Research article

Derivation of Bessel function closed-form solutions in zero dimensional φ^{4}-field theory

Ranjiva M. Munasinghe ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ MIND Analytics \& Management, 10/1 De Fonseka Place, Colombo 5, Sri Lanka
${ }^{\mathrm{b}}$ Sri Lanka Institute of Information Technology, SLIIT Malabe Campus, New Kandy Road, Malabe, 10115, Sri Lanka

ARTICLE INFO

Keywords:

0 -dimensional φ^{4}-field theory
0 -dimensional quartic anharmonic oscillator
Solvable quantum field theory
Closed-form solution
Bessel functions
Perturbation theory

ABSTRACT

The integral $\int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x$ is used as an introductory learning tool in the study of Quantum Field Theory and path integrals. Typically, it is analyzed via perturbation theory. Closed-form solutions have been quoted for which I could not find any derivation. Using a simple and elegant transformation, the close form solutions for the integral and its even positive integer moments can be obtained in terms of Bessel functions.

1. Introduction

A common integral in the preparatory studies of Quantum Field Theory (QFT), perturbation theory ${ }^{1}$ and Feynman diagrams is the "toy model":

$$
\begin{equation*}
Z(g)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^{2}-g x^{4}} d x \quad g \geq 0 \tag{1}
\end{equation*}
$$

The function $Z(g)$ is referred to as the partition function of i) zero dimensional φ^{4}-field theory 1,2 or alternatively ii) the zero-dimensional anharmonic oscillator [3]. The references [2,3] state (without derivation) the closed-form solution to the integral given by (1):

$$
\begin{equation*}
Z(g)=\frac{1}{\sqrt{4 \pi g}} \exp \left[\frac{1}{8 g}\right] K_{1 / 4}\left(\frac{1}{8 g}\right) \tag{2}
\end{equation*}
$$

Note the modified Bessel function of the second kind K_{ν}, also called a MacDonald function [2], in equation (2). The function can be expressed as [4] for $|\arg z|<\pi / 2$, i.e. $\operatorname{Re} z>0$:

$$
\begin{equation*}
K_{\nu}(z)=\int_{0}^{\infty} \cosh (\nu t) e^{-z \cosh t} d t . \tag{3}
\end{equation*}
$$

The expression (2) is in agreement with the formula (Ch. 3.323 No. 3) in Ref. [5], which in turn refers to the formula (Ch. 4.5 No. 34) in Ref. [6]. No derivations of the formulae are stated in either [5] or [6]. In addition, we note the alternative formulation of the closed-form solution for $Z(g)$ in Ref. [2]:

[^0]https://doi.org/10.1016/j.heliyon.2023.e13168
Received 30 November 2022; Received in revised form 16 January 2023; Accepted 19 January 2023
Available online 24 January 2023
2405-8440/© 2023 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
\[

$$
\begin{equation*}
Z(g)=\left(\frac{1}{2 g}\right)^{1 / 4} \exp \left[\frac{1}{8 g}\right] D_{-1 / 2}\left(\frac{1}{2 g}\right) \tag{4}
\end{equation*}
$$

\]

Equation (4) can be verified from (2) using the identity [7]:

$$
D_{-1 / 2}(z)=\sqrt{\frac{z}{2 \pi}} K_{1 / 4}\left(\frac{z^{2}}{4}\right)
$$

Derivation.
We re-cast (1) as

$$
\begin{equation*}
Z(g)=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-x^{2}-g x^{4}} d x \tag{5}
\end{equation*}
$$

and define a new variable transformation

$$
\begin{align*}
& x=\frac{1}{\sqrt{g}} \sinh \left(\frac{\xi}{4}\right) \tag{6}\\
& d x=\frac{1}{4 \sqrt{g}} \cosh \left(\frac{\xi}{4}\right) \tag{7}
\end{align*}
$$

When switching to the variable ξ, the limits in the integral in (5) are unchanged. Next, we consider the exponent in (5):

$$
\begin{gather*}
x^{2}+g x^{4}=x^{2} \bullet\left[1+g x^{2}\right]=g^{-1} \sinh ^{2}\left(\frac{\xi}{4}\right) \bullet\left[1+\sinh ^{2}\left(\frac{\xi}{4}\right)\right]=g^{-1} \sinh ^{2}\left(\frac{\xi}{4}\right) \bullet \cosh ^{2}\left(\frac{\xi}{4}\right)=(4 g)^{-1} \\
\bullet \sinh ^{2}\left(\frac{\xi}{2}\right)=(4 g)^{-1}\left[\cosh ^{2}\left(\frac{\xi}{2}\right)-1\right]=(4 g)^{-1}\left[\frac{1}{2}(\cosh \xi+1)-1\right]=\frac{1}{8 g} \cosh \xi-\frac{1}{8 g} \tag{8}
\end{gather*}
$$

Using (6), (7), and (8), we re-write (5) as

$$
\begin{equation*}
Z(g)=\frac{1}{\sqrt{4 \pi g}} \exp \left[\frac{1}{8 g}\right] \int_{0}^{\infty} \cosh \left(\frac{\xi}{4}\right) e^{-\frac{1}{8 g} \cosh \xi} d \xi \tag{9}
\end{equation*}
$$

The final step is to use the definition (3) to substitute for the integral in (9) to obtain the expression (2):

$$
Z(g)=\frac{1}{\sqrt{4 \pi g}} \exp \left[\frac{1}{8 g}\right] K_{1 / 4}\left(\frac{1}{8 g}\right)
$$

This is in agreement with the formula (Ch. 3.323 No. 3) in Ref. [5].

1.1Closed form expression for the moments

The integrand in the partition function (1) is an even function and should thus only have even moments given by the formula:

$$
\begin{equation*}
\left\langle x^{2 n}\right\rangle=\frac{1}{Z(g)} \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} x^{2 n} e^{-x^{2}-g x^{4}} d x \tag{10}
\end{equation*}
$$

We proceed as before using the variable transformations (6), (7) and (3) to re-write (10):

$$
\begin{equation*}
\left\langle x^{2 n}\right\rangle=\mathscr{N} \int_{0}^{\infty} \sinh ^{2 n}\left(\frac{\xi}{4}\right) \cosh \left(\frac{\xi}{4}\right) e^{-\frac{1}{8_{g}} \cosh \xi} d \xi \tag{11}
\end{equation*}
$$

The normalization factor $\mathscr{N}=\mathscr{N}(n, g)$ can be expressed as:

$$
\mathscr{N}(n, g)=\frac{1}{Z(g)} \frac{e^{1 / 8 g}}{\sqrt{4 \pi g^{2 n+1}}}=\left[g^{n} \bullet K_{1 / 4}\left(\frac{1}{8 g}\right)\right]^{-1}
$$

To proceed we make use of

$$
\sinh ^{2 n} x=\left[\cosh ^{2} x-1\right]^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \cosh ^{2 k} x
$$

to transform (11) to

$$
\begin{equation*}
\left\langle x^{2 n}\right\rangle=\mathscr{N} \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \int_{0}^{\infty} \cosh ^{2 k+1}\left(\frac{\xi}{4}\right) e^{-\frac{1}{8_{g}} \cosh \xi} d \xi \tag{12}
\end{equation*}
$$

We first use the trigonometric identity for odd powers of cosine [8] and then apply Osborn's rule [9] to convert the identity to the hyperbolic analogue:

$$
\cosh ^{2 k+1} x=\frac{1}{4^{k}} \sum_{m=0}^{k}\binom{2 k+1}{m} \cosh ([2 k+1-2 m] \bullet x) .
$$

We can now finish up (12):

$$
\left\langle x^{2 n}\right\rangle=\mathscr{N} \sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{n-k}}{4^{k}} \sum_{m=0}^{k}\binom{2 k+1}{m} \int_{0}^{\infty} \cosh \left(\frac{[2(k-m)+1] \bullet \xi}{4}\right) e^{-\frac{1}{8 \xi} \cosh \xi} d \xi
$$

and simplify the integral above using (3)

$$
\begin{equation*}
\left\langle x^{2 n}\right\rangle=\mathscr{N} \sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{n-k}}{4^{k}} \sum_{m=0}^{k}\binom{2 k+1}{m} K_{\frac{2(k-m)+1}{4}}\left(\frac{1}{8 g}\right) \tag{13}
\end{equation*}
$$

In general, we see that (13) is of the form

$$
\begin{equation*}
\left\langle x^{2 n}\right\rangle=\left[(4 g)^{n} \bullet K_{1 / 4}\left(\frac{1}{8 g}\right)\right]^{-1} \sum_{k=0}^{n} c_{m}^{(n)} K_{\frac{2 m+1}{4}}\left(\frac{1}{8 g}\right) \tag{14}
\end{equation*}
$$

where with a little work we see that the coefficients $c_{m}^{(n)}$ in (14) can be expressed as:

$$
\begin{equation*}
c_{m}^{(n)}=\sum_{k=m}^{n}(-1)^{n-k} 4^{n-k}\binom{n}{k}\binom{2 k+1}{k-m} \tag{15}
\end{equation*}
$$

The coefficients in (15) can be simplified when starting from the top in descending order - for example the first few entries are

$$
c_{n}^{(n)}=1 c_{n-1}^{(n)}=1-2 n c_{n-2}^{(n)}=n(2 n-3) c_{n-3}^{(n)}=\frac{n(1-2 n)(2 n-5)}{3}
$$

The even moments $2 n$ for $n=1,2,3$ are then given by:

$$
\left\langle x^{2}\right\rangle=\frac{1}{4 g}\left[\frac{K_{3 / 4}\left(\frac{1}{8 g}\right)}{K_{1 / 4}\left(\frac{1}{8_{g}}\right)}-1\right]\left\langle x^{4}\right\rangle=\frac{1}{16 g^{2}}\left[\frac{K_{5 / 4}\left(\frac{1}{8 g}\right)-3 K_{3 / 4}\left(\frac{1}{8_{g}}\right)}{K_{1 / 4}\left(\frac{1}{8_{g}}\right)}+2\right]\left\langle x^{6}\right\rangle=\frac{1}{64 g^{3}}\left[\frac{K_{7 / 4}\left(\frac{1}{8 g}\right)-5 K_{5 / 4}\left(\frac{1}{8 g}\right)+9 K_{3 / 4}\left(\frac{1}{8_{g}}\right)}{K_{1 / 4}\left(\frac{1}{8_{g}}\right)}-5\right]
$$

2. Discussion

As I was unable to find a derivation of the closed form expressions for φ^{4}-field theory in zero dimensions, I set about deriving the expression on my own. Along the way the trick I used to derived the expression also enables one to write a closed form expression for the even positive integer moments. I hope these results can lead to further insights on resummation methods used in the perturbative approach explored in the works $[1-3,10]$ and references therein. I also discovered an erratum in one of the quoted formulas [6] for which the correction is mentioned in appendix. I hope this short letter will be a useful reference for practitioners and students of field theory and statistical physics.

Author contribution statement

Ranjiva M. Munasinghe: Conceived and designed the analysis; Analyzed and interpreted the data; Contributed analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

No data was used for the research described in the article.

Declaration of interest's statement

The authors declare no competing interests.

Appendices.

A Erratum in Erdélyi et al.

The formula in Ref. [6] (Ch. 4.5 No. 34) states that

$$
\begin{equation*}
\int_{0}^{\infty}(2 t)^{-3 / 4} e^{-2 a^{1 / 2} t^{1 / 2}} e^{-p t} d t=\left[\frac{a}{2 p}\right]^{1 / 2} \exp \left[\frac{a}{2 p}\right] K_{1 / 4}\left(\frac{a}{2 p}\right) \tag{16}
\end{equation*}
$$

We also note the conditions for (16) are stated as $|\arg a|<\pi \$ \mid$ and $\operatorname{Re} p>0$ [6].
We start by using the substitution $t=x^{4}$ to transform the LHS of (16) to:

$$
2^{5 / 4} \int_{0}^{\infty} e^{-2 a^{1 / 2} x^{2}-p x^{4}} d x
$$

We now use a modified version of the transformation in (6)

$$
x=\frac{4 a^{1 / 2}}{p} \sinh \left(\frac{\xi}{4}\right),
$$

which leads to the correct version of (16):

$$
\int_{0}^{\infty}(2 t)^{-3 / 4} e^{-2 a^{1 / 2} t^{1 / 2}} e^{-p t} d t=\left[\frac{a}{2 p^{2}}\right]^{1 / 4} \exp \left[\frac{a}{2 p}\right] K_{1 / 4}\left(\frac{a}{2 p}\right)
$$

B Perturbative Treatment

Perturbative expansions for $Z(g)$ in (1) can be derived by expanding the exponential in the integral (1) and interchanging the order of the resulting summation and integration. In the weak coupling limit $g \rightarrow 0$ one obtains the divergent asymptotic expansion [1-3]:

$$
\begin{equation*}
Z(g) \sim \sum_{n=0}^{N}(-1)^{n} \frac{\Gamma(2 n+1 / 2)}{n!\sqrt{\pi}} g^{n} \tag{17}
\end{equation*}
$$

In the strong coupling limit $g \rightarrow \infty$ we obtain the convergent expansion [3]:

$$
\begin{equation*}
Z(g) \sim g^{-1 / 4} \sum_{n=0}^{N}(-1)^{n} \frac{\Gamma(n / 2+1 / 4)}{2 n!\sqrt{\pi}} g^{-n / 2} \tag{18}
\end{equation*}
$$

Both expansions, (17) and (18), can also be obtained from (1) using the appropriate expansion of $K_{\nu}(z)$ [2].

References

[1] J.C. Collins, Renormalization: an Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, Cambridge University Press, Cambridge, 1984.
[2] V. Yukalov, Interplay between Approximation Theory and Renormalization Group 50 (2) (2019).
[3] H. Kleinert, Converting Divergent Weak-Coupling into Exponentially Fast Convergent Strong-Coupling Expansions, 2010.
[4] G. Watson, A Treatise on the Theory of Bessel Functions, second ed., Cambridge University Press, Cambridge, 1995 , p. 181.
[5] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, seventh ed., Elsevier, Amsterdam, 2007 , p. 337.
[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of Integral Transforms, vol. 1, Mc-Graw Hill, New York, 1954 , p. 147.
[7] E.W. Weisstein, Parabolic cylinder function [Online]. Available: https://mathworld.wolfram.com/ParabolicCylinderFunction.html.
[8] E.W. Weisstein, Trigonometric power formulas, " [Online]. Available: https://mathworld.wolfram.com/TrigonometricPowerFormulas.html.
[9] E.W. Weisstein, Osborn's rule [Online]. Available: https://mathworld.wolfram.com/OsbornsRule.html.
[10] V. Meden, Lecture Notes: Functional Renormalization Group, 2003 [Online]. Available: https://www.statphys.rwth-aachen.de/cms/Statphys/Forschung/AG-Meden/~qygs/Vorlesung-Functional-Renormalization-G/lidx/1/.

[^0]: E-mail address: ranjiva@mindlanka.com.
 ${ }^{1}$ Please refer to AppendixB.

