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Abstract

Increased bone resorption mediated by osteoclasts causes
various diseases such as osteoporosis and bone erosion in
rheumatoid arthritis (RA). Osteoclasts are derived from the
monocyte/macrophage lineage, but the precise origin remains
unclear. In the present study, we show that the purified CD16-
human peripheral blood monocyte subset, but not the CD16+
monocyte subset, differentiates into osteoclast by stimulation
with receptor activator of NF-kB ligand (RANKL) in combination
with macrophage colony-stimulating factor (M-CSF). Integrin-p3
mRNA and the integrin-avf3 heterodimer were only expressed
on CD16-monocytes, when they were stimulated with RANKL +
M-CSF. Downregulation of B3-subunit expression by small
interfering RNA targeting 3 abrogated osteoclastogenesis

from the CD16° monocyte subset. In contrast, the CD16*
monocyte subset expressed larger amounts of tumor necrosis
factor alpha and IL-6 than the CD16- subset, which was further
enhanced by RANKL stimulation. Examination of RA synovial
tissue showed accumulation of both CD16* and CD16-
macrophages. Our results suggest that peripheral blood
monocytes consist of two functionally heterogeneous subsets
with distinct responses to RANKL. Osteoclasts seem to
originate from CD16~ monocytes, and integrin 33 is necessary
for osteoclastogenesis. Blockade of accumulation and
activation of CD16- monocytes could therefore be a beneficial
approach as an anti-bone resorptive therapy, especially for RA.

Introduction
Rheumatoid arthritis (RA) is an autoimmune disease charac-

terized by chronic inflammation and proliferation of the syn-
ovium in multiple joints. A large number of inflammatory cells,
including T cells, B cells, macrophages and dendritic cells,
accumulate in the affected synovium, and these inflammatory
cells, together with fibroblast-like synoviocytes, express vari-
ous cytokines, such as tumor necrosis factor alpha (TNFa), IL-
6 and receptor activator of NF-kB ligand (RANKL), which are
known to induce differentiation and activation of osteoclasts.
The inflammatory synovial tissue, known as pannus, invades

the articular bone and causes focal bone erosion, which is the
hallmark of RA. Histopathologically, osteoclasts are present at
the interface of the pannus and bone. Interestingly, the dele-
tion of RANKL or c-Fos gene, which is important for osteoclas-
togenesis, results in minimal bone destruction in mouse
models of arthritis [1,2]. Furthermore, other studies indicated
that inhibition of osteoclastogenesis by osteoprotegerin, a
decoy receptor for RANKL, limits bone destruction in experi-
mental models of arthritis. These studies suggest that osteo-
clasts are involved in focal bone erosion in RA [3].

DAP = DNAX-activation protein; ELISA = enzyme-linked immunosorbent assay; FBS = fetal bovine serum; FcRy = Fc receptor y chain; IL = interleukin;
FITC = fluorescein isothiocianate; mAb, monoclonal antibody; M-CSF = macrophage colony-stimulating factor; MEM = modified Eagle's medium;
MMP = matrix metalloproteinase; MNC = multinucleated cells; NF = nuclear factor; OSCAR = osteoclast-associated receptor; PBS = phosphate-
buffered saline; PCR = polymerase chain reaction; RA = rheumatoid arthritis; RANK = receptor activator of NF-kB; RANKL = receptor activator of
NF-kB ligand; RT = reverse transcriptase; siRNA = small interfering RNA; SIRP-B1 = signal regulatory protein-B1; TNFa = tumor necrosis factor
alpha; TRAF = tumor necrosis factor receptor-associated factor; TRAP = tartrate-resistant acid phosphatase; TREM = triggering receptor expressed
on myeloid cells.
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Osteoclasts are derived from the monocyte/macrophage line-
age. It is reported that osteoclast precursors reside in human
peripheral blood monocytes [4,5]. A marked increase of the
circulating osteoclast precursors was demonstrated in
patients with erosive psoriatic arthritis as well as in arthritic
TNFa transgenic mice [6,7]. It was also shown that peripheral
monocytes differentiate into osteoclasts when seeded on
RANKL/osteoclast differentiation factor-producing RA syno-
vial fibroblasts [8]. In addition, RA synovial macrophages
thought to originate from peripheral blood monocytes were
shown to differentiate into osteoclasts [9,10]. Monocytes are
therefore involved not only in synovial inflammation, but also in
bone remodeling as potential precursors for synovial macro-
phages and osteoclasts.

Human peripheral blood monocytes consist of two major sub-
sets, CD16+and CD16-, comprising 5—10% and 90-95% of
the monocytes, respectively. These two subsets exhibit differ-
ent chemotaxis activities and potential of cytokine production
[11,12]. Moreover, activation of the Toll-like receptor induces
distinct subsets, CD1b* dendritic cells and DC-SIGN* (den-
dritic cell-specific C-type lectin ICAM-3-grabbing nonintegrin)
macrophages from CD16+ and CD16- monocytes, respec-
tively [13]. It has not been revealed, however, which monocyte
subset develops into osteoclasts.

In the present study, we determined the human peripheral
blood monocyte subset that differentiates into osteoclasts,
and revealed that each subset exhibits a different response for
osteoclastogenic stimuli.

Materials and methods

Purification of peripheral blood monocytes

Peripheral blood monocytes from healthy donors were col-
lected using Ficoll-Conray (Imuuno-Biological Laboratories,
Gunma, Japan) gradient centrifugation. Negative selection of
monocytes was performed using MACS microbeads (Miltenyi
Biotec, Auburn, CA, USA) according to the protocol supplied
by the manufacturer.

The purified monocytes were separated into two subsets,
CD16* and CD16° monocytes, using CD16 MicroBeads
(Miltenyi Biotec). Flow cytometry analysis using FITC-conju-
gated mouse anti-CD14 mAb (MY4; Bechman Coulter, Fuller-
ton, CA, USA) and phycoerythin-conjugated mouse anti-
CD16 mAb (3G8; BD Biosciences, San Jose, CA, USA)
showed that the purities of the CD16* and CD16° monocytes
were more than 90% and 92%, respectively.

For the other experiment, monocytes were purified using
CD14 MicroBeads (Miltenyi Biotec), and then stained either
with FITC-conjugated mouse anti-CD33 mAb (MY9; Bechman
Coulter) or phycoerythin-conjugated mouse anti-CD16 mAb
(3G8). Cell sorting of the stained cells was performed using a
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FACS Vantage cytometer (BD Biosciences) or a MoFlo cell
sorter (Dako, Glostrup, Denmark).

Osteoclast differentiation

Purified CD16+ and CD16- monocytes (5 x 104 cells/well)
were incubated in 96-well plates in aMEM (Sigma, St Louis,
MO, USA) with heat-inactivated 10% fetal bovine serum
(FBS) (Sigma) or with Ultra-Low IgG FBS (IgG <5 ug/ml; Inv-
itrogen, Carlsbad, CA, USA), and where indicated with M-CSF
+ RANKL (Peprotech, Rocky Hill, NJ, USA).

For the other experiments, varied numbers of CD16+ mono-
cytes (1 x 103, 2.5 x 108, 5 x 108) were mixed with CD16"
monocytes (5 x 104 cells/well), and were cultured in 96-well
plates in aMEM with heat-inactivated 10% FBS. The medium
was replaced with fresh medium 3 days later, and after incu-
bation for 7 days the cells were stained for tartrate-resistant
acid phosphatase (TRAP) expression using a commercial kit
(Hokudo, Sapporo, Japan). The number of TRAP-positive
multinucleated cells (MNC) in three randomly selected fields
examined at 100x magnification or the total number of TRAP-
positive MNC per well was counted under light microscopy.

Resorption assay

Monocytes were seeded onto plates coated with calcium
phosphate thin films (Biocoat Osteologic; BD Biosciences)
and were incubated with RANKL (40 ng/ml) + M-CSF (25 ng/
ml) for 7 days. The cells were then lysed in bleach solution (6%
NaOCI, 5.2% NaCl). The resorption lacunae were examined
under light microscopy.

Enzyme-linked immunosorbent assay

Purified monocytes were cultured in 96-well plates where indi-
cated either with RANKL or M-CSF for 24 hours. Concentra-
tions of TNFo and IL-6 in the culture supernatant were
measured with an ELISA kit (BioSourse International,
Camarillo, CA, USA). For experiments of matrix metalloprotei-
nase (MMP)-9 and TRAP-5b, culture supernatants were col-
lected on day 7 and the concentrations of these enzymes were
measured using an MMP-9 ELISA kit (Amersham Biosciences,
Piscataway, NJ, USA) or a TRAP-5b ELISA kit (Suomen,
Turku, Finland).

Reverse transcriptase-polymerase chain reaction

Monocytes (1 x 108 cells/well) were cultured in six-well plates
with M-CSF alone or with M-CSF + RANKL for 3 days. Total
RNA was extracted using RNeasy Micro (Qiagen, Valencia,
CA, USA). The RNA was then treated with DNase | (Qiagen).
The oligo(dT)-primed cDNA was synthesized using Super-
script Il reverse transcriptase (Invitrogen). The amount of
cDNA for amplification was adjusted by the amount of RNA
measured by an optical density meter and also by B-actin or
GAPDH PCR products. One microliter of cDNA was amplified
in a 50 pl final volume containing 25 pmol appropriate primer
pair, 10 pmol each of the four deoxynucleotide triphosphates,



and 5 units FastStart Taq DNA Polymerase (Roche, Manheim,
Germany) in a thermal cycler (PTC-200; MJ GeneWorks,
Waltham, MA, USA).

The PCR conditions were 25-40 cycles of denaturation
(95°C for 30 s), annealing (60-62°C for 1 min) and extension
(72°C for 1 min). The sequences of the primers are presented
in Table 1. The PCR products were separated by electro-
phoresis through 2% agarose gel.

Western immunoblot analysis

Purified monocytes were cultured for 3 days in the presence
of 40 ng/ml M-CSF with or without 25 ng/ml RANKL. Cells
were lysed in RIPA Lysis buffer (upstate, Lake Placid, NY,
USA) containing protease inhibitors (Roche) for 15 min at
4°C. A total of 20 ug protein was boiled in the presence of 6
x sodium dodecyl sulfate sample buffer, and was separated
on 7.5% or 10% sodium dodecyl sulfate-polyacrylamide gel
(ATTO, Tokyo, Japan). Proteins were then electrotransferred
to a polyvinylidene fluoride microporous membrane (Millipore,
Billerica, MA, USA) in a semidry system. Membranes were
incubated in 10% skim milk prepared in phosphate-buffered
saline (PBS) containing 0.1% Tween 20, and were subjected
to immunoblotting. Antibodies used were goat anti-RANK
antibody (Techne Corporation, Minneapolis, MN, USA), goat
anti-c-fms antibody (R&D systems, Minneapolis, MN, USA),
and mouse anti-B-actin mAb (AC-15; Sigma). Peroxidase-con-
jugated rabbit anti-goat IgG antibody (Dako) or peroxidase-
conjugated rabbit anti-mouse IgG antibody (Dako) was used
as the second antibody. The signals were visualized by chemi-
luminescence reagent (ECL; Amersham Biocsiences, Little
Chalfont, UK).

Cell surface expression of c-fms

The following mAbs were used for analysis of c-fms expres-
sion: Alexa 647-conjugated anti-CD14 mAb (UCHM1; Sero-
tec, Oxford, UK), FITC-conjugated anti-CD16 mAb (3G8;
Bechman Coulter) and phycoerythin-conjugated anti-c-fms
mAb (61708; R&D systems). Alexa 647-conjugated mouse
IgG2a (Serotec), FITC-conjugated mouse IgG, (BD Bio-
sciences) and phycoerythin-conjugated mouse IgG, (Bech-
man Coulter) were used as isotype controls. Peripheral blood
monocytes (1 x 105 cells) were incubated with 1 pug human
IgG for 15 minutes, and were then stained with three fluoro-
chrome-labeled mAbs for 45 minutes on ice. The stained cells
were analyzed with a FACS Calibur (BD Biosciences).

Immunofluorescent staining

Monocytes (8 x 104 cells/well) were allowed to adhere on 96-
well plates overnight or were cultured with M-CSF and RANKL
for 2—4 days. The cells were fixed in acetone and then stained
with anti-avp3 mAb (LM609; Chemicon, Temecula, CA, USA)
or mouse IgG; (11711; R&D Systems) as an isotype-matched
control. Alexa fluor546-conjugated goat anti-mouse IgG, anti-
body (Molecular Probes, Eugene, OR, USA) was used as the
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second antibody. TOTO-3 (Molecular Probes) was used for
nuclear staining.

Flow cytometric analysis of p38 MAPK and ERK1/2
phosphorylation

Purified monocytes were cultured in the presence of 25 ng/ml
M-CSF for 3 days, and were either left unstimulated or were
stimulated with 40 ng/ml RANKL at 37°C. Stimulations were
stopped by adding an equal volume of PhosFlow Fix Buffer |
solution (BD Biosciences) to the cell culture. After incubation
for 10 minutes at 37°C, the cells were permeabilized by wash-
ing twice at room temperature in PhosFlow Perm/\Wash Buffer
| (BD Biosciences). A total of 1 x 105 cells was then Fc
blocked with 1 ug human IgG for 15 minutes, and was stained
with Alexa Fluor 647-conjugated mAb either to phospho-p38
MAPK (T180/Y182) or to phospho-ERK1/2 (T202/Y204) (BD
Biosciences) for 30 minutes at room temperature. Alexa Fluor
647-conjugated mouse IgG, (BD Biosciences) was used as
an isotype control. The cells were washed in PhosFlow Perm/
Wash Buffer I, and were analyzed by flow cytometry, as
already described.

RNA interference

RNA oligonucleotides (iIGENE, Tsukuba, Japan) were
designed based on the algorithm that incorporates single
nucleotide polymorphism and homology screening to ensure a
target-specific RNA interference effect. The following sense
and antisense oligonucleotides were used: integrin B3, 5'-
GCU UCA AUG AGG AAG UGA AGA AGC A-AG and 3'-
UA-CGA AGU UAC UCC UUC ACU UCU UCG U; rand-
omized control, 5-CGA UUC GCU AGA CCG GCU UCA
UUG C-AG and 3'-UA-GCU AAG CGA UCU GGC CGA
AGU AAC G; and lamin, 5'-GAG GAA CUG GAC UUC CAG
AAG AAC A-AG and 3'-UA-CUC CUU GAC CUG AAG GUC
UUC UUG U.

CD16 monocytes (8 x 104 cells/well) were incubated in 96-
well plates in optimem (Invitrogen). After 1 hour, siRNAs were
transfected into the cells using oligofectamine (Qiagen) based
on the method recommended by the manufacturer. After 2
hours, the cells were washed once with PBS, followed by the
addition of MEM supplemented with 10% FBS, M-CSF and
RANKL. After a 2-day incubation, the B3 mRNA expression
was analyzed by RT-PCR with different PCR cycles, as
described earlier. Immunofluorescent staining for the avf3
heterodimer was also performed as described above, and
numbers of ovB3-positive cells were counted in randomly
selected three fields at 100x magnification. Seven days after
the transfection of siRNAs, the number of TRAP-positive MNC
in five fields examined at 100x magnification was counted
under light microscopy.
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Table 1

Primer sequences

Molecule

Primer sequence

Receptor activator of NF-kB

c-fms

Tumor necrosis factor receptor-associated factor 6

c-Fos

DNAX-activation protein 12

Fc receptor y chain

Signal regulatory protein 1

Triggering receptor expressed on myeloid cells 2

Osteoclast-associated receptor

Nuclear factor of activated T cells c1

Integrin av

Integrin 33

B-Actin

GAPDH

5'-TGG CCG CCT AAG TGG AGATA
3-TGC GTA GGG ACC ACCTCCTA
5'-GAC GTT TGA GCT CAC CCT TCG ATA
3'-CCT GGT ACT TGG GCT TCT GCT TAT
5'-AGA CAA GAC CAT CAA ATC CGG GAG
3'-TCC AGG GCT ATG AAT CAC AAC AGG
5'-CAG GAG ACA GAC CAA CTAGA
3'-TTC ACG GAC AGA TAA GGT CC

5'-ATG GGG GGA CTT GAA CCC
3-TCATTT GTA ATA CGG CCT CTG TG
5'-TGA TTC CAG CAG TGG TCT TGC TCT
3'-ATG CAG GCA TAT GTG ATG CCA ACC
5'-ACC CAC CTT GGA GGT TAC TCA ACA
3'-TGT AGA TGG CAG AGA CAC CAA CCA
5'-ATG GAG CCT CTC CGG GTG CT
3'-CTG CGG AAT CTA CAA CCC CA
5'-GAG TAG CTG AAA GGA AGA CGC GAT
3'-CAG AGC GCT GAT TGG TCC ATC TTA
5'-TGT GCC GGA ATC CTG AAA CTC AGA
3'-TCC CGT TGC AGA CGT AGA AAC TGA
5'-TCC CAT CAG TGG TTT GGA GCA TCT
3'-TCC GAC AGC CAC AGA ATA ACC CAA
5'-TGC CTC AAC AAT GAG GTC ATC CCT
3'-AGA CAC ATT GAC CAC AGA GGC ACT
5'-GTC CTC TCC CAA GTC CAC ACA
3'-CTG GTC TCA AGT CAG TGT ACA GGT AA
5'-TGA TGA CAT CAA GAA GGT GGT GAA G
3-TCC TTG GAG GCC ATG TGG GCC AT

Inhibition of osteoclastogenesis with cyclic RGDfV
peptide

CD16" monocytes were incubated in 96-well plates with M-
CSF + RANKL for 2 days. A medium containing either cyclic
RGDfV peptide (Arg-Gly-Asp-D-Phe-Val) (Calbiochem, San
Diego, CA, USA) or dimethyl sulfoxide was then added. After
incubation for a further 5 days, the number of TRAP-positive
MNC in five fields examined at 100x magnification was
counted under light microscopy.
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Immunohistochemistry

Synovial tissue samples were obtained during total knee joint
replacement surgery from four RA patients. Signed consent
forms were obtained before the operation. The experimental
protocol was approved by the ethics committee of the Tokyo
Medical and Dental University. RA was diagnosed according
to the American College of Rheumatology criteria [14].

Double immunofluorescent staining for CD68 and CD16 anti-
gens was conducted on optimal cutting temperature-embed-
ded sections of frozen synovial samples. Eight-micrometer-
thick cryostat sections of RA synovium were fixed in acetone



for 3 minutes and were then rehydrated in PBS for 5 minutes.
The samples were incubated in 5 pg/ml proteinase K (Roche),
50 mM ethylenediamine tetraacetic acid, 100 mM Tris—HCI,
pH 8.0, for 15 minutes at room temperature followed by a
wash in PBS. The samples were then blocked with 10% goat
serum in PBS for 60 minutes at room temperature, and were
incubated with anti-CD16 mAb (3G8; Immunotech, Marseille,
France) or mouse IgG, (11711) as an isotype-matched control
in 1% bovine serum albumin/PBS for 60 minutes at room tem-
perature. The samples were then washed three times in PBS,
for 5 minutes each, and incubated with Alexa fluor546-conju-
gated goat anti-mouse IgG, antibody (Molecular Probes) in
1% bovine serum albumin/PBS for 60 minutes at room tem-
perature. The samples were then sequentially stained for
CD68 antigen in a manner similar to that used for CD186 stain-
ing. The samples were stained with anti-CD68 mAb (PGM1;
Immunotech) or mouse IgG, (6A3; MBL, Nagoya, Japan) fol-
lowed by labeling with Alexa fluor488-conjugated goat anti-
mouse IgG, antibody (Molecular Probes). The samples were
examined by confocal laser scanning microscope (Olympus,
Tokyo, Japan).
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Statistical analysis

Data are expressed as the mean % standard error of the mean.
A nonpaired Student's t test was used for comparison, using
the StatView program (Abacus Concepts, Berkeley, CA,
USA). P < 0.05 was considered statistically significant.

Results

Induction of osteoclasts from CD16- peripheral blood
monocytes

To identify the monocyte subset that differentiates into osteo-
clasts, we examined osteoclast formation from CD16+ and
CD16- human peripheral blood monocytes. The monocyte
subsets were purified using magnetic beads. Incubation with
M-CSF alone did not induce osteoclast formation from either
subset (Figure 1a). Culture with M-CSF + RANKL induced a
significant number of TRAP-positive MNC from the CD16
subset, whereas only few CD16+ monocytes differentiated
into TRAP-positive MNC (Figure 1a,b). We then assessed the
bone resorptive ability by culturing cells on calcium phos-
phate-coated plates with M-CSF + RANKL. Resorption lacu-
nae were detected only in the CD16 subset (Figure 1c),
indicating the TRAP-positive CD16-derived MNC possessed
the osteoclast phenotype.
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Induction of osteoclasts from human peripheral blood monocytes. (a) Purified CD16+and CD16" peripheral blood monocytes were cultured with
either macrophage colony-stimulating factor (M-CSF) (25 ng/ml) alone or with M-CSF (25 ng/ml) + receptor activator of NF-kB ligand (RANKL) (40
ng/ml) for 7 days and were stained for tartrate-resistant acid phosphatase (TRAP) activity. Original magnification, x100. (b) The number of TRAP-
positive multinucleated cells (MNC) (three or more nuclei) that differentiated from each monocyte subset was counted. (c) Resorbtive activity was
assessed by culturing monocytes on plates coated with calcium phosphate films. The cells were treated with M-CSF (25 ng/ml) and RANKL (40 ng/
ml) for 7 days. Arrows show resorbed lacunae. Original magnification, x100. (d) Culture supernatants of CD16* and CD16- were collected on day
7, and the concentrations of TRAP-5b and MMP-9 were measured with an ELISA. Representative data of more than three independent experiments
are shown. Data represent the mean * standard error of the mean values of duplicate or triplicate wells. *P < 0.01. Scale bars = 100 um.
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Figure 2
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Effect of CD16+ monocytes on the osteoclastogenesis from CD16-
monocytes. CD16*monocytes (0, 1 x 103, 2.5 x 103, 5 x 103 cells/
well) were mixed with CD16-monocytes (5 x 104 cells/well) in 96-well
plates, and were cultured for 7 days in the presence of macrophage
colony-stimulating factor (M-CSF) + receptor activator of NF-kB ligand
(RANKL). The number of tartrate-resistant acid phosphatase (TRAP)-
positive multinucleated cells (MNC) induced was counted. Representa-
tive data of two independent experiments are shown. Data represent
the mean * standard error of the mean values of quadriplicate wells.
N.S., not significant.

Similar results were obtained using purified monocytes by
FACS sorting (purities: CD16+, 96%; CD16, 97%). The
number of TRAP-positive MNC induced were 36 * 3 cells/well
and 348 * 13 cells/well from CD16+ and CD16- monocytes,
respectively. To exclude the possibility that the anti-CD16 anti-
body used for isolation of CD16* monocytes inhibits osteo-
clast formation, we separated the two subsets, CD33low
monocytes and CD33high monocytes, using anti-CD33 mAb
and a fluorescent cell sorter, since it was reported that
CD33lew monocytes correspond to CD16+*, and that CD33high
correspond to CD16" monocytes [15]. On average, the
CD33low population contained CD16° (10.2%)/CD16+
(89.89%) monocytes, and the CD33high population contained
CD16 (86.3%)/CD16+ (18.7%) monocytes.

Culture with M-CSF + RANKL induced TRAP-positive MNC
from CD33high monocytes, whereas no or few CD33ow mono-
cytes differentiated into TRAP-positive MNC (CD33low vs
CD33high, 2 + 1 vs 192 + 71 cells/well; n = 3). TRAP-5b and
MMP-9 in the culture supernatants, both of which are known
to be produced by osteoclasts, were measured by ELISA. The
concentrations of both enzymes were significantly higher in
the culture supernatant of CD16- monocytes than in that of
CD16* monocytes (Figure 1d). These results suggest that the
CD16" peripheral blood monocyte subset, but not the CD16+
subset, differentiate into osteoclasts by incubation with
RANKL + M-CSF.
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CD16+ monocytes do not affect the osteoclastogenesis
from CD16- monocytes

To examine whether CD16+ monocytes affect osteoclas-
togenesis from CD16- monocytes, varied numbers of CD16+
monocytes were mixed with CD16-monocytes (5 x 104 cells/
well), and were cultured for 7 days in the presence of M-CSF
+ RANKL. The number of TRAP-positive MNC was not altered
by the presence of CD16* monocytes (Figure 2). The results
indicated that CD16* monocytes did not hamper or enhance
the osteoclastogenesis from CD16° monocytes.

Differences in cytokine production by RANKL-stimulated
or M-CSF-stimulated CD16+ and CD16- monocytes

To compare the biological response of CD16+ and CD16-
subsets with either RANKL or M-CSF stimulation, we meas-
ured the amount of TNFa and IL-6 production after exposure
of cells to various concentrations of RANKL or M-CSF with an
ELISA. Without RANKL the CD16+* subset produced a signif-
icant amount of TNFo. and IL-6, whereas the CD16- subset
produced undetectable levels (Figure 3a). RANKL stimulation
increased TNFa production from both subsets in a dose-
dependent manner, although the CD16* subset produced
more TNFa than did the CD16- subset. RANKL stimulation
also enhanced IL-6 production from the CD16+* subset, but
not from the CD16- subset. M-CSF stimulation increased
TNFa and IL-6 production from both subsets, although the
CD16+ subset produced more than the CD16" subset (Figure
3b).

These results suggest that CD16+ monocytes also respond
both to RANKL and M-CSF stimulation, although such stimu-
lation does not result in differentiation into osteoclasts. CD16+
monocytes were also noted to express higher amounts of
inflammatory cytokines compared with CD16° monocytes with
or without RANKL or M-CSF stimulation.

Comparison of expression levels of molecules involved
in osteoclastogenesis between CD16* and CD16-
monocytes

Diverse molecules are involved in RANKL/RANK and its cos-
timulatory signal transduction pathways [16]. The different
response to RANKL + M-CSF stimulation between the CD16+
monocyte subset and the CD16- monocytes subset might be
explained by the expression profiles of these molecules. We
therefore examined the mRNA levels of the following mole-
cules: receptor activator of NF-kB (RANK), the receptor for
RANKL; c-fms, the receptor for M-CSF; tumor necrosis factor
receptor-associated factor 6 (TRAF-6), the adaptor protein for
RANK; c-Fos and nuclear factor of activated T cells c1
(NFATc1), transcription factors that are essential for osteo-
clastogenesis; DNAX-activation protein 12 (DAP12) and Fc
receptor y chain (FcRy), adaptor proteins known to deliver
costimulatory signals in RANKL-induced osteoclastogenesis;
signal regulatory protein B1 (SIRP-B1), triggering receptor
expressed on myeloid cells 2 (TREM-2) and osteoclast-asso-
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Tumor necrosis factor a. and IL-6 production by monocyte subsets with stimulation. Purified CD16+ and CD16" peripheral blood monocytes were

incubated either with receptor activator of NF-kB ligand (RANKL) (0, 40, 200, 1000 ng/ml) or macrophage colony-stimulating factor (M-CSF) (0, 25,
125 ng/ml) for 24 hours. Tumor necrosis factor alpha (TNFa) and IL-6 concentrations in the culture supernatant were measured by ELISA. Results
are representative of more than three independent experiments. Open squares, CD16* monocytes; filled squares, CD16+ monocytes. Data are the
mean * standard error of the mean values of duplicate wells. *P < 0.03, no stimulation vs either RANKL or M-CSF stimulation; 1P < 0.03, CD16* vs

the CD16" monocyte subset.

ciated receptor (OSCAR), transmembrane receptors that
associate with either DAP12 or FcRy; and av and 33, integrins
known to be expressed as the avB3 heterodimer on
osteoclasts.

The mRNA levels of RANK, c-fms, TRAF-6, DAP12 and SIRP-
B1 under the baseline condition (no stimulation) varied
between the donors; however, we did not find consistent dif-
ferences in the mRNA levels of these molecules between the
CD16+ monocyte subset and the CD16° monocyte subset
among three to six donors (Figure 4a). The mRNA levels of
other molecules, apart from integrin 33, were similar between
the two subsets under the no-stimulation condition. Although
the mRNA levels of RANK, c-fms, DAP12, FcRy, TREM-2 and
OSCAR increased in response to M-CSF alone or M-CSF +
RANKL in both subsets, the expression levels were not signif-
icantly different between the two subsets. Expressions of
TRAF-6, c-Fos and SIRP-f1 mRNA did not change following
stimulation with M-CSF + RANKL. Of note, the expression of
NFATc1 mRNA was enhanced by M-CSF + RANKL treatment
only in the CD16" subset. Furthermore, expression of integrin
av in both subsets was enhanced by M-CSF with or without
RANKL; however, the expression level was greater in the
CD16" subset. It was noted that integrin-33 mRNA was
detected only in the CD16- subset and was increased by M-

CSF + RANKL stimulation, but not by M-CSF alone. The pro-
tein expression of RANK under the baseline condition was
weakly detected in both subsets, and the levels were varied
between donors by western immunoblotting.

The protein expression of c-fms was weakly detected in
unstimulated CD16+ monocytes, but not in CD16- monocytes
(Figure 4b). Flow cytometry analysis of c-fms in fresh mono-
cytes, however, showed that both subsets express the mole-
cule on the cell surface (Figure 4c). Expressions of both RANK
and c-fms were upregulated by M-CSF alone and by M-CSF +
RANKL, and we did not find consistent differences in the pro-
tein levels of these molecules between the two monocyte sub-
sets. The profiles of expression levels of molecules involved in
RANKL/RANK and its costimulatory pathways are similar
between the two subsets, except for NFATc1, integrin av and
integrin 3. We therefore assumed that the distinct induction
of NFATc1, integrin av and integrin B3 in response to RANKL
stimulation among the two monocyte subsets might explain
the differences in their abilities to differentiate into osteoclasts.

RANKL stimulation induces avf33 expression on CD16-
monocytes

The integrin-B3 subunit binds to integrin av only and is
expressed as the heterodimeric protein avp3 on monocytes
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Figure 4
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Differences in expression pattern of molecules related to osteoclastogenesis between CD16+and CD16° monocyte subsets. (a) Total RNA was
extracted from freshly isolated CD16*and CD16-monocytes or from the cells incubated in either macrophage colony-stimulating factor (M-CSF) (25
ng/ml) alone or M-CSF (25 ng/ml) + receptor activator of NF-kB ligand (RANKL) (40 ng/ml) for 3 days, and semiquantitative RT-PCR analysis was
performed. Representative results from three independent experiments are shown. (b) The expression of receptor activator of NF-xB (RANK) and c-
fms in unstimulated or stimulated monocytes was analyzed by western blotting. (c) Cell surface expression of c-fms on unstimulated CD16+ and
CD16 monocytes was examined by three-color flow cytometry. Gates were set either for CD14+ CD16* (left panel) or CD14+ CD16* (right panel)
monocytes. Histograms show the stained cells with anti-c-fms mAb (solid lines) and isotype-matched control (dotted lines). (d) Purified monocytes
were allowed to adhere on plates overnight (unstimulated) or the cells treated with M-CSF (25 ng/ml) + RANKL (40 ng/ml) were examined for the
expression of the avf33 heterodimer by immunofluorescent staining. Solid arrows indicate mononuclear avp3-positive cells. Dotted arrows indicate
multinucleated avB3-positive cells. Original magnification, X100. Results are representative of two independent experiments.

and osteoclasts [17]. We examined the expression of avB3 on
CD16+and CD16-monocytes by immunofluorescent staining.
Neither unstimulated nor M-CSF-stimulated monocyte sub-
sets expressed avB3 (Figure 4d and data not shown). After 48
and 72 hours of treatment with M-CSF + RANKL, avB3-posi-
tive mononuclear cells were observed in CD16-monocyte cul-
tures but not in CD16+ monocyte cultures. At 96 hours, both
avB3-positive mononuclear cells and multinucleated cells
were present in the CD16-monocyte culture. The results indi-
cated that avf33 was selectively expressed on CD16- mono-
cytes in the presence of M-CSF + RANKL, and the expression
was revealed before the cells differentiate into typical multinu-
cleated osteoclasts.

RANKL activates ERK and p38 kinases only in CD16-
monocytes

Since ERK and p38 MAPK are essential in RANKL-induced
osteoclastogenesis [18-20], we next examined whether these
kinases were activated differently in CD16* monocytes and in
CD16 monocytes. Purified monocytes were precultured with
25 ng/ml M-CSF for 3 days to enhance RANK expression, and
were then treated with RANKL. The RANKL treatment induced
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phosphorylation of both ERK and p38 MAPK in CD16"mono-
cytes at 5 minutes postexposure, although the p38 MAPK
phosphorylation was weak. Both phosphorylations declined to
a basal level within 20 minutes (Figure 5). In contrast, ERK and
p38 MAPK were not detectably phosphorylated in CD16+
monocytes with RANKL.

siRNA targeting integrin 33 inhibits osteoclastogenesis
from CD16- monocytes

The integrin-B3 cytoplasmic domain is essential for activation
of intracellular signals from avf3 heterodimers [17]. We there-
fore examined the involvement of avp3 in RANKL + M-CSF-
induced osteoclastogenesis in human CD16- monocytes
using siRNA targeting the integrin-B3 subunit. The integrin-3
siRNA or control randomized siRNA were transfected into
CD16- monocytes. At 48 hours post-transfection, we deter-
mined the integrin-B3 mMRNA level and avB3 heterodimer pro-
tein expression. The integrin-33 mRNA level was reduced in
the integrin-B3 siRNA-transfected monocytes compared with
control siRNA-transfected monocytes (Figure 6a). The avf33
heterodimer expression was evaluated by immunofluorescent
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Figure 5

W/

Phospho-ERK1/2 Phospho-p38 MAPK

Flow cytometric analysis of ERK1/2 and p38 MAPK phosphorylation on monocyte subsets. Purified monocytes were precultured with macrophage
colony-stimulating factor (M-CSF) for 3 days, and treated with 40 ng/ml receptor activator of NF-kB ligand (RANKL) for 5 min (pink), 10 min (blue)
or 20 min (orange), or were left untreated (light green). The cells were then stained either with phospho-ERK1/2 (T202/Y204) or phospho-p38

MAPK (T180/Y182) after fixation and permeabilization. Isotype controls were shown in dotted line. The data shown are representative of three inde-
pendent experiments.

Figure 6
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Effect of transfection of integrin-B3 siRNA and cyclic RGDfV peptide on osteoclastogenesis from CD16° monocytes. (a) CD16" monocytes trans-
fected with either 1 nM control or integrin-B3 siRNA were cultured in macrophage colony-stimulating factor (M-CSF) (25 ng/ml) + receptor activator
of NF-kB ligand (RANKL) (40 ng/ml). Forty-eight hours after the transfection, integrin-3 mRNA levels were examined by semiquantitative RT-PCR.
(b) The expression of the avB3 heterodimer was examined by immunostaining and the number of avB3-positive cells was counted. (c) Seven days
after the transfection of siRNAs, the cells were stained for tartrate-resistant acid phosphatase (TRAP) activity, and the number of TRAP-positive
multinucleated cells (MNC) was counted. Results are representative of three to five independent experiments. Data are the mean + SEM values of
duplicate wells. *P < 0.01, control-siRNA vs $3-siRNA. (d) CD16" monocytes were incubated with M-CSF (25 ng/ml) + RANKL (40 ng/ml) for 2
days, followed by the addition of a medium containing either cyclic RGDfV peptide or dimethyl sulfoxide (DMSO). After incubation for a further 5
days, the number of TRAP-positive multinucleated cells (MNC) was counted. Representative results from three independent experiments are shown
Data are the mean * standard error of the mean values of triplicate wells. Control, without treatment. **P < 0.03, DMSO vs cyclic RGDfV peptide.

staining. The number of avB3-positive cells was significantly
decreased in integrin-B3 siRNA-transfected monocytes com-
pared with that in control siRNA (Figure 6b).

After 7 days of incubation, the number of TRAP-positive MNC
was counted. Transfection with integrin-B3 siRNA significantly
reduced the number of TRAP-positive MNC in a dose-depend-
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Figure 7

Figure 8
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Effect of integrin-B3 knockdown on induction of NFATc1 mRNA.
CD16- monocytes transfected with either control or integrin-p3 siRNA
were cultured with macrophage colony-stimulating factor (M-CSF) (25
ng/ml) + receptor activator of NF-kB ligand (RANKL) (40 ng/ml). Total
RNA was extracted 48 hours post-transfection. Semiquantitative RT-
PCR analysis was performed using NFATc1-specific and GAPDH-spe-
cific primers. Representative results from four independent experiments
are shown.

ent manner compared with control siRNA transfection (Figure
6¢). In addition, the use of siRNA directed toward a different
site of integrin-B3 mMRNA also inhibited osteoclast formation
from CD16" monocytes (data not shown). On the other hand,
siRNA that targeted lamin, which was used as a negative
control, did not inhibit the induction of osteoclasts (data not
shown). These results indicate the importance of integrin B3 in
RANKL-induced osteoclast formation from CD16- peripheral
blood monocytes.

Cyclic RGDfV peptide inhibits the osteoclastogenesis
from CD16- monocytes

Integrin avB3 recognizes a common tripeptide sequence,
RGD (Arg-Gly-Asp), which is present in bone matrix proteins
such as vitronectin and fibronectin [21]. Cyclic RGDfV pep-
tide (Arg-Gly-Asp-D-Phe-Val) inhibits binding of the RGD-con-
taining molecules to avB3 [22]. To investigate the role of
ligand binding to the avB3 heterodimer in the osteoclastogen-
esis, we examined whether cyclic RGDfV peptide inhibits the
formation of osteoclasts. Cyclic RGDfV peptide significantly
reduced the number of TRAP-positive MNC in a dose-depend-
ent manner (Figure 6d). The results imply possible involvement
of ligand bindings to avp3 in the osteoclastogenesis.

Knockdown of integrin (33 did not affect the expression
of NFATc1 mRNA

In the next step, we determined whether integrin-3-siRNA-
induced inhibition of the osteoclastogenesis reflects downreg-
ulation of NFATc1, which is a key transcription factor in oste-
oclastogenesis [23]. For this purpose, we compared NFATc1
mRNA levels between integrin B3 and control siRNA-trans-
fected monocytes. Interestingly, integrin-33 knockdown did
not alter the NFATc1 mRNA level (Figure 7), suggesting that
signal transduction mediated by integrin B3 does not affect the
expression of NFATc1.
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Double immunofluorescence showing CD16+and CD16" macrophages
in rheumatoid arthritis synovium. Synovial tissue samples from patients
with rheumatoid arthritis (RA) were stained with CD68 and CD16. (a)
CD68, (b) CD186, and (c) merged (a) with (b). Arrows show CD16+
cells. Original magnification, x400. Representative results from four RA
patients are shown. Scale bar =50 pum.

Detection of CD16* and CD16- macrophages in synovium
of RA patients

RA synovial macrophages are derived from peripheral blood
monocytes, and their recruitment into the synovium is facili-
tated by various adhesion molecules and chemokines [24]. To
analyze CD16 expression on synovial macrophages, RA syno-
vial tissues were double-stained for CD16 and a macrophage
marker, CD68. CD16-/CD68* macrophages were widespread
in the synovium. Although less frequent, CD16+/CD68+ mac-
rophages were also observed both in the synovial intima and
subintima (Figure 8). The presence of two subsets of macro-
phages, CD16+ and CD16-, in RA synovium indicates that
both CD16* and CD16- peripheral blood monocytes are
recruited into the synovium.

Discussion

Human peripheral blood monocytes are a heterogeneous pop-
ulation, and they are divided into two subsets based on the
expression of CD16. The CD16* and CD16- monocyte sub-
sets show functional differences in migration, cytokine produc-
tion and differentiation into macrophages or dendritic cells
[11-13,15]. We focused on the heterogeneity of the mono-
cytes, and the primary question addressed in this study was
which monocyte subset could be the source of osteoclasts.
The results demonstrated that CD16- peripheral blood mono-
cytes, but not CD16* monocytes, differentiated in vitro into
osteoclasts by treatment with RANKL + M-CSF.



To investigate the molecular mechanisms of the different
response to RANKL and the differentiation into osteoclasts
between CD16* and CD16- monocytes, we examined the
expression of molecules known to be involved in
osteoclastogenesis. The expression profiles of integrin av,
integrin B3 and NFATc1 were different between the two sub-
sets. Integrin avB3 heterodimer was expressed only on
RANKL and M-CSF-stimulated CD16- monocytes. It is known
that avp3 expressed on osteoclasts is important in bone
resorption as well as in attachment of osteoclasts to the bone
matrix [25].

It was recently reported that bone marrow macrophages of
integrin-B3-deficient mice could not differentiate into mature
osteoclasts in vitro, suggesting that avf3 is involved not only
in activation, but also in differentiation, of osteoclasts in mice
[26,27]. The authors also showed that avp3 and c-fms share
a common intracellular signaling pathway, including the activa-
tion of ERK and the induction of c-Fos [27], both of which are
essential for osteoclastogenesis [28,29]. In addition, it was
reported that echistatin, an avf3 antagonist, inhibited osteo-
clast formation of mouse bone marrow cells [30].

In accordance with these reports, our data showed that knock-
down of integrin-B3 expression resulted in downregulation of
the avB3 heterodimer, and abrogated osteoclastogenesis
from human peripheral blood CD16- monocytes. We also
showed that blocking of adhesive ligands to bind to avf3 by
RGDfV peptide inhibited osteoclast formation from CD16-
monocytes. Taken together, the process of ligand binding to
avp3 may be involved in the osteoclastogenesis. Blockade of
avp3 could therefore be a therapeutically beneficial approach
to modulate osteoclastogenesis. Indeed, integrin avB3 antag-
onists effectively treated osteoporosis in mice, rats and
humans, and protected bone destruction in rat adjuvant-
induced arthritis in vivo [31-34]. Of note, it is reported that
patients with Iragi-Jewish-type Glanzmann thrombasthenia
who are deficient in integrin B3 do not develop osteopetrosis
because of the upregulation of a2p1 expression on osteo-
clasts, although the bone-resorptive ability of the osteoclasts
was decreased in vitro [35]. The function of avB3 in vivo in
osteoclast formation and resorptive function could therefore
be partially compensated by other integrins.

Although all the multinucleated osteoclasts expressed avf3
(Figure 4d) [36], a small number of M-CSF + RANKL-stimu-
lated mononuclear CD16-monocytes expressed avf33 (Figure
4d). Multinucleated osteoclasts are formed by fusion of osteo-
clast precursor cells [37]. It was reported that avpB3 is involved
in the migration of osteoclast precursors [30]. The avp3-posi-
tive cells could therefore be forced to migrate by the ligands
and may fuse with closed avB3-negative cells. Alternatively,
only avp3-positive cells may be fused with each other.
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It is possible to consider that signaling from CD16 by anti-
CD16 mAb-coated magnetic beads, which were used for the
cell separation, or by IgG contained in FBS might inhibit oste-
oclastogenesis from CD16+ monocytes. We therefore sepa-
rated the two subsets using anti-CD33 mAb and a fluorescent
cell sorter, and stimulated the cells with M-CSF + RANKL. The
results showed that CD33low monocytes, which correspond to
CD16+* monocytes, still could not differentiate into osteo-
clasts. CD16 is a heterodimer consisting of Fcyllla and Fcy,
and has low affinity for the Fc region of IgG. Aggregation of
CD16 by immune complexes leads to transmission of activat-
ing signals via the immunoreceptor tyrosine-based activation
motif in the vy chain [38]. We also assessed
osteoclastogenesis from the two monocyte subsets using
IgG-depleted bovine serum. Even in the IgG-free medium,
CD16- monocytes but not CD16+ monocytes differentiated
into osteoclasts (data not shown). We could therefore exclude
the possibility that signal transduction through CD16 inhibits
osteoclastogenesis from CD16+ monocytes.

NFATc1 is a key transcription factor in osteoclastogenesis
[16]. In the present study, stimulation with M-CSF + RANKL
increased the NFATc1 mRNA expression in the CD16- subset
only, similar to integrin av and integrin $3. The differences in
NFATc1 induction might therefore also explain the difference
in osteoclastogenesis between the two monocyte subsets. It
is of interest that knockdown of integrin 3 did not lower the
mRNA level of NFATc1. This result supports the notion that
NFATc1 is located upstream of integrin-B3 expression [39]. It
is also possible that parallel activation of two signaling path-
ways mediated by integrin B3 and NFATc1 contributes to
osteoclastogenesis independently or cooperatively. Further
studies are needed to determine the mechanisms of integrin
B3 involvement in RANKL/RANK-mediated osteoclast
differentiation.

It has been demonstrated that MAPK families, ERK and p38
MAPK, were activated by RANKL-induced intracellular signal-
ings in osteoclasts and osteoclast precursors [18,19]. In addi-
tion, these kinases are involved in the differentiation of
osteoclasts [20]. We showed that RANKL stimulation induced
phosphorylation of ERK and p38 MAPK only in CD16- mono-
cytes. It is suggested that differential activation of these
kinases may partially explain the distinct properties of the two
monocyte subsets upon RANKL stimulation.

Our results showed that CD16+ monocytes produce higher
levels of inflammatory cytokines including TNFo and IL-6 com-
pared with CD16- monocytes. These results are consistent
with the previous report showing that CD16+ monocytes
produced larger amounts of TNFa upon lipopolysaccharide or
lipopeptide stimulation than did CD16° monocytes [40]. Inter-
estingly, we showed that stimulation either with RANKL or M-
CSF upregulated the TNFa and IL-6 production by CD16+
monocytes. A marked increase of CD16+ monocytes in
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peripheral blood is reported in inflammatory diseases, such as
infection, malignancy, Kawasaki disease and RA [41-44].
Taken together, CD16* monocytes may be an important
source of inflammatory cytokines.

In mice, peripheral blood Ly-6Chish monocytes, which are
thought to correspond to human CD16- monocytes, increase
in inflammatory conditions, and these cells are recruited into
sites of inflammation [45]. In contrast, Ly-6Clo¥ monocytes,
which are thought to correspond to human CD16+*, migrate
into noninflamed tissues [12]. These data on mouse
monocytes seem to be in contrast to the data on human mono-
cytes, which show expansion of CD16+ monocytes in inflam-
matory conditions where they produce larger amounts of
inflammatory cytokines. At present, it is not clear whether
mouse monocyte subsets, Ly-6Clow/Ly-6Chigh  represent
human monocyte subsets, CD16+/CD16- monocytes, and
whether the biologic functions of mouse monocytes are anal-
ogous to those of human monocytes.

In mice, blood monocytes newly released from the bone mar-
row are exclusively Ly-6Chigh and the level of Ly-6C is down-
regulated while in circulation [45]. It is thus suggested that in
mice the two monocyte subsets differing in Ly-6C expression
represent different stages in the maturation pathway. In the
human, transition from CD16- monocytes to CD16+ mono-
cytes is observed upon culture with IL-10, M-CSF and trans-
forming growth factor beta in vitro [42,46]. Similar to mouse
monocytes, therefore, human peripheral blood CD16- mono-
cytes may also maturate into CD16+ monocytes.

It is reported that a significant number of RA synovial cells in
the intima express CD16, suggesting that CD16+ cells are
synovial macrophages [47]. We confirmed that both CD16+
and CD16" macrophages accumulate in the RA synovium by
double-color immunohistochemical staining for CD68 and
CD16. A number of chemokines are abundantly expressed in
the RA synovium [24,48]. Among these cytokines, MCP-1,
MIP-10, SDF-1, RANTES and fractalkine can induce migration
of CD16" monocytes in vitro ([11,12] and unpublished data).
On the other hand, migration of CD16* monocytes is induced
only by fractalkine. These chemokines therefore seem to play
an important role in recruitment of CD16+ and CD16- mono-
cytes from the circulating pool into the RA synovium.

The osteoclast inducers are also produced in the RA syn-
ovium. RANKL is expressed by synovial fibroblasts and acti-
vated T cells [49-51], while M-CSF is expressed on RA
synovial macrophages and fibroblasts [52,53].

TNFoa and IL-6, which are mainly expressed on RA synovial
macrophages and fibroblasts, respectively, could also
enhance osteoclast differentiation [54]. Collectively, it is prob-
able that the recruited CD16° monocytes/macrophages
differentiate into osteoclasts in the RA synovium, and contrib-
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ute to bone destruction. On the other hand, CD16+ mono-
cytes/macrophages might also be involved in RA
pathogenesis by producing inflammatory cytokines including
TNFo and IL-6. Since TNFa and IL-6 enhance osteoclast for-
mation [54,55], CD16+ monocytes/macrophages may also
contribute to osteoclastogenesis in RA synovium.

Conclusion

We have shown that human peripheral blood monocytes con-
sist of two functionally heterogeneous subsets with distinct
response to osteoclastogenic stimuli. Osteoclasts seem to
originate from CD16-monocytes, and integrin B3 is necessary
for the osteoclastogenesis. The blockade of accumulation and
activation of CD16-monocytes could therefore be a beneficial
approach as an anti-bone resorptive therapy, especially for RA.
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