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Abstract: Obesity, the excess accumulation of adipose tissue, is one of the most pressing health problems in both the 
Western world and in developing countries. Adipose tissue growth results from two processes: the increase in number of 
adipocytes (hyperplasia) that develop from precursor cells, and the growth of individual fat cells (hypertrophy) due to in-
corporation of triglycerides. Adipogenesis, the process of fat cell development, has been extensively studied using various 
cell and animal models. While these studies pointed out a number of key factors involved in adipogenesis, the list of mo-
lecular components is far from complete. 

The advance of high-throughput technologies has sparked many experimental studies aimed at the identification of novel 
molecular components regulating adipogenesis. This paper examines the results of recent studies on adipogenesis using 
high-throughput technologies. Specifically, it provides an overview of studies employing microarrays for gene expression 
profiling and studies using gel based and non-gel based proteomics as well as a chromatin immunoprecipitation followed 
by microarray analysis (ChIP-chip) or sequencing (ChIP-seq). Due to the maturity of the technology, the bulk of the avail-
able data was generated using microarrays. Therefore these data sets were not only reviewed but also underwent meta 
analysis.  

The review also shows that large-scale omics technologies in conjunction with sophisticated bioinformatics analyses can 
provide not only a list of novel players, but also a global view on biological processes and molecular networks. Finally, 
developing technologies and computational challenges associated with the data analyses are highlighted, and an outlook 
on the questions not previously addressed is provided. 
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INTRODUCTION 

Since the cloning of the obese gene in 1994 [1] and the 
subsequent functional characterization of its product, leptin, 
it has become increasingly evident that adipose tissue is a 
key organ in the regulation of the body’s energy homeostasis 
rather than a passive storage of fat. Adipocytes in white adi-
pose tissue (WAT) have been shown to secrete cytokines 
and, as more recently published, lipid signals such as 
C16:1n7-palmitoleate in response to the nutritional status of 
the organism [2]. These adipocytokines and lipokines com-
municate with other metabolically active tissues, such as 
liver, muscle, and the gut, to equilibrate metabolites 
throughout the body [3]. Perturbations of these communica-
tions can lead to disturbances in the regulation of whole 
body energy homeostasis. In particular, increased WAT mass 
(especially in visceral depots) is associated with insulin-
resistance, which is a major cause of diabetes, hypertension 
and cardiovascular disease [4,5]. These obesity-related dis-
orders are major health and economic concerns for the mod-
ern society, including not only the western societies but also 
rapidly developing countries such as China [6] and India [7]. 
The development of WAT is the result of two processes: the 
increase in number of adipocytes (hyperplasia) that develop 
from precursor cells, and the growth of individual fat cells 
(hypertrophy) due to incorporation of triglycerides. As re-
cently shown by Spalding et al. total body fat mass in  
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humans is determined by adipocyte number and size [8]. 
Interestingly, it could be shown that the total number of adi-
pocytes increases only in childhood and adolescence, while 
staying constant in adulthood [8]. By measuring 14C incorpo-
rated in DNA during cold war atomic bomb testing, this 
study estimated the annual turnover of fat (replacement of 
lost cells with new adipocytes derived from precursor cells) 
in adults to be ~10% [8]. These results, along with others, 
emphasize the importance of the process of adipogenesis and 
circumstantiate the need for comprehensive understanding of 
this process at a molecular level.  

The development of fat cells is a process that can be 
modeled in cell culture. The mouse pre-adipocyte cell line 
3T3-L1 is a readily-available, well-described model for the 
adipocyte differentiation process (Fig. 1). Upon defined 
hormonal induction 3T3-L1 cells can be induced to undergo 
adipogenesis to a point where nearly all cells are filled with 
lipid droplets and can respond to physiological signals (e.g. 
glucose uptake upon insulin treatment or cAMP activation 
and lipolysis via -adrenergic stimuli). Other mouse cell 
lines are also suitable for modeling adipogenesis in vitro
(e.g. 3T3-F442A, NIH-3T3 and OP9 [9]) as are primary cells 
derived from mouse embryo fibroblasts (MEFs) or mesen-
chymal stem cells (for example, isolated from bone marrow 
stroma). Human cell culture models are primarily obtained 
from bone-marrow biopsies or from adipose tissue liposuc-
tions [10]. Both human [11] and mouse [12] embryonic stem 
cells can also be coaxed into an adipogenic differentiation 
pathway. These in vitro models have been utilized for more 
than 40 years to discover the molecular players involved in 
adipogenesis. Countless biochemical studies have been per-
formed to define the transcriptional events governed by the 
two master regulators of adipogenesis [13]: Peroxisome pro-
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liferators activated receptor gamma (Pparg) and CCAAT/ 
enhancer-binding protein alpha (Cebpa).  

Fig. (1). Development of mature adipocytes from preadipocytes. 
(Adopted from [119]). Dlk1 (Pref-1), Cebpb and Cebpd are ex-
pressed at the early stages of the differentiation process. After 
commitment, Pparg and Cebpa are upregulated and target many 
genes relevant for the function of mature adipocytes.  

Encouraged by the appearance of high-throughput tech-
nologies (initially microarrays that are now utilized as stan-
dard lab tools) and by the availability of sequencing data on 
many species, omics technologies sparked the interest to 
perform a system-wide analysis on the biological system of 
interest. Multiple variables can be measured in parallel and 
on different molecular levels by using technologies such as 
transcriptomics (mRNA levels), genome-wide location 
analysis (DNA-protein interactions), proteomics (protein 
expression levels), epigenomics (e.g. histone modifications) 
and metabolomics (small molecules as intermediary metabo-
lites).  

This paper examines the results of large-scale studies on 
adipogenesis using high-throughput technologies. Specifi-
cally, it provides an overview of studies employing microar-
rays for gene expression profiling and studies using gel 
based and non-gel based proteomics as well as a chromatin 
immunoprecipitation followed by microarray analysis (ChIP-
chip) or sequencing (ChIP-seq) for the identification of tar-
get genes of transcription factors. Due to the maturity of the 
technology, the bulk of the available data was generated us-
ing microarrays. Therefore these data sets were not only re-
viewed but underwent meta analysis.  

GENE EXPRESSION PROFILING OF ADIPOGEN-
ESIS 

Large- scale gene expression profiling is a discovery- 
driven approach used to identify candidate genes, which are 
then subjected to further in-depth functional studies. Moreo-
ver, this technology can be utilized to characterize molecular 
effects in silencing, knock-out or over- expression strategies 
of these candidate genes in cell models, tissues or organisms. 

A number of expression profiling studies [14-36] using mi-
croarrays were performed to monitor the global gene expres-
sion profiles during in vitro adipocyte differentiation in dif-
ferent cell models and organisms as summarized in Table 1.
These studies used the most prominent model (the 3T3-L1 
cell line) and three different array technologies: spotted ar-
rays, commercial oligo-nucleotide microarrays, and spotted 
cDNA arrays. Guo and Liao [14] used a spotted array filter-
based system to compare gene expression levels in differen-
tiated 3T3-L1 cells (induced by a standard hormone cocktail 
used in most studies including dexamethasone, isobu-
tylmethylxanthine, and insulin (DMI) in presence of calf 
bovine serum) to those of 3T3-L1 preadipocytes. Commer-
cial oligo-nucleotide microarrays (Affymetrix GeneChips) 
were often employed to study gene expression profiling of 
adipogenesis and the studies differ mostly in experimental 
design and selection of time points. While some of those 
studies focus on molecular events at early stages, others 
cover the whole adipocyte differentiation process including 
preconfluent stage, growth arrest, mitotic clonal expansion, 
and terminal differentiation (see Table 1). Moreover, the 
effects of different components of the differentiation cocktail 
on gene expression were addressed, as was the question of 
which genes are affected by adding Pparg activators, like 
Rosiglitazone, to identify potential target genes for Pparg. 
cDNA microarrays were used to study the whole differentia-
tion process not only to discover novel molecular players but 
also to obtain a global view on biological processes and mo-
lecular networks during adipogenesis [22]. While the study 
in mice used primary and immortalized embryonic fibro-
blasts and derived cell lines like the 3T3-L1 and 3T3-F442A, 
the studies in humans focused on primary preadipocyte and 
adipocyte cells, mesenchymal stem cells from bone marrow 
and adipose tissue. Most mouse cells undergo one or two 
rounds of clonal expansion during adipocyte differentiation - 
an event that could not be observed in human adipocyte dif-
ferentiation. Those differences were mirrored in the expres-
sion profiles of genes known to be involved in the cell cycle 
(e.g. cyclin B1), with a sharp increase in the 3T3-L1 cell line 
at 24h [22], in MEFs at 24h and at 72h after hormonal induc-
tion (unpublished observations) and only marginal changes 
in gene expression during hMADs adipocyte differentiation 
[35].  

An important aspect of microarray analyses is the quality 
of data. Additional systematic biases or effects can be intro-
duced for integrating gene expression data if the studies were 
performed in different laboratories using different platforms 
or even different species. An exhaustive analysis and com-
parison of commonly used microarray platforms by a multi-
center consortium (MAQC) showed - contrary to earlier re-
ports [37,38] - acceptable concordance between the plat-
forms [39]; however, there is a necessity for careful control 
of biological samples and close adherence to standard proto-
cols [40]. There is also an imminent problem with using 
varying platforms: namely the different probes, probe se-
quences and annotations. More confidence in analyzed gene 
expression levels can be gained if the levels are confirmed 
using different low-scale or medium-scale technologies, like 
quantitative real-time reverse transcriptase polymerase chain 
reaction (qPCR), as was done for many adipogenesis studies. 
For the publication of studies based on microarray data, a 
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prerequisite of most journals is the submission of the data 
and experimental parameters to a public repository. This 
affords the scientific community the opportunity to extract 
genes potentially involved in adipocyte differentiation from: 
(1) expression data reported explicitly in publications or 
supplemental data; (2) pre-processed or raw data in public 
repositories or gene expression databases after adequate 
analysis (normalization); or (3) integrated expression profiles 
over different experiments by ‘meta-analyses’ similar to the 
meta-analyses in clinical research, in which a generalized 
hypothesis in a systematic review is deduced from the analy-
ses of multiple studies. The results of this type of meta-
analysis performed for the purpose of this paper are given in 
Fig. (1). In addition to the key transcription factors like 
Cebpa and Pparg, enzymes and other uncharacterized genes 
were identified. A compendium from some of the relevant 
datasets - discussed above - are provided by the Genomics 
Of Lipid-associated Disorder database (GOLD.db) [41]. 

Many genes identified by expression profiling using mi-
croarrays and different cell models are potentially involved 
in the regulation of fat cell development. To discuss all can-
didates is beyond the scope of this article; it instead focuses 
on a handful of candidates, selected for their gene expression 
profiles and further studied in detail to gain novel insights 
into the molecular mechanisms of the fat cell development 
process (see also other reviews [13,42,43]). Since the adipo-
cyte differentiation is driven by a transcriptional cascade, a 
major goal is the identification of transcriptional regulators 
involved or even required in the (early) adipogenesis proc-
ess, moderated by molecular events previous to the activa-
tion or direct regulation of the key regulators Pparg and 
Cebpa, (e.g. by binding to its corresponding promoter se-
quences). One candidate selected from results based on a 
microarray study in 3T3-L1 [15,44] is Klf4, which was 
shown to function as an immediate early regulator of adipo-
genesis by inducing Cebpb and is required for adipogenesis 
[44]. Several members of the Krüppel- like factor family 

Table 1. Large-Scale Expression Profiling Studies During Adipogenesis 

 Study Cell type Treatment Time points Array 

Expression profiling studies on 3T3-L1 cell line 

Guo et al. 2000 [14] 3T3-L1 DMI 0h, 6d 18k mouse cDNA filter arrays 

Soukas et al. 2000 [15] 3T3-L1 DMI PC,0h,6h,12h,24h,2d,3d, 4d, 7d,28d Affymetrix mouse Mu11k 

Ross et al. 2002 [16] 3T3-L1 DMI|DMI+Wnt-1  0h, 16h, 32h, 2d, d14 Affymetrix mouse U74A 

Burton et al. 2002 [17] 3T3-L1 DMI 0h,2h,8h,16h,24h Affymetrix mouse Mu11k 

Burton et al. 2004 [18] 3T3-L1 DMI|DMI+TSA 0h,2h,8h,16h,24h,d2,d4 Affymetrix mouse U74A 

Jessen at al. 2002 [19] 3T3-L1 DMI 0h, 1d, 4d, 7d Affymetrix Mu11kB| U74Av2 

Gerhold et al. 2002[20] 3T3-L1 DMI+TZD|nTZD 0h, PA 6hT, PA 48hT, AD 6hT, AD 48hT 4k Affymetrix mouse mu6800 

Hsiao et al. 2004 [21] 3T3-L1 TZDs AD 24hT Affymetrix mouse U74Av2 

Hackl et al. 2005 [22] 3T3-L1 DMI PC,0h,6h,12h,24h,2d,3d,4d,7d,14d 27K mouse cDNA microarray 

Liu et al. 2005 [23] 3T3-L1 DMI|DI  Affymetrix mouse MOE430A 

Pantoja et al. 2005 [24]  3T3-L1 D M I| M D I  38 k MEEBO microarray oligo set 

Adipogenesis expression studies on other mouse cell models including over-expression and knock out strategies 

Huo et al. 2006 [25] 3T3-F442A GH  Affymetrix mouse U74Av2 

Akerblad et al. 2005 [26] NIH-3T3 Ebf1 |Pparg   Affymetrix mouse U74Av2 

Baudry et al. 2006 [27] PKB-/-MEF   22k Affy mouse MOE430A  

Christian et al. 2005 [28] RIPKO   Affymetrix mouse MOE430 2.0 

Otto TC et al. 2007 [29] C3H10T1/2 Bmp4   Affymetrix mouse MOE430 2.0 

Tseng et al. 2005 [30] IRSKO PA   Affymetrix mouse U74Av2 

Timmons et al. 2007 [31] wPA, bPA  0d, 1d, 4d, 8d Affymetrix mouse U74Av2 

Adipogenesis of human cell models 

Hung et al. 2004 [32] hMSC DMI 0h,3d 8k human Universochip 

Sekiya et al. 2004 [33] hMSC  0h,1d,7d,14d,21d 12k Affymetrix human U95Av2 

Nakamura et al. 2003 [34] hMSC    3.4k focused cDNA microarray 

Scheideler et al. 2008 [35] hMADS DMI+ROS PC,-2d, 0h, 8h, 1d, 2d, 5d, 10d, 15d 30k human spotted oligo array 

Urs et al. 2004 [36] PA|AD   19K human cDNA microarray 

Abbreviations: Preadipocyte (PA), White and brown preadipocyte (wPA and bPA), Adipocyte (AD), Preconfluent (PC), Dexamethasone+Dethylisobutylxanthine+Insulin (DMI), 
Trichostatin A (TSA), Rosiglitazone (ROS), Thiazolidione (TZD), none TZD compounds (nTZD), Human mesenchymal stem cells (hMSC), Human multipotent adipose-derived 
stem cells (hMADS), Insulin receptor substrate knock-out (IRSKO). 
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have previously been implicated in adipogenesis: Klf6 [45] 
and Klf15 [46] have both been shown to promote adipogene-
sis and Klf5 [47] is necessary for adipocyte differentiation 
and acts by transactivating Pparg. Targeted disruption of the 
Klf3 gene reveals a role in adipogenesis and Klf2 inhibits 
Pparg expression and adipogenesis [48]. Expression profiles 
of Klf9 are modulated during 3T3-L1 adipocyte differentia-
tion (see e.g. [22]); however, a regulatory function has yet to 
be confirmed. Induction of Klf9 in NIH3T3 cells could not 
induce differentiation into adipocytes [46]. All of these fac-
tors are thought to function by recruiting different coactiva-
tors or repressors [13]. Expression levels from different re-
analyzed experiments for the Klfs and other candidates (de-
scribed below) are summarized as heat maps in Fig. (1). An-
other candidate from these microarray results is the zinc fin-
ger-containing transcription factor Egr2 (Krox20). The ex-
pression of Egr2 is activated very early after induction and 
stimulates adipogenesis at least in part through activating 
Cebpb by binding to its promoter [49]. The (orphan) nuclear 
receptor Nr4a1 (Nur77) is also known as an immediate early 
gene as indicated in the expression profiles of several adipo-
genesis studies. Overexpression of Nr4a1 blocks adipogene-
sis in 3T3-L1 cells ([50] and unpublished observation from 
this lab), whereas Nr4a1 might not be required for adipo-
genesis according to contradictory results with Nr4a1 knock 
down by siRNA in 3T3-L1 cells [51,52]. Nr4a1 could be 
involved in the mitotic clonal expansion [52] and the other 
NR4A family members also have pleiotropic physiological 
roles including energy metabolism such as regulation of 
lipolysis in skeletal muscle cells [53] and hepatic glu-
coneogenesis [54]. Another nuclear hormone receptor in-
volved in adipogenesis is Nr1h3 (LXRalpha). A broader role 
of Nr1h3 in regulation of metabolism in adipocytes was sug-
gested and the effects of Wnt–signaling in adipocyte differ-
entiation were studied in a timed series microarray experi-
ments of 3T3-L1 cells and retroviral infected 3T3-L1 cells 
encoding Wnt1 [16]. It is known that liver X receptors 
(LXRs) regulate cholesterol and fatty acid metabolism in 
liver tissue and macrophages. Recently it was also shown 
that activated Nr1h3 stimulate adipocyte differentiation 
through induction of Pparg expression but it is not required 
for adipocyte differentiation [55]. A nuclear receptor gene 
expression atlas during the differentiation of 3T3-L1 cells, 
assessed using qPCR, also showed the importance of other 
nuclear receptors such as the Nr2f2 (COUP-TF2) in adipo-
genesis [35,56,57]. The role of Ebf1 (O/E-1), a helix-loop-
helix transcription factor, was studied in adipocytes with 
microarray analysis of Ebf1 over-expression in NIH-3T3 
cells [26]. Further experiments helped place Ebf1 within the 
known transcriptional cascade of adipogenesis [58]. By the 
year 2000, it was shown that Gata2 and Gata3 are specifi-
cally expressed in adipocyte precursors and their down-
regulation sets the stage for terminal differentiation [59]. 
This type of expression profile could be confirmed later on 
with microarray experiments. A role for transcriptional 
coregulators in the control of energy homeostasis could be 
shown by knock-out of the co-repressor Nrip1 (RIP140) in 
adipocytes [28]. 

Microarray analyses reveal not only transcription factors 
but also enzymes as important regulators for adipogenesis. 
Xanthine dehydrogenase (Xdh, XOR) could be identified as 

a novel regulator of adipogenesis and Pparg activity and as 
essential for the regulation of fat accretion [60]. In this 
analysis, emphasis was given to genes whose expression was 
limited to the first 24 hours after initiation of differentiation 
and candidate genes were ranked based on an algorithm 
modeling the complexity of each gene-expression pro-
file[60]. Loss of function of Stearoyl-CoA desaturase (Scd1) 
- a central lipogenic enzyme catalyzing the synthesis of 
monounsaturated fatty acids - protects mice against adipos-
ity. While another family member with the similar amino 
acid sequence Scd2 is required for Pparg expression and 
adipogenesis in cultured 3T3-L1 cells, Scd1 is not. Enzymes 
for fatty acid desaturation as well as factors for fatty acid 
elongation are differentially expressed during adipocyte dif-
ferentiation like Elovl6 [22]. Recently, the enzyme adipose 
triglyceride lipase Pnpla2 (ATGL), which catalyzes the ini-
tial step in triglyceride hydrolysis, was discovered [61] and 
confirmed by microarrays [22]. A microarray study on the 
differential transcriptional modulation of biological proc-
esses in Pnpla2 deficient mice was subsequently published 
[62].  

In summary, the advantages of using a microarray 
screening process to gain novel mechanistic insights in adi-
pogenesis are three-fold. First, as described above, novel 
characterized candidate genes could be identified based on 
their expression profiles and confirmed by further functional 
studies. Second, also not characterized genes with modulated 
expression profile can be detected. The RIKEN mouse gene 
encyclopedia project is a systematic approach to determine 
the full coding potential of the mouse genome and involves 
collection and sequencing of full-length complementary 
DNAs and physical mapping of the corresponding genes to 
the mouse genome [63]. The annotation of many genes is 
based on this RIKEN approach (see Refseq [64] or 
FANTOM [65]) and cDNA arrays in particular (typical EST 
length ~1-1.5 kbp) provide the opportunity to study tran-
scripts with high sequence similarity to those RIKEN genes 
and to elucidate new genes involved in the molecular 
mechanisms of adipocyte differentiation. Finally, large-scale 
gene expression profiling including the study of many tran-
scripts makes it possible to obtain a global view on biologi-
cal processes and molecular networks during adipogenesis. 

PROTEOMICS 

The maturity of the microarray technology and the focus 
on the delineation of the transcriptional program of adipo-
genesis resulted in >20 studies conducted using this ap-
proach. In contrast, there are only a handful of published 
studies using proteomic approaches for identifying proteins 
during the differentiation of 3T3-L1 adipocytes. This is 
partly due to the complexity of the proteome with estimated 
>1.000.000 individual species and partly due to the limita-
tions of the available technologies. Neither gel-based nor non 
gel-based techniques can currently detect molecules at the 
required sensitivity range of several orders of magnitude. 
Hence, the published studies report only a fraction of the 
adipocyte proteome and secretome (entire complement of 
secreted proteins). 

Protein profiling during adipogenesis was performed 
with gel-based approaches using two-dimensional gel elec-
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trophoreses for separation and subsequent MALDI-TOF/MS 
(Matrix-assisted laser desorption/ionization – time of 
flight/mass spectrometry) for protein identification [66-70] 
as well as a non gel-based method using LC-MS/MS (liquid 
chromatography coupled with tandem mass spectrometry) 
[71]. The gel-based studies used either mouse 3T3-L1 mod-
els [67,68,70] or human mesenchymal stem cells [66,69] and 
reported between 8 and 2000 protein species whereas a non 
gel-based study [71] identified approximately 3300 proteins. 
The analysis of the depth and coverage of the 3T3-L1 adipo-
cyte proteome compared to the liver organelle proteome map 
and to six mouse tissues showed that two-thirds of the pro-
teins overlapped [71]. These proteins are candidates for the 
“core proteome” whereas around 1000 proteins were adipo-
cyte specific. By comparing microarray data with the pro-
teomic data, about 28% (2182 microarray probes out of the 
7656) could be mapped to the identified proteome. However, 
further conformation in tissues samples as well as characteri-
zation of the candidates in a functional assay has not yet 
been performed.  

It has become evident in recent years that fat tissue is an 
organ secreting large number of molecules including signal-
ing metabolites, chemokines, and hormones. Two recent 
studies [72,73] addressed this issue and profiled the adipo-
cyte secretome. In addition to a number of previously re-
ported secreted factors like adipsin or adipocyte comple-
ment-related protein 30 kDa, four novel molecules were 
identified in the study by Kratchmarova et al: Pigment epi-
thelium-derived factor (Serpinf1) secreted in preadipocytes, 
hippocampal cholinergic neurostimulating peptide (Pebp1), 
neutrophil gelatinase-associated lipocalin (Lcn2), and hapto-
globin (Hp) in mature adipocytes. In another gel-based study 
using human cells, 170 individual proteins were detected 
[73]. Comparison of these data with reported secretomes 
showed varying similarities ranging between 4% (3T3-L1 
secretome) and 49% (human lysates), reflecting the meth-
odological and technical differences in proteomic studies. 

CHROMATIN IMMUNOPRECIPITATION (CHIP) TO 
DISCOVER TARGETS OF ADIPOGENESIS-RELE-
VANT TRANSCRIPTION FACTORS 

Chromatin immunoprecipitation (ChIP) is a method for 
assessing direct DNA-protein interaction between transcrip-
tion factors and their respective binding sites [74]. Immuno-
precipitation with an antibody directed against the transcrip-
tion factor of interest is performed on a nuclear extract of 
cross-linked chromatin. The read-out of such an experiment 
can be generated using gel electrophoresis after PCR ampli-
fication or with qPCR using primers specific to promoter 
regions of putative or known target genes. This approach 
was taken in many studies for detecting binding of adipo-
genic transcription factors to promoters of single genes. For 
example, in 3T3-L1 cells during adipogenesis, physical bind-
ing was shown for Pparg in the Cat [75], Lipe [76], and G0s2 
[77] promoter and for Cebpa in the Cd36 [78] promoter, in 
the Dgat2 [79] promoter and in promoters of several adi-
pokines (Resistin, adiponectin and leptin) [80]. Alternatively, 
hybridization of labeled immunoprecipitated samples to a 
microarray containing probes that represent a selection of 
regulatory segments or that are tiling the whole genome 

makes this method amenable to high-throughput analysis. 
The latter method is known as ChIP-chip [81,82]. More re-
cently, next-generation sequencing technology was applied 
to sequence the DNA fragments obtained from a ChIP ex-
periment (ChIP-seq). Despite the advantage of obtaining 
direct binding information from ChIP studies it cannot auto-
matically be inferred that this binding is functional, i.e. it 
yields to expression of the target genes. This can be partly 
explained by the fact that transcription of many genes de-
pends on the synergistic action of several transcription fac-
tors. It is therefore essential to combine such binding data 
with transcriptomics data to ensure that binding to a target 
region also leads to an effect on the mRNA level [83]. 

Up to date five studies have been published that employ 
ChIP-chip [84,85], ChIP-seq [86,87], or both technologies 
[88] during adipogenesis, all performed with 3T3-L1 cells. 
One report, by Nakachi et al. [84], integrates gene expres-
sion data with ChIP-chip data (obtained from promoter 
chips) and computational binding site predictions to identify 
Pparg target genes during adipogenesis in 3T3-L1 cells. Us-
ing an antibody that recognizes both Pparg isoforms (Pparg1 
and Pparg2) they could report 167 Pparg-bound genes, in-
cluding 20 genes that are bound by Pparg and are upregu-
lated during adipogenesis. Five of those 20 genes - two bona 
fide target genes (Cfd, Fabp4) and three novel target genes 
(Tmem143, Hp, 1100001G20Rik) - were confirmed as acti-
vated by Pparg by means of luciferase assays in NIH 3T3 
cells [84].  

A more comprehensive and unbiased approach is the use 
of whole-genome tiling arrays as reported by Lefterova et al.
[85]. Mature adipocytes (d10) were subjected to ChIP using 
antibodies against Pparg, Rxra, Cebpa and Cebpb. Several 
surprising outcomes were revealed in this study. First, 5299 
identified Pparg-bound regions were located mainly in distal 
intergenic regions (more than 1kbp away from 5’ or 3’ ends 
of genes; 52%) and in introns (32%). This might explain the 
relatively low number of identified Pparg-bound promoters 
in the Nakachi study where microarrays with probes only 
covering the proximal promoter regions were used. Second, 
Rxra (the major heterodimerization partner of Pparg) binding 
sites were found in proximity to a randomly selected set of 
Pparg binding sites in 98% of the observed cases. Third, bio-
informatics analyses predicted a high degree of potential 
C/EBP binding sites in the vicinity of Pparg binding sites. 
Subsequent ChIP-chip experiments with a Cebpa antibody 
identified 16,760 Cebpa binding sites with a genomic loca-
tion distribution similar to Pparg. Sixty-three percent of the 
Pparg binding sites (3,350) overlap with Cebpa binding (de-
fined by at least 1 bp overlap between the 1,000bp-long 
bound regions). Fourth, more than 60% of upregulated genes 
(from gene expression data) contained binding sites of both 
Pparg and Cebpa within 50kb of their upstream regions. And 
fifth, ChIP-chip for Cebpa and Cebpb using a custom array 
containing Pparg binding regions showed nearly identical 
binding profiles (99.1%), pointing to functional promoter 
occupancy of Cebpb in late adipogenesis and its redundancy 
with Cebpa. This was further strengthened by the fact that 
only silencing of both factors lead to a decrease in expres-
sion of some target genes. However, when Pparg is silenced 
in addition the decrease in target gene expression is even 
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more pronounced, thus presenting strong evidence for the 
synergistic adipogenic action of these three factors. 

Simultaneously, a ChIP-seq study on Pparg and Rxra 
binding during 3T3-L1 adipogenesis was published [86]. At 
day six of adipogenesis 5236 Pparg:Rxr heterodimer binding 
sites were reported. This number, as well as the genomic 
distribution pattern of the binding sites (>50% found in in-
tergenic regions), is in good concordance to the study from 
Lefterova et al. [85]. However, an additional value is the 
assessment of Pparg and Rxr binding at several time points 
during adipogenesis (d0, d1, d2, d3, d4, d6). This experimen-
tal design revealed that heterodimer composition changes 
during the course of adipogenesis with many Rxr binding 
sites in early time points having no respective Pparg binding 
sites. This suggests that in early adipogenesis Rxr has other 
binding partners as was shown for Ppard [86]. Another inter-
esting outcome of this time series experiment is that >94% of 
Pparg binding sites at day zero to day four are to be detected 
at day six. Finally, determining genome-wide RNA polym-
erase II occupancy as a measure for transcriptional activity 
showed that Pparg:Rxr binding sites are particularly enriched 
in the vicinity of upregulated genes. 

Another study was employing ChIP followed by pair 
end-tagging (PET) sequencing technology to identify 7821 
Pparg and Rxr binding sites [87]. Combining this binding 
data with gene expression (expression profiles of differenti-
ated and Pparg-silenced 3T3-L1 cells) and validation studies 
(ChIP-qPCR) yielded 75 high-confidence Pparg:Rxr target 
genes. Four out of six tested binding elements showed sub-
stantially increased luciferase activity when cloned in front 
of a reporter construct, indicating that they are potent tran-
scriptional activation elements. Further, in an siRNA screen 
designed to knock-down 20 putative Pparg:Rxr target genes, 
six could be shown to impair lipid accumulation when si-
lenced. For a list of validated Pparg:Rxr targets emerging 
from this study see Table 2.

Finally, Wakabayashi et al. [88] arrived at a similar 
global view of Pparg:Rxra binding in 3T3-L1 cells like the 
afore-mentioned genome-wide location studies. To take their 
work one step further, however, they focused on a group of 
SET domain proteins that were identified by their ChIP-chip 
experiments. These proteins are known to catalyze methyla-
tion of histones on lysin residues. In particular, generating an 
H4K20me1 modification map across the genome (using 
ChIP-seq) they could show that Setd8 regulates the expres-
sion of Pparg and some of its target genes through H4K20 
mono-methylation. Thus, in this study a link between tran-
scriptional regulation and epigenetic modulation, as well as 
the positive feedback loop between these processes, is pre-
sented.  

One pressing question emerging from these and other ge-
nome-wide location studies is, if and how binding sites that 
are far away from 5’ ends of genes (up to several 10kb) can 
confer transcriptional activation. In an elegant study Tomura 
et al. used the example of the Resistin promoter and showed 
functional relevance of a region that is ~8.8kb upstream of 
the transcription start site and contains three Cebp and one 
Pparg binding sites [89]. Still it is not clear by which mecha-
nism this long-range interactions between distant binding 
sites and the transcription start sites can occur in living cells. 

These genome-wide location studies are of great interest 
and provide a high-confidence part list of the adipogenic 
process. Unfortunately, a direct comparison of these studies 
is not possible due to the different protocols, antibodies, plat-
forms, and technologies used and because of non-
standardized bioinformatics analyses.  

MEDIUM-SCALE METHODS APPLIED TO ADIPOG-
ENESIS 

In addition to the described omics technologies, three 
other medium-scale methods were employed to characterize 
the process of fat cell development and to identify new can-
didates in this process: RNAi-screens, DNase I hypersensi-
tivity (Table 2), and a chemical biology approach. 

In one report, short interfering RNA-based screens were 
conducted in 3T3-L1 cells using insulin-stimulated glucose 
uptake (a functional characteristic of mature adipocytes) as a 
read-out. By minituarizing the procedure it was possible to 
perform 30-50 gene silencings per week [90]. As reported in 
a series of publications this approach lead to a characteriza-
tion of required proteins (summarized in [91]) and to a de-
termination of essential kinases [92] in the insulin pathway 
of mature adipocytes. Further, this RNA interference screen 
yielded a number of novel players during adipogenesis, such 
as Cidec [93], Scd2 [94] and Nrip1 [95]. In the studies on 
Scd2 and Nrip1 Affymetrix GeneChip analysis was per-
formed on differentiated 3T3-L1 cells transfected with either 
scrambled or siRNA constructs to elucidate the pathways 
affected by the silencing of these genes and to place them in 
the transcriptional cascade.  

Another “top-down” approach for identifying as yet un-
known players in adipogenesis was the use of high-
throughput DNase I hypersensitivity analysis in conjunction 
with a computational strategy to identify differentiation-
dependent cis- and trans-acting factors. The principle of 
DNase I hypersensitivity assays is that regulatory genomic 
elements (e.g. promoters, enhancers) are more accessible to 
digestion by nucleases than to sites of inactive chromatin 
[96]. The digested DNA can then be subjected to measure-
ment using southern blotting or qPCR. In their studies, 
Rosen and colleagues used 268 pre-selected primer pairs 
mapped to upstream regions of 27 adipogenesis-relevant 
genes and performed qPCR on DNase I digested nuclei de-
rived from 3T3-L1 cells prior to and seven days after differ-
entiation induction. The identified DNase hypersensitive 
sites were then computationally analyzed to yield overrepre-
sented sequence motifs [97]. One of the highest scoring mo-
tifs was a binding site for the interferon regulatory factor 
(Irf) family. Consequently, all nine known Irfs were tested 
for their expression in adipose tissue and during 3T3-L1 dif-
ferentiation, and for their binding to the predicted cis ele-
ments. Finally, some Irfs were shown to be potent inhibitors 
of adipogenesis [97]. Another candidate that emerged from 
this approach was the nuclear receptor Nr2f2 (COUP-TFII: 
which was linked to the antiadipogenic hedgehog pathway 
(acting downstream, by interaction with Gata factors) and 
could be placed upstream of Cebpa, having an inhibitory 
effect on its promoter [57]. Both, the Irf and the Nr2f2, stud-
ies prove the utility of this (semi) high-throughput approach 
and highlight its advantage over ChIP-chip studies, which 



2958    Current Medicinal Chemistry,  2009 Vol. 16, No. 23 Prokesch et al. 

require knowledge of an involved transcription factor and 
thereby, have reduced potential in the discovery of new tran-
scription factors.  

To this end, endeavors are underway to take DNase I hy-
persensitivity assays to the genome-wide level by combining 
this technique with hybridization to tiling arrays [98,99] or 
with massive parallel sequencing [100]. Providing a DNase 
hypersensitivity map of adipogenesis will be helpful for the 
adipogenesis community and, in combination with other om-
ics strategies, will broaden our knowledge on the transcrip-
tional landscape during fat cell development. 

In a chemical biology approach over 500 compounds 
from a small-molecule library (BIOMOL) were screened for 
activator and repressor activities using a 3T3-F442A reporter 
cell line, that stably expressed luciferase under the control of 
the adipocyte differentiation-dependent aP2 promoter [101]. 
Besides known and unknown adipogenesis inhibitors includ-
ing various retinoids, prostaglandin F and the kinase inhibi-
tor PP1, two positive regulatory compounds, namely harmine 
and RG14620, were identified by this high-throughput 
screen. Harmine was selected for further studies and could 
be determined in this context as cell-type-specific regulator 
of Pparg expression that mimics the effects of Pparg agonists 
in-vitro (3T3-F442A, 3T3-L1) and in diabetic mice. Further 
analyses, however, showed that harmine is not a ligand of 
Pparg, rather acts via a mechanism that involve the inhibition 
of the Wnt signaling pathway [101]. A structure-function 
analysis of harmine derivates indicate that the effect on adi-
pogenesis is with one exception limited to harmine. This 
phenotypic screening of adipocytes is not only a promising 
approach to the discovery of novel anti-diabetic small mole-
cules with a distinct mechanism of action and side-effect 
profile, but also to reveal biological processes and factors, 
which are targeted by these compounds and control the adi-
pogenesis process.  

INFERRING FUNCTION AND MECHANISMS FROM 
LARGE-SCALE DATA BY COMPUTATIONAL BIOL-
OGY 

Following data generation in omics studies, data preproc-
essing and normalization is required to extract the data points 

above the noise level and to submit these data to statistical 
analyses for the identification of differentially expressed or 
modulated genes/proteins across samples or experiments. 
Once the candidate genes are identified, major efforts are 
directed towards functional validation [102]. The starting 
point is usually a list of candidates to elicit the biological 
meaning and the molecular mechanisms mirrored in the ac-
tivity of the genes. Usually the first step in such analyses is 
to group genes based on their similarity in expression pat-
terns in several groups. For this purpose a number of differ-
ent unsupervised clustering methods can be applied (hierar-
chical clustering, k-means clustering, self organizing maps, 
principal component analyses) based on appropriate meas-
ures indicating the similarity (or distance). Next, in order to 
obtain the function of the candidate genes Gene Ontology 
(GO) terms are applied [103]. The GO project provides a 
controlled vocabulary for describing gene and gene product 
attributes in any organism in three independent hierarchies: 
biological process, molecular function, and cellular compo-
nent. In case of a very common GO term, a high number of 
genes from the dataset (or cluster) mapping to this GO term, 
does not necessarily indicate that it is specific to this dataset 
or cluster. To overcome this drawback, statistical signifi-
cance is assigned by using Fisher’s exact test or hypergeo-
metric test to proof each GO term within the dataset against 
the occurrence within all genes (e.g. Refseq database or all 
elements on the array). This approach could be also applied 
to other entities like domains, pathways, regulatory sequence 
motifs (including predicted response elements for transcrip-
tion factors or target motifs for microRNAs), and gene sets 
(as within the gene set enrichment analysis (GSEA) [104]). 
A systematic presentation and analysis of these data in a bio-
logical context can be achieved by mapping expression pro-
files of genes or proteins simultaneously onto major, cur-
rently available regulatory, metabolic and cellular pathways 
(KEGG, Biocarta, GenMAPP) as for example implemented 
in the PathwayExplorer [105].  

In the case of uncharacterized genes, de novo functional 
annotation can be performed on a sequence segment/domain-
wise basis. For this purpose several prediction tools need to 
be integrated and the results can be mapped subsequently
onto known pathways, possible cellular roles, and subcellular 

Table 2. High-Throughput and Medium-Throughput Methods to Identify Adipogenic Candidate Genes 

 Study Cell type Treatment Method used Identified candidates 

Adachi et al. 2007 [71] 3T3-L1 DMI LC-MS/MS 3,287 proteins 

Eguchi et al. 2008 [97] 3T3-L1 DMI DNase I Hypersensitivity assay Interferon Regulatory Factors 1-9, Nr2f2 (COUP-TFII) 

Puri et al. 2008 [90] 3T3-L1 DMI RNA interference screen Nrip1, Scd2, Cidec, Map4k4, among others 

Waki et al. 2007 [101] 3T3-F442A >500 com-
pounds 

Screening of small molecule library Harmine and RG14620 

Nakachi et al. 2008 [84] 3T3-L1 DMI ChIP-chip Tmem143, Hp, 1100001G20Rik 

Lefterova et al. 2008 [85] 3T3-L1 DMI ChIP-chip (whole-genome tiling) Listed in supplemental material of publication 

Nielsen et al. 2008 [86] 3T3-L1 DMI ChIP-seq Listed in supplemental material of publication 

Hamza et al. 2009 [87] 3T3-L1 DMI+R ChIP-PET Plin, Pcx, Mgst1, Gpd1, Pim3, Mnk2, Agt, Fsp27, Adipo-
genin, Pdzrn3 

Wakabayashi et al. 2009 [88] 3T3-L1 DMI ChIP-chip and ChIP-seq SET domain proteins (Setd8, Setdb1, Setd5) 

Abbreviations: Dexamethasone+Dethylisobutylxanthine+Insulin (DMI), Rosiglitazone (R), Liquid chromatography- tandem mass spectrometry (LC-MS/MS), Chromatin immuno-
precipitation on chip (ChIP-chip), ChIP sequencing (ChIP-seq), ChIP pair end-tagging (ChIP-PET).
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localizations [22]. Using this approach for DNA microarrays, 
however, requires finding similar transcript sequences and 
corresponding protein sequence in selected databases based 
on the probe sequences (ESTs). Moreover, a major challenge 
for these computational approaches is not only the construc-
tion of (weighted-) gene co-expression networks [106] but 
also the inference of gene regulatory networks based on se-
quence, ChIP-chip, and gene expression data and the ulti-
mate integration of the heterogeneous datasets. 

DISCUSSION AND OUTLOOK 

Experimental studies using microarrays and proteomics 
technologies to investigate adipogenesis identified a large 
and confident set of candidate molecules and putative drug 
targets in adipocytes. A fraction of these were subsequently 
characterized in functional studies and not only provided 
novel mechanistic insights, but also pinpointed target mole-
cules for therapeutic intervention. For example, a recent mi-
croarray profiling study identified and validated adipogenic 
factors including Nr1h3 (LXRalpha) and phospholipid trans-
fer protein (Pltp) as well as candidates for the delicate bal-
ance between adipocytes and osteoblasts in bone marrow 
[35]. One of the candidates, oxytocin receptor (Otr), was 
subsequently verified in preclinical and clinical studies 
showing that oxytocin administration holds promise as a 
potential therapy for osteoporosis [107]. 

Omics technologies enabled for the first time a compre-
hensive assessment of the various molecular species in a cell 
and sparked a number of studies. The choice of a specific 
technology to address certain biological questions has to be 
weighted depending on several technological, scientific, and 
economic parameters. Currently, microarrays are widely 
used due to the maturity of the technology, robustness of the 
instruments, the relative inexpensiveness, the inherent sensi-
tivity, and the availability of bioinformatics solutions to 
manage and analyze the data. In other studies, measurement 
of RNA levels might not be sufficient and proteomics ex-
periments may be required. In contrast to microarrays, the 
proteomics technologies (MALDI-TOF or LC-MS/MS) are 
not as sensitive, less complete (only a fraction of the pro-
teome is detectable), and generate a wealth of data, which is 
difficult to manage and analyze. Hence, currently only a 
handful of labs are able to apply high-throughput proteomics 
technologies and deal with the data.  

Large-scale experiments are prone to low or absent quan-
titative measurements of molecules. For the identification of 
enriched or differentially regulated biological processes a 
moderate number of spurious detections is tolerable. For 
example based on the gene expression profiles from several 
microarray studies, candidate genes shown in Fig. (2) that 
are relevant for adipogenesis were not detected by any (e.g. 
Klf15) or only by some (e.g. Pnpla2) of the presented stud-
ies. This demonstrates that integration of several datasets and 
meta-analysis is instrumental. Another issue is the consis-
tency or inconsistency of gene expression data. The confi-
dence of the selected candidates for further functional studies 
is increasing if there are consistent results over several stud-
ies. This applies even more to a situation, where the analysis 
is based on studies from different platforms, technologies or 
omics-data. For instance haptoglobin (Hp) was differentially 

expressed in adipocytes versus preadipocytes [15,16,18,85], 
was identified as Pparg target [84], as well as Cebpa target 
[85], and was identified as secreted protein by a proteomics 
study [72]. It should be noted that the generation of large-
scale data is connected with high costs, different degrees of 
complexity and experimental issues (e.g. instrumental effort 
for proteomics studies or validation of protocols and antibod-
ies for detection of protein-DNA binding studies). The major 
advantage comes with the high number of detected mole-
cules and the possibility to perform combined analyses.  

Integrating data from various different omics technolo-
gies enables us to draw a broader picture of a cells behavior 
and of the implication of certain (experimental) treatments or 
environmental signals. This will ultimately lead to systems 
biology, an emerging interdisciplinary study field that fo-
cuses on the complex interactions in biological systems 
[108]. One goal of systems biology is to understand how 
genome-encoded parts interact to produce quantitative phe-
notypes. Systems biology has the power to transform the 
way biology and medicinal chemistry has been viewed clas-
sically by way of dealing with biological entities on the sys-
temic level rather than focusing on a system which is sim-
plistically reduced to a small number of parts. Although so 
far major discoveries were made mostly with microbial sys-
tems, this approach will be of substantial interest also for 
mammalian systems. However, the integration of diverse 
omics data sets poses major challenges to researchers (in 
particular bioinformaticians) and computational infrastruc-
tures [109]. Further, it demands standards that make data sets 
from different sources (labs, platforms, technologies) reli-
able, comparable, and, ultimately, amenable for integration 
on a broad scale [110]. In this context it will be inevitable to 
apply mathematical modeling in order to interpret the flood 
of data. Mathematical modeling is an important addition to 
the toolbox of molecular techniques and it will be important 
to train biologists and medicinal chemists so they can use 
these methods much like any other wet lab method. 

All afore mentioned fields are under constant develop-
ment, inevitably spawning major breakthroughs that make 
systems biology and its applications more and more palpa-
ble. As an example, next-generation sequencing technologies 
- also known as high-throughput sequencing, deep sequenc-
ing or third generation sequencing (available platforms: 
Solexa (Illumina), 454 (Roche) and SOLiD (ABI)) - are 
about to shift omics strategies that rely on hybridization on 
microarrays to sequencing of the molecule under question 
[111,112]. In the case of transcriptomics several recent pub-
lications proved the utility of the RNA-seq technology to 
assess (m)RNA levels in different applications, highlighting 
its advantages over array-based methods, namely: higher 
signal-to-background-ratio, lower detection limit, unbiased 
measurements, unambiguous assignment of measured se-
quences, and quantitative linearity over a broader range 
[111,113-115]. For genome-wide location analysis next-
generation sequencing was employed successfully to se-
quence DNA material from chromatin immunoprecipitation 
experiments having the advantage of an unbiased detection 
of transcription factor binding in the whole genome, not only 
in promoter regions spotted on promoter arrays [86,87,116-
118]. If throughput and quality increase and prices per se-
quencing read decrease as predicted (the “$1000 genome”) 
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these sequencing technologies might become more wide-
spread and, owing to their technical advantages over hybridi-
zation-based approaches, might become the gold standard in 
measuring DNA and RNA specimen on a genome-wide 
scale. 

In summary, omics technologies generated plethora of 
data and provided novel mechanistic insights into adipogene-
sis which can be ultimately exploited for developing novel 
drugs for the treatment of obesity. It became also evident that 
we are only at the beginning of drawing the complete picture 
of the complex cellular process of fat cell commitment and 
differentiation, and that further integrative omics-approaches 
will be necessary to elucidate the molecular network control-
ling the cell fate. 
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ABBREVIATIONS 

WAT = White adipose tissue 
MEFs = Mouse embryo fibroblasts  
hMADS = Human multipotent adipose-derived 

stem cells 
Pparg = Peroxisome proliferators activated re-

ceptor gamma 
Cebpa = CCAAT/enhancer-binding protein al-

pha 
Klf = Krüppel like factor 
Scd = Stearoyl-CoA desaturase 
ChIP = Chromatin immunoprecipitation 

Fig. (2). Gene expression profiles of selected candidates from 3T3-L1 time series experiments.  
1Raw data were downloaded from Gene Expression Omnibus (GEO) GSE6794, normalized using GCRMA and annotated with recent anno-
tation files for Mu11kA and Mu11kB downloaded from the Affymetrix website. Log2ratios are visualized for each time point in relation to 
the preconfluent stage; 2Normalized expression data from Ross et al. 2002 were downloaded from the authors’ website http://www.
personal.umich.edu/~macdouga/MacDougaldLab.html and data set were filtered for genes, which did not show an average difference of
>100 in at least one condition. Relative expression levels (log2ratios) were related to the 3T3-L1 preconfluent stage and averaged over two 
measurements; 3Data for Hackl et al. 2005 was derived from ArrayExpress (E-MARS-02), normalized as stated by the authors and ESTs 
were annotated using a current Refseq version. Relative expression levels (log2ratios) from different time points were related to the precon-
fluent state and averaged over 3 independent experiments; 4Raw data (CEL files) were downloaded from http://wwww.arcs.uams.edu/ direc-
tory/microarray.asp, normalized using GCRMA and annotated using an annotation file provided by Affymetrix for U74Av2 mouse microar-
rays. Relative gene expressions were related to time point 0 immediately before hormonal induction and data were averaged over 2 replicated 
experiments; data were color coded according to the color scheme added to the figure). 
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MALDI-TOF/MS = Matrix-assisted laser desorp-
tion/ionization – time of flight/mass 
spectrometry 

LC-MS/MS = Liquid chromatography - Tandem mass 
spectrometry  

DMI = Dexamethasone, isobutylmethylxan-
thine, and insulin 

qPCR = Quantitative real-time reverse tran-
scriptase polymerase chain reaction 

GO = Gene Ontology 
GSEA = Gene set enrichment analysis 
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