
Distal radial fractures are the most common fractures of 
the upper extremities. The treatment of these fractures 
depends on the fracture pattern and the age of the patient. 
Surgery is recommended for displacements > 10°–15° of 
dorsal tilt, < 15° of radial inclination, > 2–5 mm of ulnar 
shortening, and > 2 mm of intraarticular step-off.1) Re-
search suggests that re-displacement or instability follow-
ing closed reduction of distal radius fractures is related to 
the initial displacement.2-5) The most common method 
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for comparing the degree of displacement and alignment 
in distal radius fractures involves measuring radiologic 
parameters such as radial inclination, dorsal angulation, 
radial height (or radial length), and ulnar variance.6) These 
parameters are measured manually by clinicians. In clini-
cal studies, measuring several angulations or lengths in 
hundreds or thousands of patients can be tedious and 
time-consuming.

Recently, deep learning techniques have been em-
ployed in medical imaging studies. In orthopedic sur-
gery, these techniques assist in fracture detection and the 
automated measurement of radiologic parameters in X-
ray imaging. Most automated measurements using deep 
learning have been reported in studies focusing on the 
spine or hip.7-12) Deep learning-based detection or classifi-
cation of distal radius fractures has also been reported.13-15) 
In clinical settings, nondisplaced distal radius fractures 
are diagnosed and managed not solely using radiological 
findings, but also using additional findings of physical ex-
aminations, such as tenderness and swelling. Hence, using 
deep learning to facilitate decision-making regarding the 
presence of fractures is not helpful. Conversely, it can be 
used to perform time-consuming and repetitive tasks to 
help clinicians. 

In our research, we focused on the automated 
measurement of radiologic parameters in distal radius 
fractures using deep learning techniques. Suna et al.16) also 
focused on the automated computation of radiologic pa-
rameters using a deep learning technique. However, their 
study primarily concentrated on segmentation techniques 
and investigated distal radius fractures with less severe de-
formations. We present a more detailed algorithm capable 
of measuring the radiologic parameters of distal radius 
fractures with more severe deformities through automated 
segmentation using deep learning techniques. Addition-
ally, we compare the predicted angles with those measured 
by an orthopedic hand surgeon.

METHODS
This study received approval from the Institutional Re-
view Board of Inje University Sanggye Paik Hospital (No. 
SGPAIK 2021-07-009), and informed consent was waived, 
as it solely utilized wrist X-rays and limited epidemiologi-
cal data, including age and sex. 

Image Acquisition
We collected anteroposterior (AP) and lateral X-ray im-
ages of the wrist from patients with distal radius fractures 
from October 2002 to March 2019. Inclusion criteria 

encompassed patients with distal radius fractures treated 
conservatively with a minimum follow-up of 2 months. 
Exclusion criteria included any signs of prior surgeries, 
anatomical deformities, involvement of inflammatory 
arthritis at the wrist, or being under the age of 17. A total 
of 634 wrist images from 624 patients were included, with 
78% being female. The mean age of the patients was 61 
years, ranging from 17 to 94 years. Bilateral distal radius 
fractures were detected in 10 patients, with 5 experienc-
ing simultaneous bilateral wrist fractures and 5 fractures 
occurring at different times. A total of 634 AP and 634 
lateral radiographs were saved in the digital imaging and 
communications in medicine (DICOM) format, taken 
immediately after the fracture and 2 months after injury. 
We allocated 507 AP and 507 lateral images to the training 
set (80% of the images were used for model training and 
20% were used for validation), while 127 AP and 127 lat-
eral images were reserved for the test set. We used Image J 
(National Institutes of Health) to annotate the margins of 
the radius and ulna in polygon form, with confirmation by 
the first author, who is an orthopedic hand surgeon (SL). 
The confirmed images were used to generate mask images 
for ground truth in deep learning. Scaphoids in the lateral 
views were annotated using a box configuration to deter-
mine the volar side of the images.

Experiment Environment 
The deep learning system used two NVIDIA GeForce RTX 
2080 Ti 11GB GPUs (NVIDIA) and operated on Ubuntu 
16.04.6. We used Python language (version 3.6.12) along 
with Tensorflow-GPU 1.13.1, Cuda 10.1, cuDNN 7.6.5, 
and Keras 2.3.0 for training and testing deep learning net-
works. Image processing and algorithm development were 
carried out using OpenCV-python 4.1.1, Pydicom 2.1.2, 
read-roi 1.6.0, and scipy 1.4.1.

Image Pre-processing
X-ray images were transformed into 8-bit portable net-
work graphic (PNG) files for preprocessing and resized to 
512 × 512 pixels. To enhance image uniformity, histogram 
matching was performed on the PNG images. Contrast-
limited adaptive histogram equalization was performed to 
accentuate the contrast of the PNG images. Data augmen-
tation included random rotation (–30° to 30°) and crop-
ping (600 × 600–1,200 × 1,200), yielding a total of 5,070 
AP and 5,070 lateral images and effectively increasing the 
dataset tenfold.

Image Segmentation
The segmentation of the radius and ulna was achieved us-
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ing an attention U-Net, employing the Adam activation 
function and Dice coefficient loss function. The training 
process comprised 200 epochs, a batch size of 16, and a 
learning rate of 1e–3 (Fig. 1). When the loss function value 
did not decrease in 10 epochs, the training was stopped 
(“early stopping”). The training was stopped after 63 ep-
ochs on AP views and 58 epochs on lateral views. In lateral 
images, we identified the volar/dorsal side using a detec-
tion and classification model based on RetinaNet with the 
Adam optimizer function and focal loss function (epochs 
= 200, batch size = 4, learning rate = 1e–5).

Automatic Measurement of Radial Inclination in AP 
Radiographs
The calculation of the longitudinal axis of the radial shaft 
was executed as follows: the point located at the distal 30% 
of the radial shaft axis was designated as the distal center 
point, while the point positioned 60 pixels proximal to the 
distal central point was designated as the proximal center 
point (Fig. 2A). The radius was rotated until the radial axis 
line between the proximal and distal center points coincided 
with the Y-axis (longitudinal axis) of the image (Fig. 2B). 

To identify the radial and ulnar sides, we applied the 
horizontal position intensity profile, employed previously 
by Reyes-Aldasoro et al.,17) to measure the thickness of tra-
becular and cortical regions in the third metacarpal bone. 
The intensity was horizontally detected through the x-axis 
(transverse axis) line (Fig. 3A). Because an abrupt inten-
sity change was observed between the bone and soft tis-
sue, abrupt intensity changes with more than 80 at 5-pixel 

intervals were counted on both sides of the distal center 
point, and the side with the lesser number was identified 
as the radial side (Fig. 3B).

Using the illustrated rectangular box, we determined 
a radial styloid point and a distal ulnar point (Fig. 4A-D). 
We then identified a vertical point on the line that tres-
passes the distal ulnar point and is perpendicular to the 
radial axis line. The radial inclination was subsequently 
measured from the angle formed by these three deter-
mined points (Fig. 4E). If the radial styloid point is located 
proximal to the distal ulnar point, the radial inclination is 
assigned a negative value. 

Automatic Measurement of Dorsal or Volar Tilt in 
Lateral Radiographs
The radial axis line was determined using the same meth-
od as that used for AP radiographs. The most distal point 
on the radius was identified as distal point 1 and distal 
point 2 (Fig. 5A). To identify the volar and dorsal sides 
in the lateral radiographs, the scaphoid was annotated in 
a box configuration, and the volar side was labeled (Fig. 
5B). After identifying the volar and dorsal sides, two distal 
points were determined as the distal volar and distal dorsal 
points. A vertical point was determined on the line tres-
passing the distal dorsal point, perpendicular to the radial 
axis line. Dorsal or volar tilt was measured as the angle be-
tween the distal, distal volar, and vertical points (Fig. 5C). 
If the tilt was dorsal, the angle had a positive value; if the 
tilt was volar, the angle had a negative value. 

Automatic Measurement of Radial Height in AP 
Radiographs
Using the illustrated rectangular box that runs parallel to 
the radial axis, the ulnar head point was identified as the 
most distal point of the ulnar head, excluding the ulnar 
styloid. This point was defined as either the location where 

A
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Fig. 1. (A) Anteroposterior (left) and lateral (right) X-ray of the wrist in 
the test set. (B) Predicted masks of the radius (left) and ulna (middle) on 
anteroposterior X-ray and the radius (right) on lateral X-ray.

Radius axis line

Distal center point

Proximal center point

A B

Fig. 2. (A) Longitudinal axis of the radial shaft drawn using proximal and 
distal center points. (B) Radius rotated until the radius axis line coincided 
with the Y-axis of the image.
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the horizontal line of the rectangular box of the ulnar bone 
meets the most distal part of the ulnar head, excluding the 
ulnar styloid, or the point where a tangent drawn from 
the ulnar styloid tip touches down on the ulnar head sur-
face (Fig. 6A). The measurement of radial height involved 
determining the distance between two lines trespassing 
the ulnar head point and the radial styloid point, perpen-
dicular to the radial axis line (Fig. 6B). If the radial styloid 
point was located proximal to the ulnar head point, the 

radial height had a negative value. 

Evaluation of Segmentation and Statistical Analysis of 
Predicted Angles
Pixels in the segmented radius and ulna were defined as 
positive pixels, while others were classified as negative pix-
els. By comparing the 254 ground truth images and those 
predicted using deep learning, pixels were categorized into 
four fundamental indicators of a confusion matrix: true 

Radial styloid point

sd_point

Distal ulnar point

A B C

D E

Distal ulnar point

Radial styloid point

Fig. 4. (A) Most distally and radially loca
ted points identified as a radial styloid 
point. (B) Rectangular box abutting the 
outer margin of the radius illustrated. (C) 
Most distal point of the ulnar margin of the 
box determined as a standard (sd) point. (D) 
Point featuring the least distance from the 
standard point determined as a distal ulnar 
point. (E) Radial inclination measured from 
the angle made by a radial styloid point, 
distal ulnar point, and vertical point.

Fig. 3. (A) Intensity horizontally detected 
from –120 pixels to +120 pixels through 
the X-axis line intersecting the distal 
center point. (B) Number of abrupt inten
sity changes counted at both sides of the 
distal center point to identify the radial 
(upper) and ulnar (lower) sides.
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positive (TP), false positive (FP), false negative (FN), and 
true negative (TN). The performance of the segmentation 
model was evaluated by calculating accuracy, sensitivity, 
specificity, and Dice similarity coefficient (DSC). Recall 
and mean average precision were used to evaluate the clas-
sification model for the volar/dorsal side.

Accuracy = (TP + TN) ​/ (TP + FP + FN + TN); Sensi-
tivity (recall) = TP / (TP + FN); Specificity = ​TN / (FP + TN); 
DSC = 2TP / (2TP + FP + FN); Precision = TP / (TP + FP)

The algorithm measured radial inclinations, dorsal/
volar tilts, and radial heights using predicted images. These 
measurements were compared to those obtained manually 
through paired t-tests or Wilcoxon signed-rank tests (se-
lected based on the results of a normality test). Intraclass 

correlation coefficient (ICC) analysis was also conducted, 
and the results were plotted as scatter and Bland-Altman 
plots. Using the angles predicted using deep learning, 
correlations among radiologic parameters were analyzed. 
Moreover, correlations between the initial parameters and 
values at the 2-month follow-up were analyzed. A p-value 
less than 0.05 was considered statistically significant.

RESULTS
Performance of Segmentation
Our deep learning segmentation model for the radius 
exhibited an accuracy of 99.98% and a DSC of 98.07% 
for AP images and an accuracy of 99.75% and a DSC of 
94.84% for lateral images. The segmentation model for the 
ulna showed an accuracy of 99.84% and a DSC of 96.48%. 
The accuracy, sensitivity, specificity, and DSC of AP radio-

Point 1Point 2

L

A B C

Dorsal point
Volar point

Fig. 5. (A) Most distal point on the radius determined as a distal point 1. Distal point 2 determined by the first point on the radius, wherein a straight 
line starting from a distal point 1 in the opposite direction is met. (B) Scaphoid annotated in box configuration and volar side was labeled using 
RetinaNet. (C) Dorsal or volar tilt measured from the angle made by a distal dorsal point, distal volar point, and vertical point.

L

A B

Distal side point
Ulna side point
Distal side point
Ulna side point

Fig. 6. (A) Ulnar head point defined as the point where the horizontal 
line of the rectangular box of the ulnar bone meets the most distal part, 
excluding the ulnar styloid, or as the point where the tangent from the 
ulnar styloid tip touches down on the ulnar head surface. (B) Algorithm 
measured the radial height, radial inclination, and dorsal tilt.

Table 1. Performances of Segmentation of the Radius and Ulna 
Using Deep Learning

Variable Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Dice 
similarity 

coefficient 
(%)

Radius: AP X-ray 99.88 97.91 99.95 98.07

Radius: lateral X-ray 99.75 95.59 99.86 94.84

Ulna: AP X-ray 99.84 96.57 99.92 96.48

AP: anteroposterior.
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Table 2. Comparison of Radiologic Parameters Measured Manually and Predicted Using Deep Learning

Variable Mean ± SD 95% CI p-value for mean 
comparison* Median (IQR) Pearson correlation 

coefficient (p-value)*
Intraclass correlation 
coefficient (p-value)*

RI_Auto (°) 19.43 ± 7.24 18.54–20.33 0.004† 20.83 (16.80 to 24.08)
0.952 (< 0.001) 0.975 (< 0.001)

RI_Manual (°) 19.13 ± 6 .96 18.27–19.99 20.75 (16.43 to 23.58)

DT_Auto (°) 5.62 ± 11.82 4.16–7.08 0.128 4.09 (–2.53 to 14.88)
0.940 (< 0.001) 0.968 (< 0.001)

DT_Manual (°) 6.10 ± 12.64 4.54–7.66 4.90 (–3.28 to 15.80)

RH_Auto (mm) 6.12 ± 5.77 5.41–6.84 0.772 7.12 (3.31 to 10.06)
0.768 (< 0.001) 0.868 (< 0.001)

RH_Manual (mm) 6.16 ± 5.51 5.48–6.84 7.43 (3.74 to 9.76)

SD: standard deviation, CI: confidence interval, IQR: interquartile range, RI: radial inclination, Auto: angles measured by deep learning, Manual: angles 
measured by manual measurement, DT: dorsal tilt, RH: radial height.
*Compared between Auto and Manual. †p < 0.05.
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graphs were higher than those of the lateral views (Table 
1). To determine the dorsal or volar side using annota-
tion of the scaphoid on the lateral radiographs, the recall 
and mean average precision of 254 images were 0.996 and 
0.992, respectively.

Performance of Automatic Measurement
To compare the radial inclinations measured using the 
algorithm with those measured manually, the Pearson cor-
relation coefficient was 0.952 and the ICC was 0.975 (Table 
2, Fig. 7). For dorsal/volar tilt, the correlation coefficient was 
0.940 and the ICC was 0.968 (Fig. 8). The correlation coef-
ficient and ICC for radial height were smaller than those for 
the other two parameters (Fig. 9). The correlation coefficients 
between radial inclination and dorsal tilt, calculated using 

angles predicted by deep learning and manual measurement, 
were –0.284 and –0.371, respectively. The scatter plot showed 
a similarly weak negative relationship (Fig. 10).

The initial radial inclinations and those after 2 
months were not statistically significantly different for 
each method, and they exhibited a strong positive rela-
tionship (Table 3, Fig. 11). Dorsal tilts after 2 months were 
smaller than the initial tilt angles (p < 0.001); however, the 
initial tilt and angles after 2 months featured a weak posi-
tive relationship (Fig. 12). Radial height exhibited a similar 
trend as radial inclination (Fig. 13).
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DISCUSSION
Measuring the radiologic parameters of medical images is 
an important determining factor for planning treatment 
methods; however, it is tedious and time-consuming. 
Kreder et al.18) reported that inter-rater ICCs were 0.74 for 
palmar tilt, 0.38 for radial angle, and 0.44 for radial length. 
Intraobserver ICCs were 0.71 for palmar tilt, 0.39 for ra-
dial angle, and 0.49 for radial length, based on the manual 

measurement of healed distal radius fractures. The ICC 
for radial inclination by the algorithm and manual method 
was 0.975, with 0.968 for dorsal/volar tilt, and 0.868 for ra-
dial height. This implies that our automatic measurement 
was comparable to the manual measurement by an experi-
enced orthopedic surgeon.

The images in this study included various types 
of distal radius fractures, ranging from nondisplaced to 
severely comminuted or displaced fractures. Measuring 

Table 3. Comparison of Radiologic Parameters on Initial X-ray and at 2 Months Predicted Using Deep Learning and Measured Manually

Variable Mean ± SD 95% CI p-value for mean 
comparison* Median (IQR) Pearson correlation  

coefficient (p-value)*

Initial RI_Auto (°) 19.31 ± 6.57 18.16–20.46 0.604 20.30 (16.65 to 23.70) 0.749 (< 0.001)

2-Month RI_Auto (°) 19.55 ± 7.87 18.17–20.93 21.10 (16.95 to 24.49)

Initial RI_Manual (°) 19.03 ± 6.71 17.85–20.21 0.657 20.30 (15.50 to 23.55) 0.738 (< 0.001)

2-Month RI_Manual (°) 19.23 ± 7.23 17.96–20.50 21.4 (16.75 to 23.55)

Initial DT_Auto (°) 9.03 ± 12.12 6.90–11.16 < 0.001† 9.09 (–1.10 to 18.09) 0.345 (< 0.001)

2-Month DT_Auto (°) 2.21 ± 10.51 0.36–4.05 1.74 (–4.52 to 8.22)

Initial DT_Manual (°) 9.95 ± 13.11 7.65–12.25 < 0.001† 9.30 (–1.40 to 20.60) 0.280 (0.001)

2-Month DT_Manual (°) 2.25 ± 10.92 0.33–4.16 0.80 (–4.95 to 8.70)

Initial RH_Auto (mm) 6.32 ± 5.48 5.35–7.30 0.622 7.42 (3.55 to 10.05) 0.738 (< 0.001)

2-Month RH_Auto (mm) 5.92 ± 6.04 4.86–6.98 7.12 (2.96 to 10.07)

Initial RH_Manual (mm) 6.44 ± 5.16 5.53–7.34 0.099 7.76 (3.74 to 9.92) 0.819 (< 0.001)

2-Month RH_Manual (mm) 5.85 ± 5.82 4.83–6.88 7.20 (3.76 to 9.60)

SD: standard deviation, CI: confidence interval, IQR: interquartile range, RI: radial inclination, Auto: angles measured by deep learning, Manual: angles 
measured by manual measurement, DT: dorsal tilt, RH: radial height.
*Compared between Initial and 2 months. †p < 0.05.

15 10 0 5 10 15 25 3520 30

35

30

25

20

15

10

5

0

5

10

X1_RI_Manual

RI: X1 vs. X3 (Manual)A B

10 0 10 20 30

35

30

25

20

15

5

10

0

5

10

15
40

X
3
_
R

I_
A

u
to

X1_RI_Auto

R2
= 0.544R2

= 0.562

RI: X1 vs. X3 (Auto)

X
3
_
R

I_
M

a
n
u
a
l

5

Fig. 11. Scatter plots of initial and 2-month radial inclinations (RI) predicted by deep learning (A) and manual measurement (B). Auto: angles measured 
by deep learning, Manual: angles measured by manual measurement.



121

Lee et al. Automatic Measurement of Distal Radius Using Deep Learning
Clinics in Orthopedic Surgery • Vol. 16, No. 1, 2024 • www.ecios.org

radiologic parameters in cases with severely displaced 
distal radius fractures is challenging for less experienced 
students or residents because anatomical knowledge is 
necessary to distinguish the superimposed margins of the 
fractured radius. Our algorithm, however, excels in mea-
suring even negative radial inclination or radial height, 
particularly when the radial styloid is positioned proximal 
to the articular surface of the ulnar head. Notably, Suna et 
al.16) also proposed automated computation of radiologic 
parameters using deep learning but avoided addressing se-
verely collapsed fractures with negative radial inclination 
or radial heights.

We assumed that using a limited dataset would be 
sufficient for achieving satisfactory segmentation per-
formance as the object of interest, the radius and ulna, 
is clearly visible. Indeed, our evaluation metrics yielded 
high performance values with 634 AP and 634 lateral ra-

diographs. In comparison, similar studies such as Suna et 
al.’s16) used 90 AP and 93 lateral X-rays for radius and ulna 
segmentation, but relied on 1,833 radiographs from the 
Stanford ML group’s MURA dataset for forearm segmen-
tation. Korez et al.9) trained their model with 242 images to 
measure the sagittal spinopelvic balance using 97 X-rays. 
Pei et al.,7) in their study on hip-knee angle measurement, 
utilized 676 images. Additionally, Rouzrokh et al.12) con-
ducted research on acetabular inclination and version us-
ing 600 AP and 600 lateral radiographs. Considering these 
precedents, our study, which employed 634 AP and 634 
lateral radiographs for measuring radiologic parameters 
of the distal radius through deep learning, is considered 
adequate.

We selected the attention U-Net because it is one 
of the most used algorithms for segmentation, offering 
satisfactory performance and many advantages. The at-
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Fig. 12. Scatter plots of initial and 2-month dorsal tilts (DT) predicted by deep learning (A) and manual measurement (B). Auto: angles measured by deep 
learning, Manual: angles measured by manual measurement.
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tention U-Net can take full images as input and produce 
pixel-wise outputs with relatively simple structures, while 
incurring low computational costs. Moreover, it can 
achieve good performance even when trained with very 
few labeled images. For classification purposes, we experi-
mented with both Mask R-CNN and RetinaNet. Mask R-
CNN generated high-quality segmentation masks for the 
scaphoid, which, however, is unnecessary for our study, 
whereas RetinaNet stands out as one of the best object 
detection algorithms, providing sufficient performance for 
our classification model.

Because the differences between radiologic param-
eters measured manually and those predicted using deep 
learning did not follow a normal distribution, as shown 
by the normality test, Wilcoxon signed-rank test was 
used for comparison, as shown in Table 1. Regarding the 
average predicted radial inclinations and those measured 
manually, the p-value (p = 0.004) suggests a statistical dif-
ference. However, their means, standard deviations, 95% 
confidence intervals, medians, and interquartile ranges 
appeared similar. Furthermore, the Pearson correlation 
coefficient was 0.952, indicating an extremely strong as-
sociation. Our statistical adviser confirmed the accuracy 
of the p-values. As the number of comparison subjects 
was substantial (n = 254), the standard error became suf-
ficiently small, rendering the difference statistically sig-
nificant, although it may appear clinically insignificant. 
However, the means, standard deviations, and 95% confi-
dence intervals of the predicted and manually measured 
dorsa/volar tilt were similar, with a correlation coefficient 
of 0.94, and they did not exhibit statistically significant dif-
ferences. Additionally, in the scatter plot of the predicted 
and measured values, radial inclination and dorsal/volar 
tilt featured similar correlated patterns. Therefore, despite 
the presence of a p-value, the predicted radial inclinations 
were comparable to the measured values.

The comparison between the predicted mean radial 
heights and those measured manually showed no statisti-
cally significant differences. However, the Pearson cor-
relation coefficient and the ICC were smaller for radial 
inclinations and dorsal tilts in comparison. Deep learning 
showed excellent performance in the segmentation of the 
radius and ulna. Nonetheless, in cases involving displaced 
fractures or nonunion of the ulnar styloid base, the ac-
curacy of locating the ulnar head point could be compro-
mised at times.

The results of our study revealed a weak correlation 
between radial inclination and dorsal tilt. This can be at-
tributed to the inclusion of various patterns of radius frac-
tures in our study. Some cases featured minimal displace-

ment, while others exhibited distal fragments that were 
dorsally displaced, tilted, or radially translated. Overall, 
the scatter plot depicting the relationship between radial 
inclination and dorsal tilt showed a scattered pattern, indi-
cating a weak and inconsistent relationship.

Radial inclinations and height immediately after in-
jury and after 2 months were not statistically significantly 
different and exhibited a strong positive relationship. Two 
explanations for this phenomenon are plausible: either ra-
dial inclination and height might not fully return to their 
normal values even after closed reduction or they might 
not be maintained in the reduced state within 2 months. 
Unfortunately, our study did not include radiographs ac-
quired immediately after closed reduction, which makes 
ascertaining the exact cause challenging. However, the 
dorsal tilts after 2 months were smaller than the initial 
tilts, indicating that closed reduction had a beneficial ef-
fect on the dorsal angulation of the distal radius.

This study has several limitations. We only ana-
lyzed radiographs taken at the initial injury and 2 months 
after injury, which prevented us from assessing the effect 
of different degrees of closed reduction. Additionally, 
radiographs acquired immediately after reduction often 
exhibited artifact shadows owing to the sugar-tong splint, 
hindering the manual drawing of the margins of the distal 
radius and scaphoid. Second, the study included various 
types of distal radial fractures, ranging from nondisplaced 
to severe comminuted or displaced fractures. Third, data 
for this study were collected from a single hospital, and 
while we achieved excellent accuracy, external validation 
using data from different hospitals is necessary to assess 
the robustness of our algorithm. Fourth, the ground truth 
measurements were confirmed by a single hand surgeon, 
and interobserver variability was not evaluated. This limi-
tation arose because only one physician was available to 
measure all patients’ radiographs. The annotated margins 
were confirmed and all radiologic measurements were 
performed twice by one surgeon. To mitigate interobserver 
variability, measurements were repeated until an agreed-
upon result was obtained in cases where two measure-
ments differed. Fifth, our study did not consider clinical 
factors such as wrist range of motion, clinical scoring 
system results, and patient satisfaction or further analyze 
the clinical implications of distal radius fracture radiologic 
parameters. Combining clinical and radiologic data could 
lead to patient-specific treatment decision protocols using 
deep learning. Sixth, our study did not incorporate three-
dimensional analysis using computed tomography (CT) 
or magnetic resonance imaging (MRI) to analyze the type 
or configuration of fractures; we solely relied on X-rays. 
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X-rays remain the primary imaging modality for measur-
ing radiologic parameters in clinical practice. Ohs et al.19) 
reported a technique for the automated segmentation of 
fractured radius using the three-dimensional morphologi-
cal geodesic active contours algorithm in high-resolution 
peripheral quantitative CT. We anticipate that future 
research will necessitate the inclusion of CT or MRI to 
enable a more comprehensive analysis of distal radius frac-
tures.

To summarize, we present an algorithm that mea-
sures the radiologic parameters of distal radius fractures 
using a deep learning technique that can be used to mea-
sure the parameters at large scales for the investigation of 
distal radius fractures.
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