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Abstract: Background: Magnetic resonance (MR)-fusion contouring is the standard of care in
prostate stereotactic body radiotherapy (SBRT) for target volume localisation. However, the planning
computerised tomography (CT) scan continues to be used for dose calculation and treatment planning
and verification. Discrepancies between the planning MR and CT scans may negate the benefits of
MR-fusion contouring and it adds a significant resource burden. We aimed to determine whether
CT-only contouring resulted in a dosimetric detriment compared with MR-fusion contouring in
prostate SBRT planning. Methods: We retrospectively compared target volumes and SBRT plans
for 20 patients treated clinically with MR-fusion contouring (standard of care) with those produced
by re-contouring using CT data only. Dose was 36.25 Gy in 5 fractions. CT-only contouring was
done on two occasions blind to MR data and reviewed by a separate observer. Primary outcome was
the difference in rectal volume receiving 36 Gy or above. Results: Absolute target volumes were
similar: 63.5 cc (SD ± 27.9) versus 63.2 (SD ± 26.5), Dice coefficient 0.86 (SD ± 0.04). Mean difference
in apex superior-inferior position was 1.1 (SD ± 3.5; CI: −0.4–2.6). Small dosimetric differences in
favour of CT-only contours were seen, with the mean rectal V36 Gy 0.3 cc (95% CI: 0.1–0.5) lower for
CT-only contouring. Conclusions: Prostate SBRT can be successfully planned without MR-fusion
contouring. Consideration can be given to omitting MR-fusion from the prostate SBRT workflow,
provided reference to diagnostic MR imaging is available. Development of MR-only work flow is a
key research priority to gain access to the anatomical fidelity of MR imaging.
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1. Introduction

Stereotactic body radiotherapy (SBRT) is a treatment option for localised prostate cancer which
uses highly conformal dose distributions and precise image guidance to deliver treatment in a
few large fractions [1]. A significant body of data shows that outcomes are in keeping with
conventional radiotherapy and both ASTRO (American Society for Radiation Oncology) and NCCN
(National Comprehensive Cancer Network) guidelines suggest SBRT as a treatment option for prostate
cancer [2,3]. The profound hypofractionation used in SBRT is convenient for patients and appears to
achieve similar levels of cancer control [4]. The majority of prostate SBRT centres that have published
outcome data have used the Cyberknife system (Accuray, CA, USA) [4]. SBRT is currently being

Medicines 2018, 5, 32; doi:10.3390/medicines5020032 www.mdpi.com/journal/medicines

http://www.mdpi.com/journal/medicines
http://www.mdpi.com
http://www.mdpi.com/2305-6320/5/2/32?type=check_update&version=1
http://www.mdpi.com/journal/medicines
http://dx.doi.org/10.3390/medicines5020032


Medicines 2018, 5, 32 2 of 9

compared with conventional treatments in the PACE (Prostate Advances in Comparative Evidence)
international phase III study [5].

MR-fusion contouring describes the process by which planning MR and CT data are fused based
on prostate position. Physicians use information from both data sets to contour a target volume.
However, dose calculation, image guidance and treatment processes at present use only CT data.
MR-fusion contouring is considered a standard of care in prostate SBRT planning [6–11]. This is in
contrast to conventional radiotherapy treatment where, typically, CT-only data are used [12,13].

The MR-fusion approach is based on studies showing that contouring with MR alone (once fusion
is complete but without reference to CT) produces smaller and more consistent prostate target volumes
than CT alone due to the improved soft tissue contrast, particularly at the prostate apex [14–17].
The majority of these studies included a planning component demonstrating a significant reduction
in dose to the rectum and other organs, which may translate into a reduction in toxicity. This is
particularly important in prostate SBRT for the 1 cc rectal constraint (typically limited to < 36 Gy,
Table 1) for which higher doses are associated with increased rectal toxicity [18]. In view of the steep
dose fall-off seen with SBRT, relatively small changes in prostate target volume may increase this dose
significantly. Thus, there is a concern that if CT-only contours increase the prostate target volume it
may make prostate SBRT impossible to plan, within current constraints.

Table 1. Prostate SBRT dose constraints and planning objectives (derived from PACE phase III trial).

Parameter Constrain/Target Minor Variations

PTV V36.25 Gy ≥ 95% 90–94.9%
CTV (prostate + bsv) V40 Gy ≥ 95% 90–94.9%

CTV-PTV margins 5 mm, with 3 mm posteriorly -

Rectum
V18.1 Gy < 50%
V29 Gy < 20%
V36 Gy < 1 cc

-
-

≥1 cc but ≤2 cc

Bladder V18.1 Gy < 40%
V37 Gy < 10 cc

-
≥10 cc but ≤20 cc

bsv, base of seminal vesicles; SBRT, stereotactic body radiotherapy; PACE, Prostate Advances in Comparative
Evidence (NCT01584258); CTV, clinical target volume; PTV, planning target volume.

Notwithstanding the above, there are a number of objections to the use of MR-fusion contouring
in prostate SBRT planning. First, the fusion process itself is subject to variability in accuracy of between
1–4 mm [19–21] (setting aside the inherent difficulty in measuring fusion accuracy). This may negate
the benefits as, for example, reported differences in apex position between MR-only and CT contouring
are in this range [15,22]. Furthermore, differences in bowel and bladder filling between the two data
sets may alter prostate and seminal vesicle shape and position [23]. Second, more recent studies
of MR-only volumes have shown that these may be relatively similar to those produced with CT,
due to the increased use of diagnostic MR and the resultant increase in physician awareness of CT
over-estimation [22,24]. Finally, the need to perform an additional planning MR scan significantly
increases resource use and adds to workflow. As MR-fusion is not typically used in conventional
radiotherapy, setting up a prostate SBRT service or clinical trial may be limited by this, reducing
patient access.

As the majority of patients with localised prostate cancer can expect good disease control with
acceptable toxicity, the probability of demonstrating incremental clinical benefit using MR-fusion
compared with CT-only contours is low. For this reason, there is very unlikely to be a clinical
study examining this comparison. However, whether CT-only volumes are significantly different
enough to have a dosimetric impact in SBRT is unknown. We investigated this question, in order to
determine whether there is a strong enough justification to continue to mandate MR-fusion contouring
in prostate SBRT.
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2. Materials and Methods

We retrospectively compared prostate target volumes and SBRT plans for patients treated clinically
with MR-fusion contouring (standard of care) with those produced by re-contouring using CT data
only. Our institution is an experienced SBRT centre treating patients with localised prostate cancer
since 2011. Our hypothesis was that CT-only volumes would be larger, such that planning within
accepted SBRT rectal and bladder constraints would not be possible for all patients.

Planning CT data sets from twenty consecutive patients previously treated with SBRT for localised
prostate cancer were used. Ethical approval for data collection and processing was given as part of a
Service Evaluation by our Institutional Service Evaluation Committee. Ethical approval code: SE24,
date of approval: 1 August 2013. Patients recruited to this study gave written informed consent prior
to enrolment. Treatment planning had been done as per PACE phase III trial protocol (NCT01584258).
Patients initially had four 1 × 3 mm cylindrical gold fiducial markers inserted into the prostate under
transrectal ultrasound guidance. One week later, patients had planning CT and MR scans on the same
day. Micro-enemas were given for two consecutive days before and 1–2 h prior to the CT scan. Patients
were asked to drink approximately 200 mL of water 1 h prior to the CT scan, in order to achieve a
“comfortably full” bladder. Scans were taken using the Lightspeed RT16 system (General Electric,
Boston, MA, USA) with a 1 mm slice thickness. MR scans were taken following the CT scan using the
Magnetom Aera 1.5 T system (Siemens, GmbH, Munich, Germany) with 3 mm slices. Two T2-weighted
images were taken, one fast spin echo sequence to define the prostate capsule and one gradient echo
sequence to identify fiducial marker position (Figure 1). Fusion of the MRI and CT planning scans
was done based on fiducial marker position using the Eclipse (Varian Medical Systems, Palo Alto, CA,
USA) radiotherapy planning system. The prostate and base of seminal vesicles (bsv) were contoured
using the fused images, to form the clinical target volume (CTV). The base of seminal vesicles was
defined as the proximal 1 cm of seminal vesicles, measured from their attachment to the prostate.
During MR-fusion contouring, the image is windowed between MR and CT, therefore, data from
both image sets are used. This is useful as there may be differences in position and shape of the
prostate, which may occur due to fusion accuracy or differences in bowel and bladder filling between
the two scans. For example, fusion can be less accurate at bsv, as this site is further from the fiducial
markers than the prostate itself (Figure 2). Organs-at-risk (rectum, bladder, bowel, femoral heads and
penile bulb) were contoured using the planning CT only. Contours were imported into the Multiplan
inverse planning software for the Cyberknife SBRT system version 5.1.2 (Accuray Inc., Sunnyvale, CA,
USA). Planning criteria are specified in Table 1 [4]. These criteria have been used by the majority of
Cyberknife centres [8,11,25,26]. As such, the PTV (planning target volume) was formed by adding
a 5 mm circumferential margin with 3 mm posteriorly. The prescription dose was 36.25 Gy in five
fractions, typically prescribed to the 80% isodose.

For this study, using the CT data set only, the CTV was re-contoured. Reference to the
original (MR-fusion) contours or diagnostic MR scan was not permitted. The CT data sets were
presented anonymously for contouring to a physician experienced with prostate and SBRT contouring.
This process was repeated two months later, in order to assess intra-observer variability. Contours
were also reviewed by another experienced physician to reduce inter-observer variability. The final
volume on each occasion was therefore a consensus between the two observers. The original MR-fusion
contours were labelled “MRF,” the two CT-only contours (done two months apart) “CT1” and “CT2.”
CTV volumes were calculated for MRF, CT1, CT2 and the position of the contoured prostate apex was
recorded. The Dice similarity coefficient was used to compare the spatial concordance of volumes.
Dice coefficient = 2 * (V1 ∩ V2)/(V1 + V2), that is, the intersection (∩) of the volumes to be compared
(V1 and V2) multiplied by two, divided by the sum of those volumes. A value of 0 indicates a complete
absence of overlap, a value of 1 indicates that the volumes are identical. Patients were then re-planned
by a trained Cyberknife planner who had not previously been involved with the cases using contours
from CT1, with no reference to the original plans. A successful plan was considered one which met
all dose constraints with minor variations only (Table 1). The primary outcome of interest was the
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rectal V36 Gy constraint, which is typically the most challenging to meet. This specifies that the
volume receiving 36 Gy or above should be less than 1 cc (or 2 cc with a minor variation). In our
experience, the majority of patients planned have a V36 Gy close to 1 cc. Therefore, a relatively small
increase in V36 may mean it is not possible to achieve a successful plan. Sample size was limited by
practicalities however: 20 patients give 81% power to detect a 0.5 cc mean difference in rectal V36
Gy with a significance of 0.05 (two tailed paired t-test; standard deviation 0.75 cc). In our judgement,
a difference below 0.5 cc would not produce clinically significant differences in plans. The paired t-test
was used for comparisons. Statistics were calculated using SPSS version 20 (IBM, Armonk, NY, USA).
Supplementary File S1 contains the raw data for the study.

Figure 1. T2-weighted magnetic resonance (MR) sequences used for fusion with computerised
tomography (CT) planning scan. Axial gradient echo (left pane) and T2 fast spin echo (right pane) MR
images at the level of the prostate. Left pane: low signal void (black arrow) represents the site of a
fiducial marker. P, prostate; R, rectum; *, venous plexus of Santorini. Right pane: white arrows show
position of prostatic capsule. *, levator ani muscles.

Figure 2. MR and CT fusion for prostate contouring.Axial MR and CT images at the level of the prostate
(upper three images) and base of seminal vesicles (lower three images). B, bladder; P, prostate; bsv, base
of seminal vesicles; R, rectum. White arrow shows gold fiducial marker on CT image. MRI-based
contours are in black, CT-based contours are in white. The upper three images demonstrate good fusion
of prostate MRI and CT imaging; lower three images from the same patient showing less accurate
fusion at the base of seminal vesicles. The difference in position of bsv can be seen in the fusion images
where contours from MRI (black) and CT (white) are shown overlapping.
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3. Results

There were no significant differences between MR-fusion contoured and CT-only contoured CTVs
(Table 2 and Figure 3). The mean Dice coefficients for MR-fusion contoured CTVs compared with
CT-only CTVs were 0.86 (±0.04) and 0.85 (±0.05) for CT1 and CT2, respectively (Table 3). Comparing
the two CT-only volumes (to determine contouring consistency), the Dice coefficient was 0.92 (±0.02).
On average the prostate apex was contoured 1.1 mm (±3.5; −0.4–2.6) more inferiorly on the MR-fusion
contours compared with CT-only. The prostate base was contoured, on average, 1.2 mm (±2.7; 0.0–2.3)
more inferiorly (Table 4).

Table 2. CTV volumes.

Volume Mean Volume cc (±SD) p Value vs. MRF

MRF 63.5 (±27.9) -
CT1 63.2 (±26.5) 0.84
CT2 63.8 (±26.7) 0.89

CTV, clinical target volume; MRF, MR-fusion; CT1 and CT2, CT-only volumes drawn two months apart.

Figure 3. Plot of mean CT-only volume (CT1 and CT2) against MR-fusion volume. Dashed line:
volumes equivalent. To left of dashed line MR > CT volume. To right of dashed line CT > MR volume.

Table 3. Dice coefficients.

Volumes Compared Mean Dice Coefficient (±SD)

MRF vs. CT1 0.86 (±0.04)
MRF vs. CT2 0.85 (±0.05)
CT1 vs. CT2 0.92 (±0.02)

MRF, MR-fusion CTV; CT1 and CT2, CT-only CTVs drawn two months apart.

Table 4. Difference in superior-inferior prostate apex and base positions for MR-fusion compared with
CT-only contours.

Position MRF vs. CT1 MRF vs. CT2 CT1 vs. CT2

Mean difference in apex position (mm ±SD; 95% CI) 1.1 (±3.5; −0.4–2.6) 1.1 (±3.1; −0.3–2.4) −0.1 (±2.1; −1.0–0.9)
Mean difference in base position (mm; ±SD; 95% CI) 1.2 (±2.7; 0.0–2.3) 1.7 (±3.5; 0.1–3.2) 0.3 (±1.8; −0.5–1.1)

Negative numbers indicate CT-only contours are more inferior with respect to MRF contours. MRF, MR-fusion
contours; CT1 and CT2 CT-only contours drawn two months apart.
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In nineteen of 20 patients, it was possible to achieve a successful plan using both MR-fusion and
CT-only contours. In one patient, it was not possible to achieve a PTV V36.25 Gy above 90% due to
prostate volume, with either MR-fusion or CT-only contours. This was due to a very large prostate
(144 cc). However, the PTV V36.25 Gy identical (83%) for both MR-fusion and CT-only contours.
The mean PTV V36.25 Gy was 96% (±3.0) for MR-fusion contoured plans and 96% (±3.0) for CT-only
plans. Table 5 shows the comparison between doses to organ-at-risks in the MR-fusion contoured and
CT-only plans. There were no significant differences in rectal V18.1 Gy and bladder V37 Gy. Small
statistically significant differences in favour of CT-only plans were seen in the rectal V36 Gy and also
the rectal V29 Gy and bladder V18.1 Gy.

Table 5. Organ-at-risk doses for MR-fusion and CT-only plans.

MR-Fusion CT-Only Comparison

Organ Constraint * Mean Volume Receiving ≥ Constraint (±SD) Mean Difference (95% CI) p Value

Rectum
V18.1 Gy (<50%) 33% (±9.2) 28% (±8.9) 5.0% (−0.1–10) 0.05
V29 Gy (<20%) 11% (±3.2) 9.4% (±2.5) 1.7% (0.3–3.1) 0.02

V36 Gy (<1–2 cc) 1.3 cc (±0.5) 1.0 cc (±0.4) 0.3 cc (0.1–0.5) 0.02

Bladder
V18.1 Gy (<40%) 26% (±9.3) 21% (±8.5) 4.8% (1.6–8.3) 0.01
V37 Gy (<10 cc) 6.2 cc (±2.6) 5.3 cc (±2.2) 0.9 cc (−0.1–1.88) 0.08

* Constraints from PACE phase III prostate SBRT trial (see Table 1).

4. Discussion

Our study showed no dosimetric detriment of using CT-only contouring compared with
MR-fusion contouring. As can been seen from Table 5, there were some statistically significant
differences in certain constraints. However, the magnitude of these differences was very small and
therefore not clinically significant. In particular, the rectal V36 Gy constraint, for which our study was
powered to detect a 0.5 cc difference, was slightly lower in the CT-only group. PTV coverage was
identical for MR-fusion contours and CT-only contours implying that PTV coverage was not being
compromised to ensure adequate rectal V36 Gy. To the best of our knowledge, this is the only study to
examine how CT-only contouring compares with MR-fusion contouring in prostate SBRT planning.

Our findings stand in contrast to three studies investigating this question in conventionally
fractionated radiotherapy with fused planning CT and MR imaging. Debois et al. contoured prostate
CTVs using CT alone, followed by MR alone one week apart. In 10 patients, they found that MR-only
volumes were smaller and that the resultant plans showed a 20% reduction in rectal V80% [15].
Steenbakkers et al. compared CT-only and MR-only volumes in 18 patients. MR-only volumes were
smaller and associated with an approximately 3–5 Gy lower equivalent uniform dose to the rectal
wall [16]. Finally, Sannazzari et al. showed similar findings in an 8 patient study [17]. These studies in
conventional radiotherapy generally used larger PTV margins than SBRT (around 10 mm).

There are a number of possible reasons why MR-fusion and CT-only contoured volumes were
similar in this study, in contrast to these previous studies. First, it is important to note that, once the
fusion process was complete, these studies compared contours derived from MR data alone to those
from CT alone. MR-fusion contours use data from both and allow appreciation of fusion discrepancies
and changes in prostate shape and position due to bowel and bladder filling. In view of the fact that
CT is used for dose calculation and treatment planning, contours are likely to be expanded to account
for these differences, meaning MR-fusion volumes will be larger than MR-only volumes. Second,
two studies have shown similar volumes with MR-only and CT-only contouring. Both Usmani et al.
(40 patients) and Parker et al. (8 patients) found no significant difference in absolute volumes [22,24].
These studies did not include a planning component. The authors suggested that increasing physician
awareness of MR prostate anatomy and how this relates to CT anatomy, may be responsible for this
finding. This is consistent with the increasing use of diagnostic MR for prostate cancer.

Our dosimetric findings are perhaps unsurprising, given that the absolute CTV volumes and Dice
coefficients were very similar. The finding of a Dice coefficient of 0.92 (±0.02) for CT1 and CT2 CTV
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contours shows that intra-observer variability was low. CT1 and CT2 volumes were reviewed by a
separate observer to reduce inter-observer variability.

We do acknowledge, that this is a single-institution study and would be strengthened by
independent validation. However, our findings should be widely applicable as the majority of
centres have access to diagnostic MR imaging to consult while contouring. Furthermore, although our
sample size was larger than the previous planning studies discussed, 20 patients is a relatively modest
number and larger studies would more precisely define any differences.

Our results suggest that MR-fusion is not necessary to successfully plan prostate SBRT and
therefore consideration can be given to omitting this. Thus, an additional planning MR and the
time taken for fusion could be avoided. Furthermore, as investigators in the PACE phase III study
(NCT01584258), which aims to recruit more than 800 patients to the radiotherapy arms, we have
amended the protocol to no longer mandate MR-fusion.

It is important that this change is justified in terms of volume accuracy (and potential geographical
miss). Table 3 shows that the Dice coefficient demonstrated that MR-fusion and CT-only volumes were
not spatially identical. Table 4 shows, in keeping with previous studies, that variability occurred at
the base and apex. Assuming MR-fusion contouring represents the gold standard, one objection
to the CT-only approach would be that a portion of the prostate might be missed, resulting in
clinical detriment. It is noted that, at prostatectomy, positive margins typically occur at the apex [27].
Against this, the Cyberknife system reports a sub-millimetre accuracy for treatment delivery [28].
Thus, the typical PTV margin of 5 mm (3 mm posteriorly) is larger than that required to compensate
for treatment accuracy errors alone and may therefore negate small differences in CTV volume.
Furthermore, turning to clinical data, Loblaw et al. have reported on 84 patients treated on a standard
linear accelerator with prostate SBRT using CT only for contouring [29]. A 4 mm PTV margin was used.
At 55 months median follow-up, this group reported excellent toxicity and cancer-control outcomes.
Finally, although using larger margins, large trials in conventional radiotherapy where CT-only
contours are used have shown good long-term disease and toxicity outcomes [12,13]. However, it is
important to state that PTV margins should be present to account for setup variability (and potential
organ motion), rather than suboptimal contouring.

What do our results mean for MR imaging in prostate SBRT radiotherapy planning? First, it is
clear from multiple studies that MR-only contours reduce inter-observer variability and are likely to
result in more accurate contours [15,16,22,24]. Second, unlike CT, MR imaging can identify dominant
disease foci within the prostate itself and allow dose-escalation to this area. This focal dose-escalation
approach has the potential to improve outcomes and is being investigated in clinical trials [30].
However, our findings suggest that to gain access to these benefits, there is a need for MR-only
workflow. Contouring, planning and delivery would then be based on a single image set with
excellent soft tissue contrast. The technology for this is currently being developed in the MR-linac [31]
(Elekta, Stockholm, Sweden) and MRIdian [32] (Viewray, Oakwood, OH, USA) systems. However, at
present, these technologies require a CT to determine electron density data. A key research priority is
to develop a reliable method to determine electron density from MR data, in order to remove the need
for CT. The ultimate aim is to use the imaging modality with the highest anatomical fidelity as best
practice for contouring in prostate radiotherapy.

5. Conclusions

In this study, CT-only contours were similar to MR-fusion contours with no dosimetric detriment,
suggesting that single-modality workflow is appropriate. Consideration can be given to omitting
MR-fusion from the prostate SBRT workflow, provided reference to diagnostic MR imaging is available.
This study also highlights the opportunity for MR-only workflow, which is currently being developed
for MR-linac systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2305-6320/5/2/32/s1,
File S1: Supplementary appendix with source data.

http://www.mdpi.com/2305-6320/5/2/32/s1
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