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Abstract

Among therapeutic approaches for amyloid-related diseases, attention has recently turned

to the use of natural products as effective anti-aggregation compounds. Although a wealth

of in vitro and in vivo evidence indicates some common inhibitory activity of these com-

pounds, they don’t generally suggest the same mechanism of action. Here, we show that

taxifolin, a ubiquitous bioactive constituent of foods and herbs, inhibits formation of HEWL

amyloid fibrils and their related toxicity by causing formation of very large globular, chain-like

aggregates. A range of amyloid-specific techniques were employed to characterize this pro-

cess. We found that taxifolin exerts its effect by binding to HEWL prefibrillar species, rather

than by stabilizing the molecule in its native-like state. Furthermore, it’s binding results in

diverting the amyloid pathway toward formation of very large globular, chain-like aggregates

with low β-sheet content and reduced solvent-exposed hydrophobic patches. ThT fluores-

cence measurements show that the binding capacity of taxifolin is significantly reduced,

upon generation of large protofibrillar aggregates at the end of growth phase. We believe

these results may help design promising inhibitors of protein aggregation for amyloid-related

diseases.

Introduction

Protein misfolding and its subsequent deposition in different organs and tissues may cause

serious degenerative diseases collectively known as amyloidoses, which are characterized by

the presence of long-unbranched amyloid fibrils [1]. Until recently, more than 25 human pep-

tides and proteins have been identified to form pathological amyloid aggregates [2]. Despite

few similarities in their amino acid sequences and tertiary structures, they can form amyloid

fibrils with common features in morphology and biochemical properties [3,4]. The unfolding

and assembly of these structures appear to be initiated by destabilization of their native confor-

mation, leading to formation of partially unfolded intermediates [5–8]. Based on these obser-

vations, inhibition of amyloid formation and/or clearance of fibrillar structures may provide

an effective therapeutic approach for treatment of amyloid-related diseases [5, 9–11]. Among
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various strategies developed to reduce amyloid aggregation, a simple and practical approach is

the use of synthesized or natural small molecules as aggregation suppressors, both under in
vitro and in vivo conditions. To this end, naturally-occurring polyphenols have been found to

be one of the most effective inhibitors [12,13], with their presence in daily foods [14], making

them attractive therapeutic agents.

Hen egg white lysozyme (HEWL) is commonly used as a model protein to study the mecha-

nism of amyloid fibril formation and inhibition by small molecules [15, 16]. A variety of poly-

phenols, including (−)-epicatechin gallate [17], myricetin [18], curcumin and kaempferol[19]

have been found effective. Additionally, we have recently reported that two naturally-occur-

ring polyphenols, namely rosmarinic acid and resveratrol have the capacity to inhibit HEWL

amyloid fibril formation, disaggregate preformed fibrils, and attenuate their related cytotoxic-

ity [20]. Taxifolin (also known as dihydroquercetin) is a flavonoid found in grapes, citrus

fruits, onions, green tea, olive oil, and several herbs (such as milk thistle) [21]. Besides its anti-

tumor, hepatoprotective, and anti-inflammatory activities [22], it is a potent antioxidant,

which may contribute to its cardiovascular and neuroprotective properties [23]. As for amy-

loid-related diseases, some investigators have found that taxifolin could be used as a novel

inhibitor of Aβ42 aggregation [24,25]. Moreover, Saito et al. have reported that taxifolin pre-

vents amyloid-β oligomer assembly and fully sustains cognitive and cerebrovascular function

in cerebral amyloid angiopathy model mice [26]. However, the exact mechanism by which this

natural antioxidant modulates the protein aggregation process has not been clearly under-

stood. Therefore, in the present study, the effect of taxifolin on fibrillation of HEWL was evalu-

ated. Our results clearly indicate that taxifolin effectively inhibits HEWL amyloid fibrillation

and their related toxicity via directing the HEWL aggregation process toward formation of

very large globular, chain-like aggregates. Moreover, its optimal binding to protein and the res-

idues involved were identified by performing fluorescence anisotropy and molecular docking.

Materials and methods

Material

HEWL (EC 3.2.1.17), Thioflavin T (ThT), Nile red, Congo red, and taxifolin were purchased

from Sigma (St. Louis, MO, USA). All other chemicals were obtained from Merck (Darmstadt,

Germany) and were reagent grade.

Sample preparation

Protein concentration was determined spectrophotometrically at 280 nm, using an extinction

coefficient (ε1mg/ml) of 2.63 at 280 nm [27]. Stock solution of taxifolin was prepared at 50 mM,

using dimethysulfoxide (DMSO) as solvent, and was stored at -20˚C until use. The final con-

centration of DMSO did not exceed from 0.2% in the incubating solutions containing the

highest concentration of taxifolin.

HEWL amyloid fibril formation

HEWL amyloid fibrils were prepared as previously reported with some modifications [28].

Briefly, the protein was dissolved in glycine buffer 50 mM (pH 2.2) to a final concentration of

50 μM, and aliquots were incubated at 57˚C (without or with taxifolin) while being stirred at

500 rpm to induce amyloid fibril formation. The molar ratios of taxifolin to protein used in

this study were 0.5:1, 1:1, and 2:1.

Inhibition of HEWL fibrillation by taxifolin
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Fluorescence measurements

Thioflavin T fluorescence assay. All fluorescence experiments were carried out on a Cary

Eclipse VARIAN fluorescence spectrophotometer. Formation of HEWL fibrils was monitored

by following the increase in ThT fluorescence intensity using a mixture of 2 μM protein solu-

tions and 10 μM ThT, with excitation fixed at 440 nm and emission at 482 nm. Excitation and

emission slit widths were set at 5 and 10 nm, respectively. The acquired data from ThT fluores-

cence measurements were fitted to the sigmoid curve, depicted by the following equation [29]:

F ¼ Fmin þ ð
Fmax

1þ e�
ðt� t0Þ

t½ �
Þ

where F is the fluorescence intensity at time t, Fmin and Fmax represent fluorescence intensity

at initial time and saturation phase of incubation, respectively. t is the incubation time and t0 is

the time required to obtain 50% of maximal fluorescence. The value of τ was obtained by non-

linear regression. Apparent growth rate constant (kapp) and lag phase time were determined to

be 1/τ and t0−2τ, respectively. In all experiments, ThT fluorescence measurement was done in

triplicate and the mean of the three measurements was determined.

Nile red fluorescence assay. For Nile red fluorescence measurements, aliquots of the

HEWL solutions incubated with various concentrations of taxifolin were removed at different

time intervals and diluted to a final concentration of 2.5 μM in glycine buffer (50 mM, pH 2.2)

containing 10 μM Nile red. Samples were excited at 530 nm and emission spectra were

recorded from 540–800 nm, with 5 and 10 nm slit widths for excitation and emission, respec-

tively. Nile red fluorescence experiments were performed in triplicate.

Tryptophan fluorescence assay. For tryptophan fluorescence measurements, aliquots of

the HEWL solutions incubated without or with various concentrations of taxifolin for 7 days

were removed and diluted to a final concentration of 2 μM in glycine buffer (50 mM, pH 2.2).

Samples were excited at 295 nm, and the spectrum was recorded between 300 and 400 nm,

with 5 nm slit width for both excitation and emission.

Fluorescence anisotropy measurements. Nile red fluorescence anisotropy measurements

were monitored at an excitation wavelength of 555 nm at room temperature. The fluorescence

emission (λmax = 641 nm) was recovered through a GG455 filter (Oriel) to remove the excita-

tion light scattering. For these experiments, the labeled protein (50 μM) was titrated without

or with various concentrations of taxifolin (25, 50, and 100 μM). The steady-state anisotropy

(A) is given by [30]:

A ¼
IVV � G� IVH

IVVþG� 2IVH

where IVV and IVH are the intensities measured with vertically polarized excitation, as indi-

cated by the first subscript, and detected through vertically or horizontally oriented emission

polarizers, respectively, as indicated by the second subscript. As the light is not equally trans-

mitted through both parallel and perpendicular oriented polarizers, a correction was per-

formed. The correction factor, named G factor, is measured using horizontally polarized

excitation and is given by the following expression [30]:

G ¼
IHV

IHH
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Congo red binding assay

50 μl of the HEWL solutions previously incubated at various concentrations of taxifolin for 7

days was added to 950 μl of a Congo red solution (20 μM in 5 mM potassium phosphate and

0.15 M sodium chloride, pH 7.4). After 8 h of incubation at room temperature, absorbance

spectra were recorded between 400–600 nm. The amount of bound Congo red was quantified

by CRB (M) = (A540/25295)—(A488/46306), where CRB (M) is the molar concentration of

bound Congo red, and 25295 and 46306 are the molar extinction coefficients of bound and

unbound Congo red, respectively [31].

Far-UV CD measurement

CD spectra were recorded using an AVIV 215 spectropolarimeter (Aviv Associates, Lakewood,

NJ, USA) and a 0.05 mm path cell. Aliquots of the HEWL solutions incubated at various con-

centrations of taxifolin were removed after 7 days and diluted (to final concentration of

15 μM) in glycine buffer (50 mM, pH 2.2), and the spectra were recorded in the range of 190–

260 nm. The percent of alpha helix, beta sheet, turns and unordered structures were deter-

mined for each sample using the SELCON program on the online server DICHROWEB [32].

SDS-PAGE analysis

Non-reducing SDS polyacrylamide gel electrophoresis (SDS-PAGE) was performed. Aliquots

(15μl) corresponding to 7-day-old HEWL incubated under amyloidogenic conditions, either

alone or in the presence of various concentrations of taxifolin, were taken and mixed with 5μl

of sample buffer and applied onto the gel (12%). Electrophoresis was performed at constant

voltage at 100 V. Gel was stained with 0.025% (w/v)Coomassie brilliant blue followed by multi-

ple destaining.

Atomic force microscopy

Aliquot of HEWL samples incubated at different concentrations of taxifolin for 7 days were

removed and diluted 25 fold with deionized water. Then, 10 μl of diluted sample was placed on

freshly cleaved mica and dried at room temperature. Images were acquired in non-contact

mode using a quantitative Atomic Force Microscopy (ARA-AFM, Ara-Research Company,

Iran). Images were processed using Imager (version 1.01, Ara-Research Company). The diam-

eter of 5 particles was measured randomly and the average and standard deviations were then

calculated.

Dynamic light scattering

All measurements were carried out using a zeta potential and particle size analyzer (Brookha-

ven Instrument, Holtsville, NY11742-1896, USA). For size distribution measurements, ali-

quots of samples incubated without or with various concentrations of taxifolin, at a final

concentration of 5μM, were filtered through a 0.2 μm syringe filter followed by illumination

by a laser of 657 nm with a fixed detector angle of 90˚ at RT. DLS experiments were performed

at least in triplicate.

MTT assay

Human neuroblastoma SH-SY5Y cells, obtained from Pasteur Institute (Tehran, Iran), were

cultured in DMEM-F12 medium, supplemented with 10% fetal bovine serum, streptomycin

(100 μg/ml) and penicillin (100U/ml), and kept at 37˚C in a 5% CO2 humidified atmosphere.

Growth medium was changed three times a week. Cells were seeded in 96-well plate at a

Inhibition of HEWL fibrillation by taxifolin
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density of 2 × 104 cells/well, and the medium was changed before incubation with HEWL amy-

loid aggregates. For cytotoxicity experiments, protein samples taken from solutions incubated

with various concentrations of taxifolin (0–100 μM) under amyloidogenic conditions were

added to the cells (in a final concentration of 10 μM) and left for 24 h. Cells treated with 50

mM glycine buffer (pH 2.2) was used as control. Then, 10 μl of MTT stock solutions (5 mg/ml

in PBS) were added to 100 μl of DMEM-F12 containing 10% fetal bovine serum, followed by

incubation for 3 h. Solutions were aspirated, and cells were treated with DMSO for 15 min, fol-

lowed by absorbance reading at 570 nm on an ELISA reader (Expert 96, Asys Hitch, Ec Aus-

tria). Results were expressed as percentage of MTT reduction relative to the control cells,

assuming that the absorbance of the control cells was 100%. All measurements were made in

triplicates.

Molecular docking study

For molecular docking calculations, the crystal structure of the HEWL was obtained from the

Protein Data Bank (PDB ID: 3WUN) and the structure of the ligand taxifolin was obtained

from zinc database (ZINC ID:105082). Prior to docking, all water molecules were removed

from the PDB file. Using Auto Dock tools 1.5.6 Program [33], all hydrogen atoms were also

added to the protein, and Kollman and Gasteiger charges were used for HEWL and taxifolin,

respectively. Throughout the dockings, the protein molecule was set to be rigid while the

ligand molecule was considered to be flexible, and one active bond of the ligand was set rotat-

able. The grid volume was arranged big enough to cover the entire surface of the protein. A

total of 100 runs were performed to more accurately find the most appropriate binding site

holding the lowest binding energy (calculated using the Autodock scoring function). After ver-

ifying the residues lining this binding site (Asp52, Gln57, Ile58, Asn59, Trp62, Trp63, Ile98,

Asp101, and Trp108), they were set flexible for another 250 runs of molecular dockings to fur-

ther define the role of the protein residues involved in the interaction with ligand. Finally, the

ligand pose with the lowest binding energy score was selected as the best binding mode to

HEWL. The secondary-structure images were created using VMD 1.9.3 [34].

Result and discussion

In recent years, various synthetic and naturally-occurring compounds have been introduced

as potent inhibitors of amyloid fibril formation[5,9–11,35,36]. However, the majority of these

molecules may not serve as effective therapeutic leads due to their toxicity and/or poor blood-

brain barrier permeability. In the present study, we investigated the anti-amyloidogenic effects

of taxifolin, a naturally occurring polyphenols commonly present in the human diet, with no

detectable toxicity [21,26,37]. To determine if taxifolin may influence HEWL fibril formation,

various concentrations of this compound were added to the incubation medium. The amyloid

fibrillation process was then investigated by employing a number of techniques. Our results

demonstrated that taxifolin effectively inhibited HEWL fibril formation and its related cyto-

toxicity in a concentration-dependent manner. To further decipher its mechanism of action in

hindering HEWL fibrillogenesis, a range of amyloid-specific techniques were utilized. Finally,

fluorescence anisotropy and molecular docking were performed to further characterize the

process.

Effect of taxifolin on HEWL amyloid fibril formation

ThT fluorescence assay was carried out to monitor growth of HEWL amyloid fibrils and to

examine the effect of taxifolin on the rate of fibril formation. Kinetics of HEWL amyloid for-

mation in the absence and presence of taxifolin (25, 50, and 100 μM) are shown in Fig 1A,

Inhibition of HEWL fibrillation by taxifolin
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indicating a concentration-dependent decrease in ThT fluorescence. In accord with our previ-

ous reports [20,28], HEWL displayed a nucleated polymerization mechanism, in agreement

with the nucleation dependent polymerization of other amyloidogenic peptides and proteins

[38–40].

Fig 1. Effects of taxifolin on the kinetics of HEWL amyloid fibrillation as monitored by ThT

fluorescence assay. (A) Protein samples (50 μM) were incubated in 50 mM glycine buffer (pH 2.2) at 57˚C

either alone (●) or with 25 (�), 50 (♦), or 100 (^) μM taxifolin. Each experiment was performed in triplicate. (B)

Taxifolin (at a final concentration of 100 μM) was added immediately (▲), or after regular time intervals of 12

(4), 24 (●), 36 (^), and 48 (�) hours, followed by ThT fluorescence measurements. HEWL incubated alone

(♦) was also indicated as control.

https://doi.org/10.1371/journal.pone.0187841.g001
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Meanwhile, presence of higher concentrations of taxifolin (up to 200 μM), did not lead to

any significant reduction in ThT fluorescence intensity (Figure A in S1 File). The ThT fluores-

cence kinetics analyses indicated that the lag time of HEWL fibrillation was slightly increased

at 25 and 50 μM (Table 1).

For samples incubated with 100 μM of taxifolin, the lag time could not be determined since

aggregation was significantly hindered (Fig 1A and Table 1). A dose-dependent reduction in

the final amplitude and apparent growth rate constant (kapp) of the fibrillation curves were

observed (Table 1). These results indicated that taxifolin effectively suppressed HEWL fibril

formation without significant changes on the onset of the fibrillation process, suggesting that it

has the capacity to interact with prefibrillar species.

To test this hypothesis, the protein was placed under amyloidogenic conditions, and taxifo-

lin (at a final concentration of 100 μM) was added either immediately or after regular time

intervals of 12, 24, 36, and 48 hours (corresponding to the middle of lag time, and beginning,

middle, and end of the growth phase, respectively), followed by ThT fluorescence measure-

ments up to 6 days. As depicted in Fig 1B, incubation with taxifolin led to a significant reduc-

tion in fluorescence intensity. However, its inhibitory effect was considerably reduced when

added after 48 h of incubation. Based on this observation, it is suggested that taxifolin exerts its

inhibitory effects by binding to species produced at the early stages of HEWL aggregation,

which is in accord with earlier reports on studies involving a number of peptides and proteins

[13, 41–43]. However, in the course of growth of amyloidogenic species and generation of

large protofibrillar aggregates, the binding capacity of taxifolin was significantly reduced

(Fig 1B).

Congo red binding assay, as a complementary evaluation of amyloid fibril formation, was

performed to probe the presence of β-sheet structures associated with amyloid fibrils. As

shown in Fig 2, a marked enhancement in Congo red absorbance accompanied with a red shift

was observed upon 7 days of incubation. Moreover, a second shoulder peak at around 540 nm,

indicative of a strong binding affinity between Congo red and HEWL, was also observed, signi-

fying the presence of a substantial amount of amyloid fibrils [44]. However, this was effectively

prevented by taxifolin in a concentration dependent manner (Fig 2 and Table A in S1 File).

Fig 3 shows AFM images of HEWL, incubated for 7 days under amyloidogenic conditions.

As illustrated in Fig 3A, in the absence of taxifolin, well-defined mature fibrils with typical

amyloid morphology were formed. Interestingly, we observed various types of amyloid fibrils

in control samples, including straight, worm-like and rope-like fibrils, and annular structures

(Fig 3A and Figure B in S1 File). On the other hand, in protein samples incubated with 25 μM

taxifolin, formation of such fibrillar structures was prominently inhibited, with the appearance

of small protofibrillar structures (Fig 3B). In the presence of 50 μM taxifolin, even these struc-

tures disappeared, and instead, amorphous aggregates with various diameters (up to 1000 nm)

were observed (Fig 3C). In samples containing 100 μM taxifolin, very large globular, chain-like

aggregates with diameters of approximately 500–1000 nm (with an average diameter of

Table 1. Effect of taxifolin on the kinetics parameters of HEWL fibrillization determined by ThT fluorescence assay.

Kapp (h-1) Lag time (h) Amplitude (a.u.)

0 μM taxifolin 3.32 ± 0.22 27.25 ± 1.78 119.00 ± 7.81

25 μM taxifolin 1.14 ± 0.07 28.04 ± 1.86 51.20 ± 3.41

50 μM taxifolin 1.28 ± 0.13 27.93 ± 2.84 41.53 ± 4.22

100 μM taxifolin 0.55 ± 0.10 -a 18.42 ± 3.54

aThe lag time could not be determined in the presence of 100 μM taxifolin since aggregation was not observed.

https://doi.org/10.1371/journal.pone.0187841.t001
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765 ± 47.2 nm)were seen (Fig 3D and 3E). Similar to this observation, large chain-like assem-

blies were observed in the bis(heptyl)-cognitin-treated Aβ samples [45]. This was a further

confirmation that in the presence of taxifolin, formation of mature fibrillar structures was

strongly inhibited.

Fig 2. Congo red binding absorption spectra of HEWL in the absence and presence of taxifolin.

Protein samples (50 μM) were incubated in 50 mM glycine (pH 2.2) at 57˚C either alone (●) or with 25 (�), 50

(♦), or 100 (^) μM taxifolin for 7 days. Congo red absorbance alone and in the presence of HEWL monomer

are indicated by (4) and (▲), respectively.

https://doi.org/10.1371/journal.pone.0187841.g002

Fig 3. AFM images of HEWL incubated without or with taxifolin. Protein samples (50 μM) were incubated

in 50 mM glycine (pH 2.2) at 57˚C either alone (A) or with different concentrations of 25 (B), 50 (C), and 100

(D) μM taxifolin for 7 days. (E) An enlarged view of (D). The scale bars represent 500 nm (A-C), 2000 nm (D),

and 400 nm (E).

https://doi.org/10.1371/journal.pone.0187841.g003
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Finally, SDS-PAGE and DLS experiments were employed to explore size distribution of

HEWL species. Aliquots of the samples without or with taxifolin were withdrawn at 0 and 7

days of incubation and subjected to SDS-PAGE. As shown in Fig 4, the protein incubated

alone displayed both high molecular weight assemblies (corresponding to amyloid fibrils)

trapped in the well of the stacking gel and a range of low-molecular weight bands corre-

sponding to acid-induced hydrolysis of the monomeric structure[46,47]. A similar pattern

was observed for samples containing 25 and 50 μM taxifolin, indicating that the polyphenol

did not protect the protein against acidic proteolysis at these concentrations. However, the

high molecular weight assemblies were not detected in samples containing 50 μM taxifolin

and at 100 μM concentration, only the band corresponding to native HEWL appeared in the

gel (Fig 4). Interestingly, no band corresponding to the large aggregates produced in the

presence of 100 μM taxifolin (Fig 3D and 3E) was observed, presumably due to disaggre-

gation of these assemblies by SDS (data not shown), similar to those reported for other pro-

teins [48].

Fig 5 shows a typical distribution of the hydrodynamic radii of protein samples incubated

with various concentrations of taxifolin. As indicated in Fig 5A, after 7 days incubation under

amyloidogenic conditions, control samples formed typical amyloid fibrils, showing an average

diameters of 1157 and 9243 nm, indicative of formation of prefibrillar and mature fibrils,

respectively. On the other hand, a dose-dependent decrease in diameter was observed in

samples containing increasing amounts of taxifolin (Fig 5B–5D), suggesting inhibition of

amyloid fibril formation. We suggest that globular morphology of species produced in the

presence of 100 μM taxifolin may be account for smaller hydrodynamic radius of these aggre-

gates (Fig 5D).

Fig 4. SDS-PAGE analysis of HEWL samples alone or with various concentrations of taxifolin at day 0

(lanes 2, 5, 7, and 9) and day 7 (lanes 3, 4, 6, and 8). The lanes are: lane 1: protein marker; lanes 2 and 3:

HEWL alone; lanes 4 and 5: HEWL with 25 μM taxifolin; lanes 6 and 7: HEWL with 50 μM taxifolin; lanes 8 and

9: HEWL with 100 μM taxifolin. SDS-PAGE analyses were performed under non-reducing conditions.

https://doi.org/10.1371/journal.pone.0187841.g004
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Effects of taxifolin on structural/conformational changes of HEWL

To investigate whether structural/conformational changes of HEWL brought about by the

amyloidogenic conditions (acidic pH and high temperature) could be protected by taxifolin,

far-UV CD spectra, Nile red and tryptophan fluorescence studies were carried out. As indi-

cated in Fig 6, far-UV CD spectrum of native HEWL was changed from a predominant α-

Fig 5. Size distribution of HEWL incubated without or with taxifolin. Protein samples, incubated with

various concentrations of taxifolin for 7 days, were diluted to a final concentration of 5 μM followed by DLS

measurements. Data presented in the inset (A) indicates the size of HEWL monomer.

https://doi.org/10.1371/journal.pone.0187841.g005

Fig 6. Far-UV CD spectra of HEWL in the absence and presence of taxifolin. Protein samples (50 μM)

were incubated in 50 mM glycine (pH 2.2) at 57˚C, either alone (●) or with 25 (�), 50 (♦), or 100 (□) μM taxifolin

for 7 days. CD spectrum of HEWL monomer is indicated by (▲).

https://doi.org/10.1371/journal.pone.0187841.g006
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helical to a β-sheet-rich structure, characterized by a major negative peak at around 216 nm.

None of the taxifolin concentrations afforded complete protection, although the characteristic

change of the spectrum-namely the appearance of a large negative peak around 216 nm-was

significantly hindered in the presence of taxifolin (Fig 6).

A summary of the secondary structure contents of HEWL have also been provided in

Table 2. While all taxifolin-containing incubations showed a decrease in β-sheet content, in

the case of 50 and 100 μM taxifolin, a significant reduction in α-helical content and a concomi-

tant increase in unordered fraction was also observed. These results indicated that HEWL

structural changes from native to a partially-unfolded structure have not been inhibited by

taxifolin (Table 2).

It is well-established that incubation of HEWL under amyloidogenic conditions induces

conformational changes, characterized by exposure of hydrophobic regions on the surface of

protein [28,49]. For samples incubated with taxifolin, a pronounced dose-dependent decrease

in Nile red fluorescence intensities was observed which was accompanied by a shift to longer

wavelengths (Fig 7 and Figure C in S1 File). This finding may be explained by the ability of

taxifolin to bind hydrophobic surfaces, as observed for other polyphenols [50,51]. It appears

Table 2. The secondary structure contents of HEWL incubated alone or with various concentrations of taxifolin for 7 days under amyloidogenic

conditions.

α-helix β-sheet Turn Unordered

Fresh HEWL 35 18 23 24

0 μM taxifolin 15 35 29 21

25 μM taxifolin 16 27 24 33

50 μM taxifolin 6 21 27 46

100 μM taxifolin 7 18 31 44

https://doi.org/10.1371/journal.pone.0187841.t002

Fig 7. Effect of taxifolin on surface hydrophobicity of HEWL. Protein samples (50 μM) were incubated in

50 mM glycine (pH 2.2) at 57˚C either alone (●) or with 25 (�), 50 (♦), or 100 (^) μM taxifolin and Nile red

fluorescence intensity was measured after regular time intervals up to 7 days. Each experiment was

performed in triplicate.

https://doi.org/10.1371/journal.pone.0187841.g007
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therefore that blocking hydrophobic patches may be one of the mechanisms by which taxifolin

inhibits HEWL amyloid fibrillation, in accordance with previous reports [13,20,52,53].

For a better interpretation of our observations, tryptophan fluorescence, which is more sen-

sitive to tertiary structural changes, was measured. As shown in Fig 8, a red-shift in fluores-

cence emission with an increase in its intensity, indicative of a conformational change in the

polar environment of the protein and a partial loss of its native tertiary structure, was observed

in control samples. Although the presence of taxifolin somewhat reduced the intensity of tryp-

tophan fluorescence emission, none of the concentrations employed inhibited the transition to

longer wavelengths (Fig 8), suggesting that HEWL structural changes were not inhibited, in

accord with our far-UV CD data (Fig 6). Taken together, these observations suggest that taxi-

folin displays its inhibitory effects by redirecting the HEWL aggregation pathway toward for-

mation of very large globular aggregates with low β-sheet content and reduced solvent-

exposed hydrophobic patches.

Characterization of HEWL-taxifolin interaction

Fluorescence anisotropy, and molecular docking analyses were utilized to gain further insights

into interaction of taxifolin with HEWL.

Fluorescence anisotropy was used to confirm the interaction between taxifolin and Nile

red-labeled HEWL. The fluorescence anisotropy value of Nile red-labeled HEWL in the

absence of taxifolin was 0.3305 ± 0.0345 (Table 3). Upon addition of taxifolin a significant

decrease in the measured anisotropy was observed (Table 3), suggesting interaction of taxifolin

with HEWL. This decrease maybe due to a distinct conformation of protein, induced by taxifo-

lin, in which energy transfer occur between two or more probes, leading to a lower anisotropy

for the acceptor probe [54].

In order to further characterize the interaction between HEWL and taxifolin, molecular

docking was performed. The best binding energy score of -7.69 kcal mol-1 obtained from

Fig 8. Effect of taxifolin on the tertiary structural changes of HEWL. Protein samples (50 μM) were

incubated in 50 mM glycine (pH 2.2) at 57˚C either alone (●) or with 25 (�), 50 (♦), or 100 (^) μM taxifolin for 7

days, followed by tryptophan fluorescence intensity measurements. Tryptophan fluorescence of HEWL

monomer is indicated by (▲).

https://doi.org/10.1371/journal.pone.0187841.g008
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docking runs corresponded to a putative binding site located in the cleft, between the α and β
domains, which has shown to lie the HEWL active site [55] (Fig 9A). As shown in Fig 9B, this

binding site was surrounded by six residues of HEWL β-domain (Asp52, Gln57, Ile58, Asn59,

Trp62 and Trp63) and by three residues of HEWL α-domain (Ile98, Asp101 and Trp108). The

β-domain of HEWL has been shown as the aggregation-prone region of the protein [46, 56].

More specifically, according to Tokunaga et al. residues 54−62 in the β-domain of HEWL act

as the aggregation core for amyloid fibril formation [57]. In this core segment, taxifolin has

formed a hydrogen bond with Asn59 while its phenyl ring has established π-π interaction with

the indole ring of Trp62 (Fig 9B). Curcumin and kaempferol have also been suggested to have

similar π-π interactions with this residue [19]. The fact that taxifolin has displayed a binding

to the aggregation-prone HEWL β-domain has also been reported in previous studies investi-

gating other polyphenols, including myricetin [18], curcumin [19, 58], kaempferol [19],

quercetin, and resveratrol [59]. Interestingly, the interaction with Asn59 and Trp62 in the

aggregation-prone β-domain of HEWL could explain the conformational changes detected by

anisotropy measurement(Table 3).

Cytotoxicity of HEWL aggregates

To examine toxicity of aggregates produced in the presence of taxifolin, MTT assay was per-

formed on SH-SY5Y cells exposed to protein samples incubated with increasing amounts (0–

100 μM) of taxifolin for 7 days. While no cytotoxicity was detected for HEWL monomer, cell

viability decreased significantly after a 24h exposure to HEWL amyloid fibrils (Fig 10). For

samples incubated with 25 μM taxifolin also a marked cytotoxicity was found, suggesting

Fig 9. Binding mode of taxifolin to HEWL. (A) The active site of HEWL as the optimal binding site for

taxifolin. Taxifolin is depicted in cyan in stick model. Protein backbone of HEWL is shown in cartoon model.

The N-terminal of HEWL is displayed on top (LYS1). The secondary structure of HEWL is depicted as

follows: β-strand: yellow; α-helix: purple; 3/10 helix: blue; random coil: white; turn: pink. (B) HEWL residues

surrounding taxifolin are shown with numbers. Hydrogen bond within 1 Å is represented as dotted green line

formed between taxifolin and Asn59. The π-π interaction is shown as yellow tubes between taxifolin and

Trp62.

https://doi.org/10.1371/journal.pone.0187841.g009

Table 3. Anisotropy of Nile red-labeled HEWL before and after addition of various concentrations of

taxifolin.

Measured anisotropy

HEWL 0.3305 ± 0.0345

HEWL-25 μM taxifolin 0.1586 ± 0.0030

HEWL-50 μM taxifolin 0.1610 ± 0.0070

HEWL-100 μM taxifolin 0.1760 ± 0.0030

https://doi.org/10.1371/journal.pone.0187841.t003
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toxicity of small protofibrillar structures (Figs 3B and 10). However, in the present of 50 and

100 μM taxifolin, the cell viability was rescued to 85 ± 3.66 and 97 ± 14.05 (Fig 10), respec-

tively, indicating that related aggregates are significantly nontoxic. As exposure of hydropho-

bic patches in the course of protein aggregation is a crucial and common feature of misfolded

toxic species [28,60], we suggest that the presence of taxifolin inhibits the exposure of hydro-

phobic regions, as indicated by Nile red fluorescence measurements (Fig 7), leading to forma-

tion of non-toxic aggregate species.

Mechanism of HEWL fibrillation inhibition by taxifolin

There are many reports demonstrating that polyphenols are effective inhibitors of protein

fibrillation [12,13,17–20], through interaction with one or more of the amyloidogenic species,

produced during the course of the aggregation process. For instance, some polyphenols pre-

vent amyloid formation by interacting with and stabilizing native structure of proteins

[47,58,61]; while others bind to prefibrillar structures and redirect amyloidogenic polypeptides

into unstructured, off-pathways oligomers [62], or toward an alternative non-toxic disordered

(amorphous) aggregation pathway [20]. Recently, Hirohata et al. showed they may exert their

anti-amyloidogenic effects through binding to monomer, oligomer and fibrillar structures of

Aβ [63]. For taxifolin, our flexible docking results demonstrated a specific binding site in a

HEWL cleft, as outlined above. Fluorescence anisotropy measurement also indicated the inter-

action between taxifolin and Nile red-labeled HEWL (Table 3), which was in accord with the

docking results. Based on these findings, it is reasonable to propose that taxifolin may exert its

inhibitory effects through preferential binding to and stabilizing the native state of HEWL,

thereby protecting the protein against conformational changes. However, results obtained by

far-UV CD and tryptophan fluorescence measurements demonstrated that both secondary

and tertiary structural changes of HEWL brought about by the amyloidogenic conditions

Fig 10. Cytotoxicity of HEWL aggregates produced in the absence and presence of taxifolin. SH-SY5Y

cells were treated with HEWL fibrils aged alone or in the presence various concentrations of taxifolin for 24 h.

The data were expressed as percentage of values in untreated control cells and each value represents the

mean ± SD(n = 3). **p<0.005, significantly different from control cells.##p<0.005, significantly different from

cells exposed only to HEWL fibrils.

https://doi.org/10.1371/journal.pone.0187841.g010
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(acidic pH and high temperature) were not inhibited in the presence of taxifolin, even in sam-

ples containing 100μM polyphenol (Figs 6 and 8, and Table 2). Taking these findings, it seems

quite unlikely that protecting the native protein from structural changes to be taxifolin’s mech-

anism of action. One may therefore ask what is the mechanism by which taxifolin inhibits

HEWL amyloid fibril formation?

Since an increase in the total protein concentration led to a decrease in the inhibitory effect

of taxifolin (Figure D in S1 File), we suggest that a step involving an association reaction is

affected[64]. Formation of very large globular, chain-like aggregates (Fig 3D and 3E) explicitly

rules out the possibility of the HEWL fibrillation pathway being redirected into formation of

off-pathway oligomers or amorphous aggregates, as the mechanism of action of taxifolin. On

the other hand, the fact that the lag phase of fibril formation was not affected by the presence

of taxifolin (Fig 1A and Table 1) suggests that it may inhibit amyloid formation by acting on

species produced after this stage of the fibrillation process. Interestingly, when the polyphenol

was added after regular time intervals of incubation, we observed a significant decrease in the

ThT fluorescence intensity (Fig 1B), making this proposition likely. However, HEWL-binding

features of taxifolin were largely reduced concomitant with the generation of large protofibril-

lar aggregates (Fig 1B), presumably due to decrement of structural flexibility in the course of

amyloid fibril formation [28]. Thus, it appears that inhibition of HEWL amyloid fibrillation

occurs by binding of taxifolin to prefibrillar species that lie directly in the course of fibril for-

mation. We suggest this binding of taxifolin to hydrophobic surfaces, exposed in the course of

the fibrillation process, shifts the equilibrium in the aggregation pathway by promoting the

formation of very large globular aggregates, with low content of surface-exposed hydrophobic

regions (Figs 3D, 3E and 7). It remains unclear how taxifolin promotes conversion of HEWL

prefibrillar species into very large globular, chain-like aggregates, instead of formation of off-

pathway conformers, or large amorphous aggregates, a mechanism displayed by some other

polyphenols [20,47,58,60–62]. As the protein bears a net positive charge under acidic condi-

tion used for amyloid fibrillation, a probable reason for generation of such chain-like assem-

blies is the existence of repulsive forces between the aggregate species that cause the aggregates

to find the configuration in which repulsive forces are minimized, i.e., the arrangement of

aggregates in a linear chain. Thus, small molecules, including polyphenols, may exert their

Fig 11. Schematic presentation of a possible mechanism of action on the HEWL amyloid fibril

formation. Taxifolin alters the HEWL amyloid assembly pathway yielding very large globular, chain-like

aggregates.

https://doi.org/10.1371/journal.pone.0187841.g011
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inhibitory effects on various stages of fibrillations, and with different mechanisms. Such diver-

sity of action may lead to the formation of aggregate species with very distinct conformations,

morphologies and toxic properties.

Conclusion

In the present study, taxifolin was found to effectively inhibit amyloid fibrillation of HEWL.

Our results suggest that it binds to prefibrillar species produced in the course of the aggrega-

tion process with the capacity of redirecting the protein fibrillation pathway toward formation

of very large globular assemblies, arranged in a chain-like structure (Fig 11). Moreover, cyto-

toxicity experiments showed that these large assemblies induced by taxifolin are totally non-

toxic compared to amyloid fibrils produced in the absence of taxifolin. The results presented

may be useful for gaining a deeper insight into possible mechanisms of amyloid fibrillation

inhibition by taxifolin and may provide useful guidelines in relation to screening for novel

inhibitors.

Supporting information

S1 File. Figure A. ThT fluorescence intensity of HEWL (50 μM) in the presence of various

concentrations of taxifolin (0–200 μM). Samples were incubated in 50 mM glycine (pH 2.2)

at 57˚C for 7 days. Figure B. AFM images of HEWL (50 μM) incubated alone in 50 mM gly-

cine buffer (pH 2.2) at 57˚C for 7 days. Arrows from left to right indicate worm-like fibrils,

rope-like fibrils, and annular structures, respectively. The scale bars represent 500 nm.

Figure C. Effect of taxifolin on the surface hydrophobicity of HEWL. Protein samples

(50 μM) were incubated in 50 mM glycine (pH 2.2) at 57˚C either alone (●) or with 25 (�),

50 (♦), or 100 (^) μM taxifolin for 7 days followed by Nile red fluorescence measurement. The

changes in the Nile red fluorescence emission spectrum after treatment with native HEWL is

also provided (▲). Figure D. The influence of total protein concentration on the inhibitory

effect of taxifolin on HEWL fibrillation. This was measured by monitoring the ThT fluores-

cence emission decrement observed after 7 days of incubation in the presence of 100 μM

taxifolin, as compared to that found in its absence. Table A. Quantification of Congo red

binding. HEWL was incubated alone or with various concentrations of taxifolin for 7 days

under amyloidogenic conditions.
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