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Abstract: COVID-19 has threatened the existence of humanity andthis infection occurs due to SARS-
CoV-2 or novel coronavirus, was first reported in Wuhan, China. Therefore, there is a need to
find a promising drug to cure the people suffering from the infection. The second wave of this
viral infection was shaking the world in the first half of 2021. Drugs Controllers of India has
allowed the emergency use of 2-deoxy-D-glucose (2DG) in 2021 for patients suffering from this viral
infection. The potentiality of 2-deoxy-D-glucose to intervene in D-glucose metabolism exists and
energy deprivation is an effective parameter to inhibit cancer cell development. Once 2DG arrives
in the cells, it becomes phosphorylated to 2-deoxy-D-glucose-6-phosphate (2-DG6P), a charged
molecule expressively captured inside the cells. On the other hand, 2DG lacks the ability to convert
into fructose-6-phosphate, resulting in a hampering of the activity of both glucose-6-phosphate
isomerase and hexokinase, and finally causing cell death. Hence, the potential and effectiveness
of 2DG with the main protease (Mpro) of novel coronavirus (nCoV) should be investigated using
the molecular docking and molecular dynamics (MD) simulations. The ability of 2DG to inhibit
the Mpro of nCoV is compared with 2-deoxyglucose (2DAG), an acyclic molecule, and 2-deoxy-
D-ribose (2DR). The binding energy of the molecules with the Mpro of nCoV is calculated using
molecular docking and superimposed analysis data is obtained. The binding energy of 2DG, 2DR
and 2DAG was −2.40, −2.22 and −2.88 kcal/mol respectively. Although the molecular docking
does not provide reliable information, therefore, the binding affinity can be confirmed by molecular
dynamics simulations. Various trajectories such as Rg, RMSD, RMSF, and hydrogen bonds are
obtained from the molecular dynamics (MD) simulations. 2DG was found to be a better inhibitor than
the 2DAG and 2DR based on the results obtained from the MD simulations at 300 K. Furthermore,
temperature-dependent MD simulations of the Mpro of nCoV with promising 2DG was performed at
295, 310 and 315 K, and the effective binding with the Mpro of nCoV occurred at 295 K. With the use
of DFT calculations, optimized geometry and localization of electron density of the frontier molecular
orbitals were calculated.

Keywords: 2-deoxy-D-glucose; main protease of SARS-CoV-2; molecular docking; molecular dynamics
simulations; density functional theory calculations
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1. Introduction

SARS-CoV-2 has recently received much attention around the world and has been
proclaimed a global health emergency. Infection due to novel coronavirus was first reported
in Wuhan, China, in December 2019. The genome has a spherical or pleomorphic form that
is encased in a glycoprotein structure on its surface [1–3]. As COVID-19 cases keep rising
exponentially during the waves (1st and 2nd), researchers are working to test antivirals and
other therapies in parallel to other interventions [4]. Till date, there is currently no promising
and cost-effective medications to treat COVID-19 infection. Researchers are currently working
on the development of therapeutic medications to cure coronavirus infections and bring life
back to normal [5–7]. Remdesivir, hydroxychloroquine and many more options have been
reported to be promising molecules against the viral infection [8–15]. Several mutations in
the SARS-CoV-2 have been reported and found to be more infectious than previous ones.
The infections due to the mutated virus have shaken the world. On 8 May 2021, the Drugs
Controller General of India (DCGI) gave the green light for the emergency use of 2-deoxy-D-
glucose (2DG) against the infection due to the SARS-CoV-2. Several trials by the Deference
Research and Development Organization (DRDO) and Dr. Reddy’s Laboratory, India, were
made in several hospitals across India. They found 2DG to be a safe and promising drug
for patients with COVID-19. 2DG was administered to patients and produced a positive
response; it became independent of additional oxygen. 2DG preserves healthy cells by
lowering fixation operations. 2DG is being administered because it does not involve in
glycolysis and inhibits the phosphorylation of glucose to produce glucose-6-phosphate.
The function of hexokinase-2 (HK2) in connecting ATP from oxidative phosphorylation to
the rate-limiting step of glycolysis may aid tumor cell growth. Inhibiting HK2 has been
shown to boost the efficacy of anti-cancerous medication and sensitive resistant cells. It
plays an important role as a marker in glucose uptake and hexokinase activity [16,17].
Generally, tumor cells have the ability to take more glucose, and therefore to take 2DG
in large amounts, hampering the growth of cancer or tumor cells [18–20]. Therefore, it
may be considered a safe molecule mainly for people below 40 years and the patients does
not requite additional oxygen [16,21–25]. Localization of electron density on 2DG can be
determined by performing density functional theory (DFT) calculations, and it can predict
the electrophilic and nucleophilic sites. DFT calculations are also used to obtain information
on the electronic structure of the molecule, as well as the energies and spectroscopic data,
including NMR, IR and UV spectra [26,27]. The binding efficiency of molecule and ligands
can be studied with molecular docking. PARDOCK is a widely accepted computational tool
used in molecular docking to predict the binding affinity between the proteases and ligands.
The process is to ascertain about the set of molecules could favorably fit in the binding
pocket of protease/receptor or not. Additionally, there is a possibility of forming various
interactions such as hydrogen bonds between the protease and ligand [28]. Molecular
dynamics (MD) simulation is based on numerical solving equations; it is expressed with
physical laws that involve molecular interactions. One of the most popular and accepted
tools for MD simulations is GROMACS for better understanding of the formation of the
complex between the protease and ligand [29–31].

In this work, molecular docking and MD simulations (300 K) were performed to
investigate the potential of 2-deoxy-D-glucose (2DG—a cyclic molecule), against the inhi-
bition of the main protease of SARS-CoV-2. The results were compared with those from
2-deoxyglucose (2DAG), an acyclic molecule with the same number of carbon atoms, as well
as with 2-deoxy-D-ribose (2DR). Furthermore, temperature-dependent MD simulations of
the Mpro of nCoV with 2DG was performed to know the inhibition. DFT calculations of
2DG, 2DAG and 2DR were performed to find various energies, the localization of electron
density on FMO, and the dipole moment in the gaseous state as well as in water.
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2. Materials and Methods
2.1. Designing of the Ligands

The structures of the three molecules, namely 2-deoxy-D-ribose (2DR—cyclic form of
ribose), 2-deoxy-glucose (2DAG—acyclic form of glucose) and 2-deoxy-D-glucose (2DG—
cyclic form of glucose), as shown in Figure 1, were drawn using Chemdraw [32]. The crystal
structure of the main protease of the SARS-CoV-2 was taken from the RCSB (PDB-6LU7) and
the structure was prepared using ChimeraX (http://www.cgl.ucsf.edu/chimera (accessed on
11 May 2021 and 8 August 2021)). The structure of the protein/receptor/Mpro of nCoV was
opened in Chimera and the ligands presented in the pdb were removed. Molecules of solvent
in the pdb were deleted. Selenomethionines were replaced by the methionines and charges
were assigned. Further, hydrogens were added to justify the valency on the atom in the main
protease of nCoV [33,34].
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Figure 1. Structures of 2-deoxy-D-ribose ((2DR), 2-deoxy-glucose (2DAG) and 2-deoxy-D-glucose
(2DG)).

2.2. Molecular Docking

Molecular docking is a computational tool used to study the binding of a ligand
with a protein/receptor. Effective docking algorithms efficiently explore high-dimensional
spaces and employ a scoring system that rates candidate docking. When a ligand binds
to the target, docking expresses the results in the form of physical data, that is, binding
energy [35–41]. Many tools for performing molecular docking are available; some of the
widely accepted tools are MolDock, iGemdock, ParDock, GOLD, LeDock, etc. In this work,
ParDock was used for finding the binding between the molecules and protease [42,43].
It comprises protein–ligand docking techniques based on best fitting of the ligand in the
cavity of the protein or receptor. [44–46]. The protease was prepared using the chimera,
and the addition or deletion of atoms, etc., was performed. The targeted protein was first
purged of water, metals, and ligand molecules before being used for molecular docking [34].

2.3. Molecular Dynamics (MD) Simulations

MD simulations have been extensively used to investigate the conformation changes,
stability and protein–ligand interactions in the complex. It can be performed using various
tools. Generally, the MD simulations of the protein–ligand complex are performed by
AMBER and GROMACS. In this work, we explored GROMACS, which is used via an
online server WEBGRO. It was created by Simlab and made available to academics. (https:
//simlab.uams.edu/index.php (accessed on 11 May 2021 and 8 August 2021)) Herein, the
PDB taken (6lu7) was prepared as per the instruction given on the website, and the topology
of the molecules was created by using their associated webserver, named PRODRG (http:
//davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg (accessed on 11 May 2021 and 8 August
2021)). The data from the docked molecules was taken and fed to the PRODRG server
to obtain the zip file, as per the information available. To perform the MD simulations,
GROMOS96 43a1, SPC, Triclic were taken as the force field, water model and box type,
respectively. Initially, the MD simulations were performed at 300 K to screen the molecules
(2DG, 2DAG and 2DR). It provided different trajectories: root mean square deviation

http://www.cgl.ucsf.edu/chimera
https://simlab.uams.edu/index.php
https://simlab.uams.edu/index.php
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg


Pharmaceutics 2022, 14, 135 4 of 16

(RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and hydrogen
bonds (HBs). These are the key indicators to visualize the structural features with the
movement trajectories. With the help of these trajectories, one can discuss the inhibition of
the main protease of SARS-CoV-2 using different promising molecules (2-deoxy-D-ribose,
2-deoxy-glucose and 2-deoxy-D-glucose) [30,47–50]. Then, the temperature-dependent MD
simulations were performed for the Mpro of nCoV in presence of screened molecule using
the same conditions [51,52].

2.4. Density Functional Theory (DFT)-Based Calculations

DFT calculations used in various fields for estimating the electronic structure of a
multibody system. Gaussian 16 is used to perform DFT calculations. DFT with Becke’s
three-parameter exchange functional and the Lee–Yang–Paar correlation functional (B3LYP)
were applied to perform the geometry optimization and frequency. The basis set 6-311G
(d,p) was used in the run the calculations [53,54]. The computations in the solution were
carried out using the self-consistent reaction field (SCRF) theory and Tomasi’s polarized
continuum model (PCM) [26,27,55–57].

3. Results
3.1. DFT Calculations

With the help of the DFT calculations, the optimized geometry of each molecule was
generated and the localization of electron density on HOMO and LUMO of the 2-deoxy-
D-ribose (2DR), 2-deoxy-glucose (2DAG) and 2-deoxy-D-glucose (2DG) were determined
in the gaseous state and in water as a solvent, as shown in Figure 2 [58–60]. Furthermore,
for studying the stability of these molecules, thermodynamic properties such free energy,
thermal energy, zero-point energy, optimization energy and the dipole moment in gaseous
as well as in aqueous solution at 300 K were calculated.

Furthermore, the DFT calculations provide the thermodynamic parameters calculated
of 2DG, 2DAG and 2DR in gaseous and water as well as in water at 300 K (Table 1). It
is observed that enthalpy, optimization energy, free energy, zero-point energy and other
parameters were slightly higher in water than in the gaseous state. This thermodynamic
data provides a relationship to calculate the other important parameters, such as the
dipole moment. The dipole moment represents the charge distribution on the molecules.
Therefore, it can be used to illustrate the charge density across the molecule. The dipole
moment arises due to the difference of electronegativity or more electronegative atoms
or functional groups. The greater the variation in electronegativity, the greater the dipole
moment will be. The dipole moment of the molecules is slightly higher in water than in the
gaseous state. The dipole moment of the molecules in the gaseous phase is based on the
polarization or the distribution of electron density [61–65]. The higher value of the dipole
moment of 2DAG shows its high solubility in water in comparison of 2DG and 2DR. This
indicates that the acyclic molecule shows high solubility, as it has OH groups have less
steric hinderance in comparison of the cyclic molecules taken for study.

Table 1. Various thermodynamic parameters of 2DG, 2DAG and 2DR.

Solvent

Sum of
Electronic and

Zero-Point
Energies

Sum of
Electronic

and Thermal
Energies

Sum of
Electronic and

Thermal
Enthalpies

Sum of
Electronic and
Thermal Free

Energies

Optimization
Energy

Dipole
Moment

2DG
Default −611.93 −611.92 −611.91 −611.97 −612.12 3.4
Water −611.95 −611.94 −611.94 −611.98 −612.14 4.7

2DAG
Default −611.93 −611.92 −611.91 −611.97 −612.12 8.17
Water −611.95 −611.94 −611.94 −611.99 −612.14 10.04

2DR
Default −497.40 −497.39 −497.39 −497.44 −497.56 2.35
Water −497.42 −497.41 −497.45 −497.45 −497.58 3.1
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Figure 2. Optimized structures, HOMO and LUMO of 2-deoxy-D-glucose (2DG), 2-deoxy-glucose
(2DAG) and 2-deoxy-D-ribose (2DR).

3.2. Molecular Docking

To predict the binding affinity between the main protease of novel coronavirus and
the ligand, PARADOCK was used [28,34,45,66]. Using prior information on the initial
ligand interaction site, the drug site was observed. From Table 2, it can be observed that
2DAG has the lowest binding energy, followed by 2DG and 2DR, which show −2.88, −2.40
and −2.22 kcal/mol, respectively. The minimum negative binding energy of the 2-DAG
molecule defines the stability of the complex bonded with the main protease of nCoV.

Table 2. Binding energy of the molecules.

S. No. CMPD Binding Energy (kcal/mol)

1. 2DG −2.40
2. 2DR −2.22
3. 2DAG −2.88
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The best way to compare many drug compounds is through superposition analysis,
which also allows for the prediction of binding sites. In the interaction poses, as shown in
Figure 3, it is visible that 2DG and 2DAG have same number of carbon atoms binding and
interacts with the same amino acid: GLN 189 (Glutamine) and GLU 166 (Glutamic acid),
while for 2DR, one of the interacting amino acid differs. 2DR binds with the histidine amino
acid with the oxygen of the carboxyl group and glutamine. As reported, molecular docking
provides an idea but not a very reliable tool; therefore, one has to perform MD simulations
of the complex of the Mpro of nCoV with the ligand used in molecular docking at 300 K to
attain a better understanding of the stability and solubility of the complex formed [67–69].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 3. Cont.



Pharmaceutics 2022, 14, 135 7 of 16
Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. Depiction of the interaction of 2DG, 2DAG, and 2DR with the main protease of novel 
coronavirus. 

3.3. Molecular Dynamics (MD) Simulations 
Initially, MD simulations were performed at 300 K to find the most promising candi-

date against the Mpro of nCoV. After obtaining screened molecules, that is, 2DG, the MD 
simulations were performed using GROMACS at different temperatures, i.e., 295 K, 310 
K and 315 K, to understand the inhibition of the main protease of SARS-CoV-2 in presence 
of 2DG [53,70,71]. 

3.4. RMSD Trajectories of 2-Deoxy-D-Ribose (2DR), 2-Deoxy-Glucose (2DAG) and 2-Deoxy-D-
Glucose (2DG) with the Main Protease of SARS-CoV-2 

The data acquired from the docking can be validated using the RMSD trajectory. The 
interaction of the small molecule with the receptor was depicted by the RMSD trajectories 
generated by the MD simulations. The structure was assumed to be stiff, and the least-
squares approach was used to obtain the global minimum in a timely way. The acceptable 
range of RMSD values was less than 3 Å. RMSD values are utilized to determine the 
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coronavirus.

3.3. Molecular Dynamics (MD) Simulations

Initially, MD simulations were performed at 300 K to find the most promising candi-
date against the Mpro of nCoV. After obtaining screened molecules, that is, 2DG, the MD
simulations were performed using GROMACS at different temperatures, i.e., 295 K, 310 K
and 315 K, to understand the inhibition of the main protease of SARS-CoV-2 in presence of
2DG [53,70,71].

3.4. RMSD Trajectories of 2-Deoxy-D-Ribose (2DR), 2-Deoxy-Glucose (2DAG) and
2-Deoxy-D-Glucose (2DG) with the Main Protease of SARS-CoV-2

The data acquired from the docking can be validated using the RMSD trajectory. The
interaction of the small molecule with the receptor was depicted by the RMSD trajectories
generated by the MD simulations. The structure was assumed to be stiff, and the least-
squares approach was used to obtain the global minimum in a timely way. The acceptable
range of RMSD values was less than 3 Å. RMSD values are utilized to determine the stability
of the Mpro of SARS-CoV-2 in presence of biologically potent molecules by investigating
the conformational alterations of the receptor [3,44,72,73]. RMSD determines the average
distance between a group of atoms and the influence of ligand on the distance. This means
that a change in the conformation of the protein structure is observed. If a decrease in
distance is observed, this indicates effective binding and the formation of a stable complex.
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Figure 4 is used to understand the RMSD of the complex, when 2-deoxy-D-ribose (2DR),
2-deoxy-glucose (2DAG) and 2-deoxy-D-glucose (2DG) fit in the cavity of the protease.
Herein, the RMSD values for the complex of 2DAG fluctuate and are high. Therefore, the
2DAG binds less effectively with the Mpro of nCoV. The RMSD values for the complexes
formed between the Mpro of nCoV and 2DG/2DR fall within the acceptable range and
show effective binding or the formation of stable complexes at 300 K. 2DG and 2DR can be
considered to be promising inhibitors.
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ribose (2DR), 2-deoxy-glucose (2DAG) and 2-deoxy-D-glucose (2DG).

Radius of gyration (Rg) was used to understand the compactness of the main protease
of nCoV in presence of 2DG/2DAG/2DR. It offers information about the packing of the
secondary structure in three-dimensional structures. Compactness is defined as the ratio of
the accessible surface area to the surface area of the ideal sphere of the same volume. Lower
values of Rg indicate more a compact structure of the protein. Therefore, the trajectory can
be used to investigate the effect of the molecules taken for the change in the compactness of
the Mpro of nCoV. It can be seen that 2DG has the maximum compactness of the structure
due to minimum Rg values, as shown in Figure 5. From the trajectories we can conclude
that 2DAG and 2DR show a high fluctuation in compactness of structure, indicating less
stability of the complex, while in the case of 2DG, the values are more acceptable and show
less fluctuation (Figure 5).

MD simulations were used to investigate the RMSF of the main protease of novel
coronavirus with molecules at 100 ns time period. The flexibility of each amino acid or
the residue in the complex was determined using RMSF plots. The resulting structural
variations were minimal. It has been determined that certain inhibitors may interact with
target protein residues. It studies the change or fluctuation of the position of the amino
acids of the Mpro of nCoV in the presence of the ligand. For 2DG, 2DAG and 2DR, the
maximum fluctuation was observed around 140, 165 and 50, respectively. 2DG had the
minimum fluctuation in comparison with 2DAG and 2DR, and could be a better inhibitor
of the Mpro of nCoV (Figure 6).
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Hydrogen bonds are significant for studying the binding affinity and structural stabil-
ity of the complex produced between the Mpro of nCoV and the ligand. The percentage
occupancy can be computed via HBs formation and the angle during simulation time. The
number of hydrogen bonds induced by the Mpro of SARS-CoV-2 with the D-ribose (2DR),
2-deoxy-glucose (2DAG) and 2-deoxy-D-glucose (2DG) can be seen in Figure 7. It can be
seen that the maximum number of hydrogen bonds between the Mpro and 2DG, 2DAG
and DR are four, three and three, respectively. 2DG forms a greater number of hydrogen
bonds with the Mpro than 2DAG or 2DR. Therefore, 2DG may be considered as a better
and more promising candidate for the inhibition of the main protease of SARS-CoV-2.
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Based on the MD simulation results obtained at 300 K for the Mpro of nCoV with 2DG,
DAG and 2DR, 2DG was found to be the most prominent inhibitor. Therefore, we thought
to perform the MD simulations of the Mpro of nCoV with 2DG at various temperatures,
that is, 295, 310 and 325 K, to investigate the effect of temperature.

3.5. Temperature-Dependent MD Simulations for Mrpo of nCoV with 2DG

Temperature-dependent MD simulations were conducted for the complex of the Mrpo
of SARS-CoV-2 with 2DG to understand the effect of temperature on its activity. From the
MD simulations, no regular pattern was observed upon increasing the temperature with
the help of Rg, RMSD, RMSF and the number of hydrogen bonds. Figure 8 explains the
RMSD of the Mpro of nCoV in the presence of 2DG at various temperatures to understand
the deviation of the backbone of the main protease of novel coronavirus. Although, no
regular pattern was observed, the deviation of the atomic coordinates was at a minimum,
at 295 K. This means that the binding is effective and forms a stable complex.
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Figure 9 explains the radius of gyration of the Mpro of nCoV in the presence of 2DG at
different temperatures. It can be seen that the structural conformation was found at a mini-
mum at 295 K, indicating the maximum stability of the complex or the effective/maximum
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binding. This means that increasing the temperature decreased the binding of 2DG with
the Mpro of nCoV.
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Figure 10 explains the RMSF of the Mpro of nCoV in the presence of 2DG at various
temperatures (295, 310 and 315 K) to understand the fluctuation. The lowest fluctuations
were observed at 295 K, meaning that the binding is effective and forms a stable complex at
295 K.
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Figure 11 explains the hydrogen bonding in the complex of 2DG with the Mpro
of nCoV at various temperatures (295, 310 and 315 K) to understand the stability. The
maximum number of hydrogen bonds were formed at 295 K, indicating effective binding
and maximum stability.
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4. Discussion

The novel coronavirus and its strains have threatened humanity. Therefore, there is
a need to develop an efficient drug like candidate to save lives. 2DG was permitted for
emergency use to control infection of SARS-CoV-2 in lung host cells during the second wave
of COVID-19 in India. According to recent reports, clinical trial data show that 2DG helps
to hasten recovery of patients hospitalized with COVID-19 and reduces their dependence
on supplemental oxygen. Generally, infected cells have the ability to consume glucose and
therefore take huge amounts of 2DG. Thus, 2DG reported to hampers the growth of the
cells. Its selective accumulation in virally infected cells makes this drug promising. 2DG
can have immense benefit for people suffering from COVID-19. 2DG is available in powder
form in a small packet, which can be taken orally by dissolving it in water. It accumulates
in the virus-infected cells by targeting metabolism. Herein, 2DG and other mimics such as
2DAG and 2DR were used for this study to target the Mpro of SARS-CoV-2. In this work,
molecular docking and MD simulations were performed to investigate and compare the
potential of 2DG, 2DAG and 2DR for the inhibition of the main protease of SARS-CoV-2.
Based on the results obtained by molecular docking, 2DAG was found to have the lowest
binding energy compared with 2 DG and 2 DR, so that it might be considered a more
promising candidate. However, as we know, the results obtained by molecular docking are
not very reliable and only give an idea. Therefore, MD simulations of the Mpro of nCoV
with these molecules was performed at 300 K. 2DG was found to be a better inhibitor of
the Mpro of nCoV than 2DAG and 2DR based on the different trajectories obtained by
MD simulations at 300 K. Furthermore, the temperature-dependent MD simulation was
performed at temperatures of 295, 310 and 315 K of the Mpro of nCoV with 2DG to study
the effect of temperature on the inhibition of protease. The maximum inhibition of the Mpro
of nCoV was observed at 295 K. Furthermore, DFT calculations of 2DG, 2-DAG and 2-DR
were performed to determine the different energies, the localization of electron density
on FMO, and the dipole moment of the compounds in a gaseous state as well as in water
at 300 K. The molecules in the gaseous phase produces more polarization and resulting
more dipole moment, while in the liquid phase the value is comparatively higher than in
the condensed. The dipole moment explained the solubility of the designed molecules in
water.

5. Conclusions

In the present work, molecular docking was performed to find the potential of 2DG
for the inhibition of the Mpro of nCoV and compare it’s potential with 2DR and 2DAG.
The binding energy of 2DG, 2DR and 2DAG against the Mpro of nCoV was −2.40, −2.22



Pharmaceutics 2022, 14, 135 13 of 16

and −2.88 kcal/mol, respectively. These results provide only an idea. For a better un-
derstanding, therefore, MD simulations of the Mpro of nCoV with 2DG, 2DR and 2DAG
were performed at 300 K. Based on the results, 2DG was found to be a better inhibitor for
the Mpro of nCoV than 2DAG and 2DR. Furthermore, the temperature-dependent MD
simulations of the Mpro of nCoV with 2DG were performed at 295, 310 and 315 K. It was
observed that effective binding occurs at 295 K. DFT calculations of 2DG, 2DAG and 2DR
were also performed to find the various energy, the FMO and the dipole moment in the
gaseous state as well as in water at 200 K to know their stability and solubility.
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