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Abstract: Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged
as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as
nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to
severe infections and diseases. Various methods have been developed for treatment and control of
Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines
and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative.
Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more
effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm
and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials
and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections.
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1. Introduction

A biofilm is a community of single or mixed bacterial cells adhered to abiotic or biotic surfaces [1].
The biofilm is arranged in a tertiary structure where the bacteria are in intimate contact with each
other and encased in a matrix of extracellular polymeric substances (EPS), which can comprise
exopolysaccharides, nucleic acids, proteins and other macromolecules [2,3]. The main reasons behind
bacterial biofilm formation are: (a) normal mode of growth for some species; (b) protection from adverse
host environment; (c) preferential colonization in nutrient-rich conditions; and (d) co-operative benefits
as a part of community [4,5]. Ubiquitous in nature, biofilms are found on rocks and pebbles in rivers,
surfaces of stagnant water, showers, sewage and drinking-water pipes, marine engineering systems,
ship hulls, etc. [6,7]. However, microbial colonization on living tissues, such as heart valves, tooth
enamel, lung and middle ear, wounds, medical devices and tissue engineering-related products [5]
is a matter of great concern for human health. These medical biofilms are responsible for 65% to
80% of clinical infections, which may lead to morbidity and mortality [8,9]. Bacterial cells present
in these biofilms express phenotypes, different from planktonic counterparts, and exhibit higher
resistance to conventional drugs, ultraviolet light, desiccation, extreme pH and host’s immune defense
system [10–13]. Such biofilms have been reported in both Gram-positive and Gram-negative bacteria,
including Acinetobacter baumannii, Pseudomonas aeruginosa, Xanthomonas campestris, Staphylococcus aureus,
Staphylococcus epidermidis, etc. [14–20].
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1.1. Acinetobacter: A Nosocomial Biofilm-Producing Pathogen

The genus Acinetobacter consists of 34 species, which are non-motile, aerobic and Gram-negative
coccobacilli [21]. The bacteria are widely distributed in soil, activated sludge, water, food and
human skin [22–29]. The bacteria can survive under highly desiccated conditions on abiotic surfaces
for a long time [30,31]. In recent years, they have emerged as the most important nosocomial
pathogens implicated in a variety of nosocomial infections, such as urinary and respiratory tract
infections, skin and soft-tissue infections, bloodstream infections and secondary meningitis [32–35].
The treatment of Acinetobacter infections is becoming a challenge since these species are rapidly
developing resistance to commonly used traditional antibiotics. A. baumannii has been listed as
one of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) owing to the ability to
escape the biocidal activity of antibiotics [30]. They have also evolved as one of the most antibiotic and
metal-resistant microorganisms [24,31]. The terms like multi-drug resistant (MDR), extensively-drug
resistant (XDR) and pan-drug resistant (PDR) are used to describe the level of antibiotic insusceptibility
in Acinetobacter spp. MDR Acinetobacter spp. are resistant to at least three classes of antibiotics: all
penicillins and cephalosporins, aminoglycosides and fluroquinolones. XDR species are MDR plus
carbapenem-resistant, whereas PDR species exhibit resistance to antimicrobials mentioned above along
with polymyxins and tigecycline [36–38].

The problem is aggravated due to their colonization and biofilm-forming capacity on medical
devices, such as implants, cardiac valves, artificial joints, catheters, etc. [32,39]. Acinetobacter biofilms
have also been associated with hospital-acquired infections, chronic non-healing injury-and
burn-wound infections, ulcers and battle casualties among military personnel [40,41]. Biofilms cause
severe illness and diseases in immuno-compromised patients, especially in case of urinary and
respiratory tract infections, ocular infection, otitis media, endocarditis, pneumonia, septicemia,
bacteremia, and necrotizing fasciitis, etc. [29,42–44]. There is a correlation between antibiotic resistance
and the ability of Acinetobacter to adhere to the clinically relevant surfaces, such as polystyrene and
human epithelial cells [45]. Such pathogenic biofilms are heterogeneous and express up to 1000-fold
drug resistance, making them difficult to eradicate [46,47]. Resistance exhibited by Acinetobacter
biofilms can be natural, genetically acquired or adaptive to survive in that environment [3,48,49].
Although the mechanism underlying biofilm resistance is still not completely understood, it may
involve the combination of factors shown in Figure 1.
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1.2. Treatment Therapies for Control of Acinetobacter Biofilm

Molecular mechanism of biofilm formation in Acinetobacter needs to be understood to formulate
anti-biofouling therapies. The common factors influencing biofilm formation are type of surface,
nutrient availability, bacterial surface components like EPS, bacterial appendages including pili
and flagella, quorum-sensing communication and extracellular organic secretions [50]. EPS of
Gram-negative bacteria is anionic in nature due to uronic acids and ketal-linked pyruvates [51].
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In such EPS, divalent cations, such as calcium and magnesium, facilitate crosslinking between
polymeric polysaccharide strands, thereby increasing viscosity and binding forces in biofilm [51].
Quorum-sensing molecules (N-acyl-L-homoserine lactones, 4-quinolines) are involved in cell
density-dependent intercellular communications and regulation of expression of virulence genes
for exoenzymes, EPS and stress resistance [52]. Expression of genes, such as blaPER-1 and algC,
adhesion proteins and extracellular DNA is critical for cell adhesion, colonization and formation
of biofilms [16,45,53–55]. Moreover, biofilm-specific housekeeping, transporter and regulatory
proteins [39] can be the ideal targets for developing novel artillery to eradicate colonization and
overcome biofilm resistance. Additionally, environmental and physiological factors (nutrient and
oxygen availability, concentration of D-amino acids, iron, nitric oxide concentration), cell-cell
communication signals (diffusible fatty acids, auto-inducing peptides) and intracellular messengers
(c-di-GMP, cAMP) are a few of the molecular triggers, involved in the induction of transition
from sessile phenotype to free dispersal phenotype, which can be activated to degrade the
biofilms [3,20,56–60].

Prophylactic vaccines, antimicrobial peptides, photodynamic therapy and radioimmunotherapy
are control measures employed to prevent and eradicate Acinetobacter biofilms [61–63]. Vaccination with
A. baumannii biofilm-associated protein (Bap) and outer membrane porin (OmpA) enhances
antigen-specific titers and reduces bacterial loads in intraperitoneal infection model [63,64].
Passive immunization with antibodies against membrane polysaccharides and outer membrane
transporter has also been shown to elicit in vitro opsonophagocytolysis of A. baumannii [65,66].
Several peptides and their analogs, such as brevinin-2-related peptide, cationic alpha-helical
skin-derived peptides and alyteserin-2a, showed excellent potency as membrane and cell disruptors
against MDR and PDR strains of Acinetobacter [67–69]. Synthetic peptides and analogs can also be
designed to develop novel bactericidal agents; however, they have a short life and are prone to
proteolytic degradation in vivo.

Photodynamic therapy (PDT) is based on generation of reactive oxygen species (ROS), through
photoreactive dyes, which react with target cells to damage the DNA or cellular membranes and
organelles [70,71]. Owing to DNA repair machinery, major bactericidal effect of PDT is exerted
due to the destruction of structural and transporter proteins and leakage of cellular contents [70].
The limitations of this therapy are restricted topical application and damage to host cells by ROS [71].
Materials, like catheters and implants, can be impregnated with antibiotics that are either embedded
in the surface or designed to diffuse out [72]. This will ensure local antibiotic delivery, sustained
drug release and lower systemic toxicity risks [72]. Polymers, modified dendrimer and cyclodextrin
complexes and microemulsion formulations of antimicrobials are shown to be effective against bacterial
and fungal biofilms [73–76]. In recent years, nanomaterials have gained significant importance in
diagnosis, medicine and therapeutics as antimicrobials, antitubercular, anticancer and antidiabetic
agents, antioxidants, catalysts and sensors [77–84]. Nanoparticles, with any one dimension up to
100 nm, exhibit unique physical, chemical and biological properties due to small size and possess high
surface area-to-volume ratio as compared to bulk counterparts [80,81]. These characteristics render
them highly effective in biological applications and make them potential candidates for development of
novel nano-antibiotics. This review is intended to provide an overview of the approach on the control
of Acinetobacter biofilms employing various types of nanoparticles, their benefits and limitations. It
is also important to recognize the missing links in literature, which should be pursued further for
in-depth understanding and applicability of nanoparticles.

2. Acinetobacter Biofilm Control through Nanomaterials

Both organic and inorganic nanoparticles are reported to have antibacterial and anti-biofilm
potencies [14,85–89]. These are also used as surface-coating and drug-delivery agents [90,91] and thus
offer a very promising alternative to conventional methods of biofilm control. Table 1 summarizes the
various nanomaterials employed for treatment of Acinetobacter biofilms and infections. It is important to
note that in vivo testing of nanoparticles has only been pursued with planktonic Acinetobacter [86,92,93].
Such nanoparticles, in higher concentration, may show biofilm-disruption activity.
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Table 1. Nanomaterials in control of Acinetobacter biofilms and infections.

NPs Composition and Surface Property Size (nm) Acinetobacter Strain Applied Dosage of NPs Remarks Ref.

Lipid-based NPs

Lipidic nanocapsules

(1) carvacol, eugenol and
cinnamaldehyde (0.96% w/w)
(2) carvacol (0.34% w/w), eugenol
(1.83% w/w), cinnamaldehyde
(0.39% w/w) and β-caryophyllene
(0.32% w/w)

85–95
62–70 A. baumannii 40 mg/kg Increased survival in sepsis murine model [86]

Nanoemulsion
of CPC

CPC (1% w/v), triton X-100 (10%
v/v) and soyabean oil (25% v/v) 213.9 A. baumannii ATCC

BAA-1605 ~5–25 µg/mL CPC Loss in metabolic activity; complete
biofilm disruption [90]

Polymer-based NPs

Chitosan NPs OMP loaded on NPs - A. baumannii

533 + 170 µg/mL
(OMP + chitosan)
1st and 3rd week:
0.5 mL; 5th week: 1 mL

Modulate cytokine profile; trigger immune
response; act as nano-vaccine [92]

Inorganic NPs

AgNPs

12.05 A. baumannii SRMC 27;
A. haemolyticus MMC 8 2000 µg/mL 80%–92% biofilm inhibition and disruption [94]

21–29 A. baumannii ATCC
BAA-1605 250–1000 mg/mL

Biofilm disruption on polycarbonate
membrane; ~4-log reduction in cell load at
highest concentration

[91]

Combined with imipenem - A. baumannii 0.0003–0.8 µg/mL Synergistic action; reduced MBIC
and MBEC [95]

60 A. baumannii AIIMS 7 1024 µg/200 µL well 96%–99% biofilm inhibition; 88%
eradication; change in cell morphology [15]

AuNPs Vancomycin bound - A. baumannii - Hyperthermic bactericidal action via
NIR irradiation [96]

Silver-gold
bimetallic NPs

90 A. baumannii AIIMS 7 1024 µg/200 µL well 93%–98% biofilm inhibition; 61%–77%
eradication; cell lysis [15]

Au (core) and Ag (shell) 13–19 A. baumannii 100 µg/mL 83% biofilm inhibition [14]

SeNPs - 100–250
Acinetobacter sp.
(4117, 1677, 2030, 674,
2020, 1370)

1.2–3.6 µg/mL Dose-dependent anti-biofilm activity;
75% reduction [89]

Nitric oxide-releasing
NPs

Composite matrix of TMO, PEG,
chitosan and glucose with
sodium nitrite

10 A. baumannii 0057 5 mg

Reduced wound healing time in vivo;
reduced inflammatory response; inhibited
collagen degradation; induced
cytokine expression

[93]
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Table 1. Cont.

NPs Composition and Surface Property Size (nm) Acinetobacter Strain Applied Dosage of NPs Remarks Ref.

Nanocomposites

Cu1-based NPs in
natural cellulose

Bare metal or metal oxide coating <5 A. baumannii ~30 µg Cu in
liquid culture Bactericidal action without cytotoxicity [97]

Ag1-based NPs in
natural cellulose

Bare metal or metal oxide coating - A. baumannii ~12 µg Ag in
liquid culture

Bactericidal activity; toxic to NIH 3T3
cell line [97]

Ag-exchanged zeolite Coated with D-tyrosine 500–1500 A. baumannii ST145 - Complete bactericidal activity towards
immobilized cells; 6.9-log cell reduction [98]

Bacteriophages

AB7-IBB1 Siphoviridae family 50 (head);
240 ˆ 10 (tail) A. baumannii AIIMS 7 MOI 105 with 102 CFU

1/well

Lyse 23 of 39 clinical isolates of A. baumannii;
affected biofilm formation on biotic and
abiotic surface; 75% eradication of biofilm

[99]

AB7-IBB2 Podoviridae family 35 (head);
7 (tail) A. baumannii AIIMS 7

MOI 105 and 103 with 102

and 104 CFU/well,
respectively

Lyse 19 of 39 clinical isolates of A. baumannii;
affected biofilm formation on biotic and
abiotic surface; 80% eradication of biofilm

[100]

1 NPs, nanoparticles; CPC, cetylpyridinium chloride; OMP, outer membrane protein; AgNPs; silver nanoparticles; MBIC, minimum biofilm inhibitory concentration; MBEC, minimum
biofilm eradication concentration; AuNPs, gold nanoparticles; NIR, near infra-red; SeNPs, selenium nanoparticles; TMO, tetramethyl-orthosilicate; PEG, polyethylene glycol; Cu,
copper; Ag, silver; MOI, multiplicity of infection; CFU, colony-forming unit; “-” not reported.
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2.1. Organic Nanoparticles

2.1.1. Liposomes and Nanoemulsions

Liposomes are self-assembled lipid bilayers containing phospholipids, sterols, glycolipids,
membrane proteins and hydrophilic polymers [101]. They resemble biological cell membranes, and
can therefore act as effective drug-delivery systems. Antimicrobials can be encapsulated within the
lipid bilayer (if hydrophobic), entrapped in the inner core (hydrophilic) or sequestered between the
inner and outer bilayer interface (hydrophilic) of the liposome [101]. Liposomal antibiotic delivery
studies have been pursued mainly in biofilm-forming P. aeruginosa [19,85,102]. However, in an
interesting study, lipidic nanocapsules loaded with a mixture of carvacol and eugenol (phenols),
cinnamaldehyde (aldehyde) and/or beta-caryophyllene (alkene) showed excellent in vitro antibacterial
activity against A. baumannii. Intraperitoneal administration of this formulation resulted in increased
survival in sepsis murine model [86]. Alipour et al. reported a decrease in bacterial count of
A. baumannii and A. lwoffii when exposed to liposomal formulation of polymixin B (in 2:1 molar ratio
of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and cholesterol). Reduction in minimum inhibitory
concentration (MIC) of polymixin B was also observed [103]. Such encapsulations have the advantage
of sustained and controlled release of drugs, thereby achieving effective drug-delivery and biofilm
treatment with reduced cytotoxicity [101,104]. Moreover, these structures can be modified for targeted
site-specific delivery.

Antimicrobial nanoemulsions—emulsified mixtures of detergent, oil and water with a particle
size between 100–800 nm—possess a broad range of microbicidal activity against bacteria, fungi
and enveloped viruses [105]. Figure 2 shows the disruption of A. baumannii biofilm on exposure to
nanoemulsion of cetylpyridinium chloride, a quaternary ammonium salt. The nanoemulsion not
only penetrates the thick biofilm matrix but also damages the bacterial cells [90]. These emulsified
nanoparticles act by fusing with lipid bilayers and destabilizing the cell membrane [106]. In addition
to liposomes and nanoemulsions, solid lipid nanoparticles, lipoproteins and micelles can also be used
for drug delivery [107].
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Figure 2. Scanning electron microscopy of MDR A. baumannii ATCC BAA-1605 biofilms. (A) Control;
(B) Treatment with nanoemulsion of 1% cetylpyridinium chloride for 1 h (adapted from [90], with
permission from © 2013 American Society for Microbiology).

2.1.2. Polymeric Nanoparticles

Polymers are multifunctional biomaterials that can be engineered for wide properties suitable
for applications in medicine and pharmaceutical industry as drug carriers, surgical sutures, scaffolds
and resorbable devices [108–110]. While some polymers possess antimicrobial activity due to specific
functional groups, such as halogens, guanidine or quaternary nitrogen atom [111], few of the other
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polymers can also be loaded with antimicrobial agents. The functional groups on polymer nanoparticles
can be modified or novel synthetic analogs can be designed to increase their specific activity and
selectivity. Properties of biocompatible polymers can also be harnessed for in vivo applications.
However, very few reports are available on inhibition and disruption of Acinetobacter biofilms through
polymers [92,112]. Maleic anhydride-based amphiphillic polymers, containing amide side chains,
disrupt surface established A. baumannii biofilms. These polymers also reduce the bacterial count
in mice with chronic burn-wound infection [88]. Similar observation was seen with methacrylate
polymers containing a 2-aminoimidazole subunit [112]. Chitosan nanoparticles act as adjuvant to carry
outer membrane proteins of Acinetobacter and elicit excellent immune response in rats [92], indicating
potential for developing a novel vaccine. Poly(lactic-co-glycolic acid) polymeric nanoparticles
have been used for effective delivery of antibiotics to treat biofilm-forming microorganisms [113].
Nylon-3-polymers and antimicrobial polymeric hydrogels can also be employed for the control of
MDR bacterial and fungal biofilms [114,115].

2.2. Inorganic Nanoparticles

2.2.1. Silver Nanoparticles

Silver and its compounds are well known for antimicrobial properties and have been widely used
in medicine and therapeutics for treatment of wounds, burns and infections. Nano-sized silver particles,
however, exhibit superior antimicrobial activity against both Gram-positive and Gram-negative
pathogenic bacteria, mycobacteria, fungi and yeasts [87,116–118]. There are many reports confirming
inhibition and disruption of biofilms on exposure to silver nanoparticles (AgNPs) [119,120].
These particles have been used as disinfectant filters and surface-coating materials for implants
and medical devices to prevent bacterial growth and infection [119–122]. In an interesting study,
AgNPs synthesized from environmental A. calcoaceticus showed excellent disruption capability on
preformed biofilms of clinical A. baumannii and A. haemolyticus strains isolated from hospitals [94].
Similar results were observed with AgNPs synthesized through reduction by gallic acid [91] and root
extract of Plumbago zeylanica, a medicinal plant [15]. Nanosilver, owing to its small size, can easily
penetrate the thick EPS in biofilms [94].

Synergy between AgNPs and conventional drugs offers a promising approach to control
biofilm-related infections. Exposure to a combination of AgNPs with various antibiotics increases the
drug susceptibility of planktonic MDR A. baumannii [87]. Formulation of imipenem and AgNPs not
only killed planktonic cells but also eradicated their biofilm [95]. Combined killing mechanism exerted
by antibiotics and AgNPs increases the susceptibility of MDR strains towards antibiotics and makes it
difficult for bacteria to thrive in biofilms. Such an approach will help in combating drug resistance
among Acinetobacter species.

2.2.2. Gold Nanoparticles

Gold nanoparticles (AuNPs) provide stable, non-toxic and biocompatible alternative, which
can be easily synthesized in various morphologies, such as nanospheres, nanorods, nanoshells
and nanocrystals [78,123]. Since AuNPs exhibit biocompatibility, surface plasmon resonance
and photothermal effect, they have found wide applications in sensors, diagnosis and cancer
treatment. Although few reports describe the antibacterial activity of AuNPs [124,125], Salunke
and coworkers reported poor efficacy of chemical and phytogenic AuNPs to inhibit and disrupt
A. baumannii biofilm [15]. However, these particles are known to carry therapeutic payloads, such as
antibiotics, bound to them by covalent bonding, electrostatic adsorption, encapsulation or non-covalent
interactions [126,127]. These moieties are triggered through internal and external stimuli [126].
For example, vancomycin-bound AuNPs showed successful hyperthermic killing of Gram-positive and
Gram-negative pathogens including PDR A. baumannii via near infra-red irradiation [96]. According to
Cui et al., AuNPs alter membrane potential, decrease intracellular ATP levels, and inhibit activity of
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ATP synthase and tRNA-binding subunit of ribosome [125]. Surface modification of AuNPs has also
been suggested to control their inhibitory effects [128].

2.2.3. Selenium Nanoparticles

Selenium nanoparticles (SeNPs) exhibit good absorption capacity, higher bioavailability and
reduced cytotoxicity to have medicinal applicability [81]. However, only a single study demonstrated
the anti-biofilm activity of actinobaterially synthesized SeNPs. Complete biofilm inhibition in
six drug-resistant Acinetobacter strains was observed at 3.2 µg concentration of SeNPs in 48 h [89].
Mechanism of antibacterial action is still unknown.

2.2.4. Nitric-Oxide Releasing Nanoparticles

Nitric oxide (NO) is a lipophilic, short-lived free radical with a very small size that allows it
to easily diffuse across membranes and interact with both extra- and intra-cellular components [3].
NO and its derivatives cause nitrosative stress on biological membranes and DNA damage through
N-nitrosation and oxidative cleavage; they also interact with thiol-containing protein via S-nitrosation
and provoke lipid peroxidation leading to membrane disruption [129]. Exposure to low doses of NO
restores biofilm sensitivity towards a variety of antimicrobial agents, thereby increasing their efficacy
in dispersing bacteria [3]. Topical application of NO-releasing nanoparticles (~10 nm) reduces the
bacterial load, inflammation and collagen degradation, as well as modulates cytokine response with a
substantial decrease in healing time in A. baumannii wound infection [93]. Since their formulation can
only be applied on the skin surface, the use is prevented in common Acinetobacter infections, bacteremia
and pneumonia [71]; however, they make an attractive alternative for environmental biocontrol and
treatment of wounds, burns and other skin-related infections.

2.2.5. Multi-Metallic Nanoparticles

Use of bi- and tri-metallic nanoparticles is a great approach whereby, instead of a single metal,
properties of two or more metals can be exploited. Such nanoparticles exhibit enhanced medicinal
and therapeutic efficacy and are required in low concentrations to achieve a similar bactericidal effect
as that with mono-metallic ones. Phytogenic silver-gold bimetallic nanoparticles from root extract
of P. zeylanica showed significant inhibition and disruption of preformed Acinetobacter biofilm [15].
In another report, gold-silver core-shell nanoparticles from medicinal plant Dioscorea bulbifera inhibit
biofilm formation among both Gram-positive and Gram-negative bacteria, including A. baumannii [14].
The bactericidal effect from these nanoparticles is due to cell-wall damage causing efflux of cellular
materials, which may be attributed to the presence of silver [14,15]. Once the pores are made in the cell
wall, silver and gold interact with cellular components and DNA to cause more destruction to bacteria.
Although no report describes the efficacy of tri-metallic nanoparticles in control of Acinetobacter biofilm,
the study of Mahmoodi and Serpooshan confirmed that chemically prepared tri-metallic SPIONs,
consisting of gold and silver shells onto iron core, have profound anti-biofilm potency against S. aureus
and S. epidermidis [18].

2.3. Nanoconjugates, Nanoalloys and Nanocomposites

Thus far, nanoconjugates and nanoalloys have not been employed to inhibit Acinetobacter
colonization. However, profound reduction in A. baumannii has been reported on treatment with
nanocomposites, synthesized by copper-based nanostructured coating on natural cellulose substrate.
Relatively low efficacy was observed with similar silver-coated nanocomposite [97]. Studies have
confirmed antibacterial and anti-biofouling activity of micron-sized alloys and composites [98,130],
which is dependent on the constituents, type of surface and coating materials. For example, surface
modification of titanium implants through doping with silver and/or gallium enhances antibacterial
effectiveness against MDR A. baumannii [130]. Figure 3 depicts 100% killing of A. baumannii on a
composite containing silver-exchanged natural zeolite and poly(vinyl chloride), coated with D-tyrosine.
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Uncoated composite inhibits the biofilm formation on the surface with only 70% reduction in bacterial
load [98]. D-tyrosine gets incorporated into the peptidoglycan layer of the bacterial cell wall and
replaces D-alanine, thereby disrupting the cell connection with the biofilm matrix [58,131,132].Materials 2016, 9, 383 9 of 17 
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Figure 3. Effect of D-tyrosine coating on composite. (A) A. baumannii cells without biofilm formation on
uncoated composite; (B) Absence of bacterial cells on composite coated with D-tyrosine. One side of the
composite surface was (A) shiny while other side was (B) coarse (obtained from [98], with permission
from © 2014 Taylor & Francis Ltd).

2.4. Bacteriophages as Living Nanobullets

Lytic phage therapy employs viruses that infect and lyse the bacterial cells. Lytic phages specific
to clinical and MDR Acinetobacter strains have been isolated from sewage, marine water, patient
sputum, etc. [71]. Two phages, AB7-IBB1 and AB7-IBB2, specific to A. baumannii AIIMS 7 reported
from our laboratory have been shown to act as anti-biofilm agents inhibiting biofilm formation and
eradicating up to 75% preformed biofilm [99,100]. In another study, a cocktail of phages was observed
to lyse 113 of 127 A. baumannii strains [133], indicating their utility in hospital and environmental
biocontrol. However, host-range specificity and in vivo studies need further investigation.

3. Resistance towards Nanoparticles

Conventional drugs are losing their functional value due to the rapidly developing drug
resistance in microorganisms. This insusceptibility prompted researchers to exploit nanoparticles as
an alternative approach to deal with aggressive pathogens like Acinetobacter. Multiple mechanisms
have been reported to explain the bactericidal action of nanoparticles: they can penetrate EPS, disrupt
cellular morphology, inactivate vital enzymes and proteins, denature proteins, generate ROS, inhibit
DNA replication and prevent ribosome interactions [80,134–136]. Such multi-mode bactericidal
action of nanoparticles is beneficial since bacteria would have to develop a number of mutations
simultaneously to survive [80]. However, this raises concerns on the specificity of nanoparticles to
kill a particular pathogen. Unlike traditional antibiotics, inherited resistance towards organic and
inorganic nanoparticles has not been observed in bacteria. However, a recent study suggested that
bacteria could evolve to acquire resistance through genetic mutations on continuous treatment with
AgNPs for 225 generations [137]. Hence, care should be taken to avoid unintentional and unnecessary
exposure of microorganisms towards these nanoparticles.
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4. Future Prospects

Acinetobacter spp. are emerging as biofilm-producing, multi-drug resistant (MDR) nosocomial
pathogens due to which antibiotics and natural phytogenic extracts are rendered ineffective in their
control. Although nanomaterials have shown a great potential to curb Acinetobacter threats, in-depth
studies are required to develop a potent and permanent solution. First and foremost, nanoparticles
effective against planktonic Acinetobacter should be investigated further for their biofilm-disruption
activity. Among organic nanoparticles, solid lipid nanoparticles, nanoemulsions, lipoproteins and
micelles can also be used for targeted drug-delivery systems. In spite of a large number of polymers,
very few polymeric nanoparticles have been investigated. Recently, carbon nanotubes, graphenes and
fullerenes have gained medicinal significance and they may have potential to prevent Acinetobacter
biofilms and infections. It is apparent from the earlier sections of this review that organic nanoparticles
are effective mainly as drug-delivery vehicles owing to their biocompatible nature and ease of surface
modification. However, only a single study demonstrates the increased survival rate in a sepsis
murine model [86]. Although Acinetobacter species are well known to cause various biofilm-related
internal infections, there are no reports on in vivo testing of these nanoparticles on established biofilms
of Acinetobacter.

There are a number of reports on bactericidal and biofilm-disruption activity of metal and metal
oxide nanoparticles of copper, titanium, titanium oxide, zinc, zinc oxide and iron. In addition to these,
therapies based on gallium, magnesium, calcium and aluminum-derived nanoparticles can also be
used. Inorganic nanoparticles, though they exhibit excellent bactericidal properties, always encounter
biocompatibility, cytotoxicity and genotoxicity concerns. For these reasons, many researchers do not
recommend their in vivo applications. On the contrary, reports are available supporting the non-toxic
nature of metal nanoparticles [79,97]. Therefore, there is a need for further investigation to have a clear
understanding of the toxicity aspect of these nanoparticles. The possibility of a balanced dosage of
nanoparticles to achieve effective treatment without side effects cannot be ruled out.

In addition, a combination of metals and/or polymers in the form of nanoconjugates, nanoalloys
and nanocomposites can be developed to enhance their biocompatibility and biofilm-disruption
activity. Synergistic action of nanoparticles in combination with various antibiotics resulted in excellent
inhibition of bacteria in planktonic stage. These combinations not only render ineffective antibiotics to
kill bacteria efficiently, but also reduce their minimum inhibitory concentration (MIC). This synergistic
approach will certainly reduce the therapeutic dose to cure the bacterial infections, thereby reducing the
toxicity risks. Furthermore, formulations of nanoparticles should be developed for topical application.
These will prove to be very helpful in treatment of burns and injuries, healing wounds and prevention
of Acinetobacter infections. Application of nanomaterials should also be investigated as coating agents
on surfaces of medical devices, implants, contact lenses and industrial machineries. Source, surface,
composition and morphology-dependent action of nanoparticles should be evaluated. Although phage
therapy is promising for hospital and environmental biocontrol, in vivo applications require further
investigations. Host specificity of phages can be overcome by exposure to a phage cocktail.

Along with the factors influencing biofilm formation, physiological adaptation to stress, slower
metabolism and increased expression of biofilm-specific traits—such as accumulation of β-lactamases,
periplasmic antibiotic-binding polysaccharides, type IV pili or upregulation of enzymes to protect
against endogenous oxidative stress, outer membrane proteins and porin channels—have been
suggested to play a significant role in biofilms. Nanoparticles have been shown to penetrate the
extracellular polymeric substances (EPS) of biofilms causing its disruption. However, detailed
studies are required on molecular and genetic expression in biofilm, in response to treatment with
nanoparticles, to elucidate the bactericidal and biofilm-disrupting mechanisms of nanoparticles.
This will certainly aid in combating MDR biofilms and development of novel nano-formulations.
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