1H, MAP3K2,

RPS6KA4, NFATC3, DUSP1

The target genes and signaling pathways that are regulated by these miRNAs could
be indicative of a restoration of altered processes in severe asthma after benralizumab
treatment.

4. Discussion

This is the first report that shows an altered expression of miRNAs (miR-1246, miR-
5100 and miR-338-3p) after eight weeks of benralizumab administration, confirming that
they could be used as early response markers.

Benralizumab is a monoclonal, afucosylated antibody used as a treatment in severe
eosinophilic asthma that binds to IL-5 receptor subunit alpha (IL-5R) and depletes, almost
completely, peripheral blood eosinophils, being more effective than other anti-IL-5 therapies
such as mepolizumab and reslizumab [11,21]. In the studied population, we observed a
reduction in the number of exacerbations and eosinophil counts in severe asthmatic patients
after benralizumab administration, similar to previous informed clinical trials [8,9].

However, several studies have described the biomarkers for eosinophilic severe
asthma, with peripheral eosinophils being considered the best predictor biomarkers for
anti-IL-5 and anti-IL-5R« therapies [22]. However, the more useful biomarkers must be
found to predict early response to biological treatment. Thus, we found three miRNAs
that could serve this purpose. To date, investigations about this topic are developing, and
a current study shows that L-selectin and Krebs von den Lungen (KL-6) are useful novel
biomarkers of early response to mepolizumab, but not for benralizumab unfortunately [13].
Thus, more studies in this field should be performed.

According to our results, the altered miRNAs found in patients post-treatment have
been linked to or dysregulated in asthma pathogenesis [16,23-25]. However, miRNAs have
never been described as markers or predictors of early response to biological treatments,
as we have done in this report. miR-1246 is probably the most important miRNA in ben-
ralizumab response in severe asthmatic patients, because it was significantly correlated
with the number of exacerbations per year and with the eosinophil count in these patients,
although these correlations were weak (correlation coefficient less than 0.7, Figure 2). Pre-
viously, our research group demonstrated altered expression levels of miR-1246 between
healthy subjects and asthmatic patients, and it could be used as a diagnosis tool in combi-
nation with other miRNAs by a logistic regression model [16]. Additionally, this miRNA
has been described as deregulated in other respiratory pathologies such as COPD and
asthma-COPD overlap syndrome (ACOS) [26]. Other authors demonstrated that miR-1246
is overexpressed in airway epithelial brushings from asthmatics compared to healthy pa-
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tients [27], while other studies showed that a module of miRNAs expression in sputum
from asthmatics, which included miR-1246 correlated with blood eosinophil count, with
the fractional exhaled nitric oxide (FeNO), and with bronchodilator response [28]. As we
observed, target genes for this deregulated miRNA belong to MAPK pathways that may
regulate cell functions as proliferation or muscle contraction, which are processes that
are linked to asthma pathology and its clinical manifestations [29]. In this sense, smooth
muscle cells of the lung could be a possible target cell for this miRNA. This fact has been
corroborated in other diseases, mainly in cancer, where multiple manuscripts describing
the increased expression of miR-1246 in patients with this pathology and its possible role
in proliferation and cell migration in colorectal cancer exist [30]. Even miR-1246 could
be implicated in atherosclerosis in regards to its relation with vascular smooth muscle
cell proliferation [31], with miRNA being a potential therapeutic target in this disease.
Less is known about the role of miR-5100 and miR-338-3p in asthma and in other respira-
tory diseases. While several previous studies have shown these miRNAs to be possible
biomarkers in asthma pathology [23,25], no studies on biological treatment response have
been developed.

In relation to signaling pathways regulated by these miRNAs, MAPK signaling is
essential in the allergic inflammation of airways, and subsequently, in asthma pathogen-
esis [32]. We found that this pathway was significantly altered by miR-1246, miR-5100
and miR-338-3p, and they regulate some important genes in asthma. DUSP family genes,
including DUSP1, DUSP2, DUSP5 and DUSP16, are the major regulators of the MAPK
signaling pathway and they are implicated in the control of anti-inflammatory responses,
mainly in References [33-35]. A study developed by Kozmus et al. demonstrated that
MAP3K2 was significantly decreased in asthmatic patients after ICS treatment [36]. This fact
could be indicate that the alteration in gene expression could occur via miRNA regulation,
although more studies must be developed to elucidate it. Finally, NFATC3 and NFKB2 play
a central role in cytokine regulation in several types of immune cells [37,38]. One miRNA
could simultaneously affect and multiply genes. In this sense, although some genes of the
MAPK signaling pathway could be affected by the deregulated miRNAs observed in our
study, not all of them could be implicated in pro-inflammatory mechanisms, and these
miRNAs could exert different regulatory effects on different genes. We can speculate that
compensatory mechanisms could exist; thus, these miRNAs could trigger inflammatory
processes by other pathways. Perhaps the miRNA deregulation before and after treatment
in severe asthmatic patients has the objective of recovering the normal function of this
pathway and the correct expression of these target genes in order to reestablish the control
of asthma mechanisms. However, the specific role of these miRNAs in benralizumab
response should be studied more extensively.

5. Conclusions

Here, we report, for the first time, three miRNAs that could be used as biomarkers
of early benralizumab response in severe eosinophilic asthmatic patients. The downreg-
ulation of miR-1246, miR-5100 and miR-338-3p eight weeks after the first benralizumab
dosage could indicate a recovery of control mechanisms of asthma in these patients, and
subsequently, an improvement of their health.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com /2075-442
6/11/2/76/s1, Figure S1: Serum miRNAs levels evaluated in severe eosinophilic asthmatic patients
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