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ABSTRACT: Cycloaliphatic epoxy (CE) resin plays a vital role in insulation equipment due
to its excellent insulation and processability. However, the insufficient ability of CE to confine
electrons under high voltage often leads to an electric breakdown, which limits its wide
applications in high-voltage insulation equipment. In this work, the interface effect of
inorganic nano-SiO2 introduces deep traps to capture electrons, which is synergistic with the
inherent ability of the voltage stabilizer m-aminobenzoic acid (m-ABA) to capture high-energy
electrons through collision. Therefore, the insulation failure rate is reduced owing to doping of
the functionalized nanoparticles of the m-ABA-grafted nano-SiO2 (m-ABA-SiO2) into the CE.
It is worth noting that the breakdown field strength of this m-ABA-SiO2/CE reaches 53 kV/
mm, which is 40.8% higher than that of pure CE. In addition, the tensile strength and volume
resistivity of m-ABA-SiO2/CE are increased by 29.1 and 140%, respectively. Meanwhile, the
glass transition temperature was increased by about 25 °C and reached 213 °C. This work proves that the comprehensive
performance of CE-based nanocomposites is effectively improved by m-ABA-SiO2 nanoparticles, showing great application potential
in high-voltage insulated power equipment.

■ INTRODUCTION

It is well known that the safety and stability of power systems
are directly affected by the insulation level of high-voltage
insulation materials. Cycloaliphatic epoxy (CE) resin has
excellent voltage resistance, heat resistance, and processability
due to its unique structure, making it an ideal insulating
material in practical applications.1−4 According to the electrical
breakdown theory of solid dielectrics, electrons are excited
from the valence band to the conduction band under a
sufficiently high electric field and then accelerated to collide
with other atoms to generate ionized electrons.5−7 The small
current generated by the electron migration will pass through
the CE, which will eventually lead to an electrical breakdown,
as shown in Figure 1a. With the development of high-voltage
electronic power equipment, many studies have been reported
to improve the performance of insulating materials.8−11 In fact,
increasing the breakdown strength remains extremely challeng-
ing and critical in terms of reducing insulation failure rates and
reliability of concern.12−14

So far, two kinds of important methods that have been
proposed to enhance the breakdown field strength of polymers
have mainly focused on the incorporation of nanofillers and
voltage stabilizers.15−18 It has been reported that the
mechanism by which low content nanofillers (such as
TiO2,

19,20 MgO,21,22 and Al2O3
23,24) can improve the break-

down strength of polymer is mainly attributed to two ways: (1)
the tortuous path of electron breakdown caused by nano-
fillers.25,26 (2) Nanofillers capture electrons by introducing

deep traps into the polymer (Figure 1b). It has been revealed
that nano-SiO2 can effectively improve the electrical insulation
properties of polymers.16,27,28 However, it is difficult for
supersurficial nano-SiO2 to disperse uniformly in the polymer,
so the expected performance cannot be obtained. Therefore, it
is of great importance to obtain CE-based nanocomposites
with good compatibility by the surface modification of nano-
SiO2.

29 Briefly, the current urgent work is to find more
effective methods to enhance the breakdown field strength of
the CE-based nanocomposites.
In the past few decades, effective stabilizers have been

proposed to capture high-energy electrons that would degrade
polymer molecular chains through collision excitation and
collision ionization (Figure 1c).30,31 Generally, phenyl
compounds with ester groups have higher electron affinity
and lower ionization potential, indicating their higher ability to
capture high-energy electrons.32 Unfortunately, the stabilizer is
poorly compatible with the polymer matrix and eventually
loses its effectiveness due to the migration in the matrix.
Therefore, it is greatly critical to improve the compatibility of
the voltage stabilizer with the polymer matrix.17 The migration
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of the stabilizer is inhibited and the surface activity of the
nanoparticles is reduced, which is expected to be realized by
fixing the voltage stabilizer on the surface of the nanoparticles.
There is an excellent ability for m-ABA to capture high-energy
electrons in polymers.33 Improving the compatibility of m-ABA
with CE and the agglomeration of nano-SiO2 may be achieved
by grafting m-ABA onto nano-SiO2 particles. This synergy
makes the breakdown voltage of CE-based nanocomposites a
noteworthy improvement (Figure 1d).
In this work, SiO2-functionalized nanoparticles grafted with

the m-ABA stabilizer were successfully added to the CE cured
by anhydride. On the one hand, nano-SiO2 is introduced into
deep traps or forms scattering centers in the CE to improve the
breakdown field strength. On the other hand, this strategy can
improve the compatibility of m-ABA and CE, which is
conducive to the ability of m-ABA to capture high-energy
electrons. The cooperation between nano-SiO2 and m-ABA
greatly enhances the electrical breakdown performance of CE-
based nanocomposites. The breakdown field strength has been
increased by 40.8% to 53 kV/mm. In addition, the tensile

strength and volume resistivity of m-ABA-SiO2/CE are
increased by 29.1% and 140%, respectively. Meanwhile, the
glass transition temperature was increased by about 25 °C and
reached 213 °C. It is commendable that the thermal
decomposition temperature, the tensile strength, volume
resistivity, and glass transition temperature Tg of CE-based
nanocomposites have been enhanced by introducing the
functionalized nanoparticles of the m-ABA-grafted nano-SiO2
(m-ABA-SiO2). The improvement of the comprehensive
performance of CE-based nanocomposites makes it possible
to be used in more high-voltage-resistant insulated electrical
equipment.

■ RESULTS AND DISCUSSION

Structure and Morphology of the Component in the
m-ABA-SiO2/CE Nanocomposite. Figure 2 illustrates the
process of the voltage stabilizer m-ABA grafted onto nano-
SiO2. First, the voltage stabilizer m-ABA and the aminosilane
coupling agent KH-550 completed the amidation reaction at a
certain temperature. Second, the siloxane group in KH-550 was
hydrolyzed and bonded with Si−OH on the nano-SiO2 to form
a Si−O−Si bond. Finally, m-ABA-SiO2 was obtained after
washing and drying. Herein, the pristine nano-SiO2 was
observed by scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) (Figure S1),
showing well dispersion of SiO2 nanoparticles with a diameter
of ∼18 nm. Figure S2 reveals the Fourier transform infrared
(FT-IR) spectroscopy information for the grafting of m-ABA
to nano-SiO2. The peak at 2923 cm−1 is attributed to the
−CH2− stretching vibration peak of the silane coupling agent
KH-550. The two peaks at 1650 and 1395 cm−1 correspond to
the stretching vibration peaks of −CO− and −CN− after
the amidation reaction, respectively. In addition, the tensile
vibration peak assigned to Si−OH disappeared at 963 cm−1,
indicating that the dehydration reaction proceeded success-
fully. In summary, the functionalized particle m-ABA-SiO2 was
successfully prepared. Moreover, the X-ray diffraction (XRD)
results are shown in Figure S3. The peak position of m-ABA-
SiO2 is shifted by about 1° to the right of pristine nano-SiO2. It
can be presumed to be caused by the successful grafting of m-
ABA onto SiO2. In addition, as shown in the thermogravi-
metric (TG) curve (Figure S4), the thermal weight loss of
nanoparticle m-ABA-SiO2 is 2 wt % more than that of pristine

Figure 1. Diagram of the breakdown schematic of electrons on
different bases. (a) Electrical breakdown schematic of pure CE; (b)
electrical breakdown schematic of the SiO2/CE nanocomposite; (c)
electrical breakdown schematic of the m-ABA/CE composite; and (d)
electrical breakdown schematic of the m-ABA-SiO2/CE nano-
composite.

Figure 2. Diagram of the preparation mechanism of m-ABA-SiO2. (1) m-ABA is connected to KH-550 through the amidation reaction and
hydrolysis is completed. (2) Si−OH on m-ABA-KH-550 and SiO2 are dehydrated and condensed to form Si−O−Si bonds to prepare m-ABA-SiO2.
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nano-SiO2, which also confirms that m-ABA is successfully
grafted onto SiO2.
Regarding the curing process of the epoxy resin, first, the

pre-curing temperature was kept at 100 °C for 2 h, then the
temperature was increased to 150 °C for 4 h, the temperature
was raised to 180 °C for 2 h, and finally, the heating was
stopped and cooled to room temperature (Figure S5). In order
to verify whether the CE has been completely cured,
differential scanning calorimetry (DSC) test and FT-IR
characterization were carried out on CE with optimized
experimental conditions. As shown in Figure S6, no curing
exothermic peak is observed in the DSC curve, which proves
that the curing reaction has proceeded completely. In FT-IR,
the tensile vibration peak of the epoxy group near 910 cm−1

also does not appear in Figure S7. It proves that the curing
reaction of the epoxy group has proceeded completely.
During the preparation of the nanocomposite precursor

fluid, we found that the amount of nanofillers is limited. When
the nanoparticle-doped mass percentage is 5 wt % or less, the
bubbles in the CE-based nanocomposites precursor liquid can
be broken or overflow, as shown in Figure S8a−c. Above the
limit of 5 wt % (relative to the total mass), the precursor
solution becomes too viscous and the nanofillers cannot be
better dispersed; meanwhile, a large number of bubbles cannot
overflow (Figure S8d). To observe the dispersion of m-ABA-
SiO2 nanoparticles in CE, the cross-sectional microstructure of
CE-based nanocomposites was observed by SEM. The
structure of CE-based nanocomposites is very dense, as
shown in Figure 3. In Figure 3a, the cross section of pure

CE is free of impurities, and some fracture cracks are shown in
the shiny part. It can be observed in Figure 3b that when the
mass percentage of nanoparticles is 1 wt %, there is better
dispersion in the CE. As the mass percentage of nanoparticles
increases to 3 wt %, as shown in Figure 3c, the nanoparticles
can still be dispersed well without obvious agglomeration.
When the functionalized nanoparticles are continuously
increased to 5 wt %, the agglomeration of nanoparticles in

CE-based nanocomposites can be clearly observed in the white
circled part of Figure 3d. Furthermore, when the mass
percentage of nanoparticles is below 5 wt %, the measured
element mapping further illustrates the uniform distribution of
Si elements in CE-based nanocomposites, as shown in the inset
of Figure 3b,c; when the mass percentage of nanoparticles
exceeds 5 wt %, the aggregate distribution of Si in the CE-
based nanocomposite material in the measured element
mapping is shown by the yellow circle in the inset of Figure
3d. The reason for this phenomenon can be explained as
follows: as the mass percentage of m-ABA-SiO2 nanoparticles
increases, the compatibility between the nanoparticles and CE
becomes saturated and agglomerates.36,37

Thermal Stability of the m-ABA-SiO2/CE Nanocom-
posite. Electrically insulating polymer materials often fail due
to thermal degradation during actual use.38,39 Considering the
influence of temperature on the stability of the polymer
structure, the thermal stability of CE-based nanocomposites
was tested. The thermal decomposition curve (TG) is used to
characterize the thermal weight loss of CE-based nano-
composites when the temperature rises. As shown in Figure
4a, the thermal decomposition process is divided into two

steps: (1) the initial decomposition starts from some side
branches of CE-based nanocomposites. The mass percentage
of m-ABA-SiO2 nanoparticles has almost no effect on the
thermal decomposition temperature and fluctuates within 4
°C. It is worth mentioning that the CE-based nanocomposite
material basically does not decompose at 350 °C. (2) As the
mass percentage of m-ABA-SiO2-functionalized nanoparticles
increases, the decomposition temperature in the second step
increases. This is due to the addition of m-ABA-SiO2
nanoparticles, which produces a stronger binding force with
the CE and can withstand higher temperatures. In Figure 4b,
the histogram of the two-step decomposition temperature can
more intuitively observe the decomposition temperature of the
CE-based nanocomposite with the increase of m-ABA-SiO2
nanoparticles. In short, after the addition of m-ABA-SiO2
nanoparticles, the thermal decomposition temperature of the

Figure 3. SEM images of the cross section of the m-ABA-SiO2/CE
nanocomposite material. (a−d) CE-based nanocomposites doped
with (0, 1, 3, and 5 wt %) m-ABA-SiO2 nanoparticles. The inset
pictures (b−d) are Si element mapping in CE-based nanocomposites
doped with 1, 3, and 5 wt % m-ABA-SiO2 nanoparticles, respectively.

Figure 4. Effect of different mass fractions on the thermal stability of
m-ABA-SiO2/CE nanocomposites. (a) TG curve; (b) distribution of
the decomposition temperature (Td) histogram; (c) DMA curve; and
(d) variation curve of the storage modulus between 20 and 250 °C.
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CE-based nanocomposite is basically unchanged. In addition,
the change trend of the decomposition temperature in the
second step shows that the stability of the CE-based
nanocomposites is enhanced.
Based on the correlation between the glass transition

temperature (Tg) of the insulating material and the used
temperature in the application, which was characterized by a
dynamic thermodynamic method [dynamic mechanical anal-
ysis (DMA)]. With the addition of m-ABA-SiO2 nanoparticles,
the trend of Tg increases first and then decreases (Figure 4c).
The Tg of CE-based nanocomposites can reach up to 213 °C at
3 wt %, which is an increase of 25 °C compared with that of
pure CE. When the mass percentage of m-ABA-SiO2
nanoparticles is increased to 5 wt %, the excessive nano-
particles have poor dispersion in the CE-based nano-
composites, resulting in a decrease about Tg. After the
temperature exceeds Tg, the physical properties of CE-based
nanocomposites (such as mechanical properties and insulation
properties) will be damaged.40 Correspondingly, the increase
in Tg also indicates that the structure of the nanocomposite is
more stable.
The rigidity of CE-based nanocomposites can be charac-

terized by the storage modulus (E′). Figure 4d shows that
when a certain temperature is reached, the E′ of the m-ABA-
SiO2/CE nanocomposite material drops rapidly by 3 orders of
magnitude, which means that the rigidity of the material is
reduced rapidly. As the mass percentage of m-ABA-SiO2
increases, the transition temperature of the CE-based nano-
composite E′ is increased, which is beneficial to enhance the
heat resistance of the material under alternating stress. When
increased to 3 wt %, the transition temperature is the highest
(∼210 °C). When the nanoparticles continue to increase to 5
wt %, defects are introduced due to nanoparticle agglomeration
in the CE-based nanocomposites, resulting in a decrease in the
transition temperature of E′. Due to the excellent dispersion of
m-ABA-SiO2 nanoparticles in the CE, the force between the
molecular chains is increased and the CE structure is more
stable.41 By the way, this trend is consistent with the change of
Tg with the increase of m-ABA-SiO2 nanoparticles.
Mechanical Properties of the m-ABA-SiO2/CE Nano-

composite. In order to determine the internal structural
reliability of CE-based nanocomposites, tensile performance
tests were used to characterize the structural stability of CE-
based nanocomposites.42 Figure 5 shows the tensile strength
test results of the m-ABA-SiO2/CE nanocomposite. As shown
in Figure 5a, with the increase of the m-ABA-SiO2 content, the
change trend of the tensile strength is to increase first and then
decrease. When the content is 3 wt %, the maximum tensile
strength is 86.43 MPa, which is 29.1% stronger than pure CE.
The bar graph (Figure 5b) shows the tensile strength
distribution of the m-ABA-SiO2/CE nanocomposite tested
multiple times. It can be explained that the addition of m-ABA-
SiO2 nanoparticles will improve the density of crosslinking
points of polymer molecular chains and increase the cohesive
energy of the molecules, thereby making the entire structure
more compact and difficult to destroy.43,44 Due to the
continuous increase of m-ABA-SiO2 nanoparticles, they cannot
be well dispersed in CE-based nanocomposite materials. The
agglomerated part introduces physical defects and hinders the
entanglement between molecular chains, thereby increasing the
local free volume and reducing its tensile properties.45

As shown in Figure 5c, with the increase of m-ABA-SiO2
nanoparticles, the Young’s modulus also shows a certain

regularity. When the content is 3 wt %, the maximum value is
2.65 GPa, which is 44.8% higher than pure CE. When the m-
ABA-SiO2 nanoparticles increase to 5 wt %, the Young’s
modulus shows a decreasing trend. The results show that when
the mass percentage of m-ABA-SiO2 nanoparticles is 3 wt %,
the CE-based nanocomposite has good compatibility and high
cohesive energy. Based on the split strength model, the
theoretical breakdown strength is positively correlated with the
cohesive energy.5 The higher Young’s modulus means that the
nanocomposite material can withstand the higher Coulomb
force generated by the external electric field.46,47 In other
words, the m-ABA-SiO2 nanoparticles in the CE-based
nanocomposites may form strong physical support points to
protect the nanocomposite from electromechanical failure. In
Figure 5d, it is observed that pure CE is brittle under external
force. On the contrary, after doping with m-ABA-SiO2, the
brittleness of the CE-based nanocomposite is improved, and a
certain degree of bending deformation can occur under
external force, as shown in Figure 5e. Regarding the processing
performance, while the tensile strength is improved, it can still
be processed into different shapes. In Figure S9, it can be
observed that the CE-based nanocomposite exhibits excellent
processing performance, which is beneficial to a wider range of
applications.

Electrical Insulation Properties of the m-ABA-SiO2/CE
Nanocomposite. High resistivity is very important for the
application of CE-based nanocomposites to high-voltage
insulation equipment.48 Therefore, the volume resistivity of
m-ABA-SiO2/CE nanocomposites with different mass percen-
tages was measured to evaluate the insulation properties of CE-
based nanocomposites. As shown in Figure 6, as the mass
percentage of m-ABA-SiO2 increases, the volume resistivity
changes first to increase and then to decrease. The maximum
value obtained at 3 wt % is 5.47 × 1014 Ω·m, which is 2.4 times
that of pure CE. The gain of volume resistivity can be mainly
attributed to two ways: (1) the dispersion of m-ABA-SiO2
nanoparticles in CE serves as a physical obstacle to cause the
tortuous path of electron migration.25 (2) The electrons are
trapped in the interface traps introduced by the m-ABA-SiO2-

Figure 5. Influence of different mass fractions on the mechanical
properties of m-ABA-SiO2/CE nanocomposites. (a) Stress−strain
curve; (b) distribution of the tensile strength histogram; (c) Young’s
modulus curve; (d) brittleness of pure CE; and (e) m-ABA-SiO2/CE
nanocomposite material’s certain flexibility.
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functionalized nanoparticles with CE.27 At this time, a higher
voltage is required for the electrons to escape from the traps of
the nanocomposite. The combined effect of the two effects
greatly increases the volume resistivity of the nanocomposite.
Such a high resistivity or low electrical conductivity indicates
that the Joule heat generated by the CE-based nanocomposite
is extremely low, which is beneficial to avoid thermoelectric
breakdown.49,50

Joule heat generated by the leakage current of the insulating
material becomes the main cause of the dielectric loss. The
current flowing through the polymer converts a part of the
electronic kinetic energy into Joule heat, which is closely
related to the volume resistivity. As shown in Figure 6, the
dielectric loss has a negative correlation with the change trend
of volume resistivity. The larger the volume resistivity of the
CE-based nanocomposite, the smaller the corresponding
leakage current that can flow through the matrix and the
relatively low dielectric loss. When the mass percentage of m-
ABA-SiO2 is 3 wt %, the minimum dielectric loss is 0.0028,
which is 12% lower than that of the pure CE. In short, the
dielectric loss is kept at a very low value, which is conducive to
the insulation performance of CE-based nanocomposites.48

As shown in Table S1, compared with other nanofillers such
as TiO2, MgO, and Al2O3, the dielectric constant of SiO2 is 3.9,
so it has a higher dielectric match rate with the pure CE (the
dielectric constant value is about 3.0). Figure 6 shows that
when the mass percentage of m-ABA-SiO2 nanoparticles is 3 wt
%, the dielectric constant of the CE reaches the maximum of
3.5. This can be attributed to the fact that the dielectric
constant of silicon dioxide is slightly larger than that of the host
matrix in the first place. In addition, the mass percentage of m-
ABA-SiO2 increases and the specific surface area increases,
resulting in an increase in the interface and polarization. When
the dispersion of m-ABA-SiO2 nanoparticles in CE continues
to increase to 5 wt %, the dielectric constant has a downward
trend. According to the mechanism of the potential barrier
model, the difference in interface characteristics and the
content of nanofillers leads to a decrease of the dielectric
constant, and its changing trend model is similar to the
reported polymer-based nanocomposites in literature stud-
ies.51−53

When the filler is at the nanolevel, the dielectric properties
are mainly affected by the interface effect.54,55 The increase in
dielectric constant indicates that the addition of m-ABA-SiO2
nanoparticles introduces more interface effects. It has been
proved that the interfacial interaction between nanoparticles
and the CE can effectively increase the breakdown voltage of

the CE. Figure S10 shows the Weibull distribution of the
measured breakdown strengths of KH-550-SiO2/CE (KH-550
silane coupling agent-modified nano-SiO2). It can be observed
that when the modified nano-SiO2 mass percentage is 3 wt %,
the maximum value of 47 kV/mm is obtained, which is an
increase of 24.8% compared to that of pure CE. It reveals that
nano-silica plays a positive role in the increase of CE-based
nanocomposites’ breakdown field strength.
Then, the voltage stabilizer m-ABA silane coupling agent is

fixed on the SiO2 nanoparticles by KH-550 to prepare m-ABA-
SiO2-functionalized nanoparticles, which are doped into CE. It
was found that compared with the KH-550-SiO2/CE nano-
composite, the breakdown voltage of the m-ABA-SiO2/CE
nanocomposite was further improved to 53 kV/mm, which is
40.8% higher than that of pure CE, as shown in Figure 7.

When the content of nanoparticles reaches 5 wt %, the
electrical breakdown strength decreases. The addition of
excessive nanoparticles will result in a decrease in the
breakdown strength because they will agglomerate in the
CE-based nanocomposites and introduce more defects,
destroying the basic structure of CE. This proves that after
the voltage stabilizer is fixed on the surface of nano-SiO2, it can
play an active role in increasing the breakdown voltage. In
Table S2, the breakdown strength enhancement mentioned in
this work and the report are compared. It can be seen that
when the dispersing filler is SiO2 nanoparticles, compared with
other surface modifiers, the gain of the voltage stabilizer m-
ABA on the breakdown strength of the matrix is at a higher
level. In summary, compared with the reported nanocomposite
materials, m-ABA-SiO2 exhibits a higher CE breakdown
strength enhancement. This proves that m-ABA has a positive
effect on the improvement of the CE breakdown field strength.
The increase in the breakdown voltage of CE-based

nanocomposites can be attributed to the collective synergistic
effect of SiO2 nanoparticles and voltage stabilizer m-ABA. The
smaller size effect of m-ABA-SiO2 nanoparticles forms a special
interface with the CE, thereby introducing deep traps in the
CE.56−58 The electrons are trapped in deep traps, weakening
the kinetic energy, thereby reducing the possibility of
breakdown.59,60 Figure S11 shows the results of the thermally
stimulated depolarization current (TSDC) of the m-ABA-
SiO2/CE nanocomposite. The temperature and intensity of the
TSDC peak can be correlated with the depth and density of
the charge traps, respectively. It can be observed that the m-
ABA-SiO2/CE nanocomposite has a TSDC peak at a higher

Figure 6. Volume resistivity (black line), dielectric constant (blue
line), and dielectric loss (red line) of m-ABA-SiO2/CE nano-
composites with different mass percentages.

Figure 7. Electrical breakdown performance of m-ABA-SiO2/CE
nanocomposites. (a) Weibull distribution of measured breakdown
strengths of nanocomposites. The solid lines refer to the fitting results
using a two-parameter Weibull distribution function (see the
Experimental Section). (b) Effect of m-ABA-SiO2 with different
mass percentages on CE-based nanocomposites’ breakdown field
strength (Eb).
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temperature (above 125 °C), which corresponds to a higher
trap depth. It can be inferred that the composite material has a
lower charge mobility. In addition, the temperature around 95
°C corresponds to a shallower trap depth, and the peak of the
m-ABA-SiO2/CE nanocomposite is not obvious here, which
means that the shallow trap density is reduced. As the mass
percentage of m-ABA-SiO2 nanoparticles increases, the current
intensity (corresponding to the trap density) first increases and
then decreases, which also affects the migration of carriers.
This result is consistent with the characterized volume
resistivity and voltage breakdown strength results (Figure
S11). It proves that the CE doped with m-ABA-SiO2
nanoparticles does introduce deep traps to reduce the
migration of carriers and improve the CE electrical breakdown
performance to a certain extent. The successful introduction of
m-ABA-SiO2 nanoparticles provides an effective method for
increasing the breakdown field strength of high-voltage
insulation materials.

■ CONCLUSIONS

In summary, we have developed a method of grafting
stabilizers onto nano-SiO2 using the collective synergistic to
improve the electrical breakdown strength of CE-based
nanocomposites. m-ABA-SiO2 was dispersed uniformly in the
CE matrix, and the molecular chains were cross-linked through
a gradual curing process to prepare CE-based nanocomposite
materials with high-voltage breakdown resistance, excellent
thermal stability, good tensile strength, and easy-to-process.
The prepared CE-based nanocomposite material does not
decompose at 350 °C and can still maintain a stable structure
at 200 °C; the tensile strength can reach 86 MPa, and it has a
certain degree of toughness. What is more, the breakdown
electric field strength can reach 53 kV/mm, which is an
increase of 40.8% compared with that of pure CE. The
introduction of m-ABA-SiO2-functionalized nanoparticles can
effectively increase the breakdown field strength of CE-based
nanocomposites, which provides new opportunities for the
reliable insulation of high-voltage electronic power equipment.

■ EXPERIMENTAL SECTION

Prepared Raw Materials. 3,4-Epoxycyclohexylmethyl-3,4-
epoxycyclohexanecarboxylate (CE, epoxy value of 0.74−0.80),
methyl-5-norbornene-2,3-dicarboxylic anhydride (MNA, 95%)
was used as the hardener, and tris(dimethylaminomethyl)-
phenol (DMP-30, 95%) was used as the accelerator. Fumed
nano-SiO2 (20 nm, 99%) was purchased from Aladdin
Reagent. γ-Aminopropyl triethoxysilane (KH-550, 99%) and
analytical-grade toluene and m-aminobenzoic acid (m-ABA,
99%) were provided by Sinopharm Chemical Reagent.
Synthesis of m-ABA-Grafted Nano-SiO2. First, stoichio-

metric amounts of KH-550 and m-ABA are used to prepare
aminosilane-modified m-ABA through a liquid-phase reaction.
0.01 mol m-ABA was taken and stirred in 20 mL of toluene
solution. After complete dissolution, 0.01 mol KH-550 was
added dropwise to the mixed solution and stirred at 75 °C for
3 h to complete the amidation reaction. Next, the nano-SiO2
particles were dispersed in toluene and added to the above
solution. Finally, 2 mL of water was added dropwise and
stirred overnight at 75 °C. The obtained product was
repeatedly washed with ethanol and water and then dried at
60 °C. This method produced m-ABA-grafted nano-SiO2,
namely, m-ABA-SiO2.

Synthesis of CE. The mass ratio of CE to MNA is set to
1:1.2; the dosage of DMP-30 is 5 wt % of the mass of CE.34

Then, the three liquids are uniformly mixed in proportion by
mechanical stirring and ultrasound. After vacuuming, the
mixed precursor solution is cast on a mold preheated to 100
°C and the temperature is gradually increased. First, it was
heated at 100 °C for 2 h, then heated to 150 °C for 4 h, and
then heated at 180 °C for 2 h35 Finally, the sample was
obtained after being cooled to room temperature.

Preparation of m-ABA-SiO2/CE Nanocomposites. For
CE nanocomposites, different mass percentages (0, 1, 3, and 5
wt %) of m-ABA-SiO2 were added into CE by stirring and
sonicating to form a homogeneous suspension at room
temperature. Then, MNA and DMP-30 were added to the
suspension. Then, MNA and DMP-30 were added to the
suspension in turn. After vacuuming, the suspension was cast
onto the mold and cured by a temperature program. For
comparison, the KH-550 silane-modified SiO2/CE nano-
composite with the corresponding same filling amount was
fabricated as the control following the same steps as above.

Characterization. Nanoparticles, CE, and nanocomposite
materials were measured by using FT-IR spectrometry
(Nicolet 8700) to provide enough information about func-
tional groups. The surface morphology was observed using a
scanning electron microscope (Gemini SEM 500, Carl Zeiss
Microscopy Ltd.). The morphology and corresponding energy-
dispersive X-ray spectroscopy (EDS) elemental mapping
images of CE-based nanocomposites were measured by
SEM. The morphology of nanoparticles was characterized by
TEM (JEOL JEM-ARM200F). For TEM measurement, nano-
SiO2 was dispersed in an ethanol solution separately. One drop
of the dispersion solution was dropped on an ultrathin copper
mesh to guarantee a fine contrast between the background. A
differential scanning calorimeter (DSC Q2000) was used to
control the curing conditions and determine the reaction
conditions for complete curing. The thermal decomposition
temperature can be obtained by TG curves. The TG curves of
CE-based nanocomposites were measured by a synchronous
thermal analyzer (SDT650), and the temperature is increased
from 20 to 800 °C at a heating rate of 10 °C/min. The DMA
test was performed by an analyzer DMA Q800. For DMA
measurement, the nanocomposite samples were heated and
cooled between 30 and 250 °C at a temperature change rate of
5 °C/min. The tensile strength is characterized by the
Instron9657 multifunctional electronic universal material
mechanical property testing machine, which is stretched at a
rate of 2 mm/min at room temperature. According to the GB/
T1408.1-2016 test standard, a breakdown test platform for
epoxy resin cured samples was built. The adjustable range of
the power frequency voltage amplitude of the test transformer
is 0−50 kV. The electrode adopts a ball−ball electrode, which
is made of stainless steel with two identical ball electrodes with
a diameter of 20 mm. The characteristic breakdown strengths
of nanocomposites can be described by a two-parameter
Weibull distribution function, as follows
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where F (Ei) is the failure probability when the breakdown
voltage is less than or equal to Ei and β is the Weibull modulus
for evaluating the distribution width. Ei is the measured
breakdown strength each time and is sorted from the smallest
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to the largest. At the same time, Eb and β are fit parameters.
The fit parameters can be extracted by linearizing eq 1
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The volume resistivity of epoxy-based nanocomposites was
measured by Keithley6517 at room temperature. The dielectric
constant and loss tangent were measured by an LCR meter
(Agilent 4294A) with a 0.5 V AC signal in 50 Hz. The density
and depth of traps in nanocomposites are characterized by
TSDC. First, the sample is heated to 70 °C, and then, a DC
electric field (3 kV/mm) is applied under isothermal
conditions for 20 min. Then, the sample was cooled to −50
°C, while the electric field is still on. Finally, while measuring
the depolarization current with an ammeter, the sample was
short-circuited and linearly heated to 180 °C at 3 °C/min. In
order to ensure the reproducibility of the experimental results,
it was confirmed that the material preparation process was
carried out under the same conditions. For nanocomposites
with different mass percentages, at least three different samples
should be prepared for all tests.
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