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Background and Objective: The incidence rate of lung cancer, which also has the highest mortality 
rates for both men and women worldwide, is increasing globally. Due to advancements in imaging 
technology and the growing inclination of individuals to undergo screening, the detection rate of ground-
glass nodules (GGNs) has surged rapidly. Currently, artificial intelligence (AI) methods for data analysis 
and interpretation, image processing, illness diagnosis, and lesion prediction offer a novel perspective on 
the diagnosis of GGNs. This article aimed to examine how to detect malignant lesions as early as possible 
and improve clinical diagnostic and treatment decisions by identifying benign and malignant lesions using 
imaging data. It also aimed to describe the use of computed tomography (CT)-guided biopsies and highlight 
developments in AI techniques in this area.
Methods: We used PubMed, Elsevier ScienceDirect, Springer Database, and Google Scholar to search 
for information relevant to the article’s topic. We gathered, examined, and interpreted relevant imaging 
resources from the Second Affiliated Hospital of Nanchang University’s Imaging Center. Additionally, we 
used Adobe Illustrator 2020 to process all the figures.
Key Content and Findings: We examined the common signs of GGNs, elucidated the relationship 
between these signs and the identification of benign and malignant lesions, and then described the 
application of AI in image segmentation, automatic classification, and the invasiveness prediction of GGNs 
over the last three years, including its limitations and outlook. We also discussed the necessity of conducting 
biopsies of persistent pure GGNs.
Conclusions: A variety of imaging features can be combined to improve the diagnosis of benign and 
malignant GGNs. The use of CT-guided puncture biopsy to clarify the nature of lesions should be 
considered with caution. The development of new AI tools brings new possibilities and hope to improving 
the ability of imaging physicians to analyze GGN images and achieving accurate diagnosis.
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Introduction

The increase in individuals’ health consciousness, the 
widespread use of high-resolution computed tomography 
(CT), and the implementation of low-dose chest CT 
screening programs, particularly in the wake of the 
coronavirus disease 2019 (COVID-19) pandemic, have 
led to a surge in the use of chest CT scanning (1). 
Consequently, the detection rate of ground-glass nodules 
(GGNs) has improved significantly. GGNs are a social 
health problem that requires immediate attention. The early 
and precise diagnosis of GGNs represents a significant step 
in preventing excessive treatment and alleviating patients’ 
distress.

A GGN is a nodule with an increased density that 
does not obstruct lung tissue, bronchi, or blood vessels. 
GGNs are categorized as either pure GGNs (pGGNs) 
or mixed GGN (mGGNs), depending on the presence 
of solid components (2). In 2021, the World Health 
Organization reclassified lung cancers, designating atypical 
adenomatous hyperplasia (AAH) and adenocarcinoma 
in situ (AIS) as precursor glandular lesions (PGLs), and 
lung adenocarcinoma (LUAD) as primarily comprising 
micro-invasive adenocarcinoma (MIA) and invasive 
adenocarcinoma (IAC) (3). No matter how they are 
categorized, research has shown that GGNs may reflect the 
pathological development of lung tumors (4).

At present, the diagnosis of benign or malignant 
pulmonary GGNs primarily hinges on the CT characteristics 
and the experience of radiologists (5). Radiologists typically 
use chest CT morphologic and quantitative characteristics to 
evaluate the invasiveness of GGNs. The CT characteristics 
mainly include the location, size, margin, CT parameters, 
such as the mean CT value, consolidation tumor ratio (CTR), 
and volume doubling time (VDT), and all kinds of signs, 
such as the vacuole sign, air bronchus sign, vascular-related 
signs, and pleural depression sign. However, it is sometimes 
still difficult to distinguish between benign and malignant 
nodules (5).

For pulmonary nodules that are suspected to be 
malignant, CT-guided lung biopsy is a reliable procedure 
that has a 90% sensitivity for the diagnosis of lung cancer 
(6,7). The morphological dynamics of malignant GGN 
progression, along with its intricate growth characteristics 
and potential malignancy, pose challenges in its clinical 
management. Artificial intelligence (AI)-based diagnostic 
tools have the potential  to increase early disease 
identification and expedite the interpretation of complicated 

images, all of which will benefit patients in the long term (8). 
Developments in AI technology have the potential to direct 
GGN screening and treatment strategies, and enhance 
image quality and the precision of GGN identification in 
clinical practice (9).

In this article, we examine the common signs of GGNs 
to elucidate the relationship between these signs and the 
identification of benign and malignant GGNs. We then 
describe the application of AI to image segmentation, 
automatic classification, and the invasiveness prediction of 
GGNs over the last three years, including its limitations 
and outlook. Finally, we discuss the necessity of biopsy 
of persistent pGGNs to better inform clinical diagnosis 
and treatment decision making. We present this article 
in accordance with the Narrative Review reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-674/rc).

Methods

We used PubMed, Elsevier ScienceDirect, Springer 
database, and Google Scholar to search for articles using 
specific keywords (Table 1). Once the search was completed, 
and duplicate articles were removed, we reviewed the 
abstracts and content of the remaining articles to ensure that 
they were relevant to this study. The research findings from 
the identified publications were then compiled, combined, 
and discussed in the text as necessary (Figure S1). We also 
gathered, examined, and interpreted pertinent imaging 
data from the Second Affiliated Hospital of Nanchang 
University’s Imaging Center. We used Adobe Illustrator 
2020 to draw, resize, place, and resolve the figures.

Identification of benign and malignant GGN 
imaging signs

Nodule location

An upper lobe distribution is linked to a higher risk of 
malignant tumors with an odds ratio of 1.9 (10), and 
the location of the GGN plays a role in determining 
the malignant risk (Figure 1). Lung cancer screening 
research has shown that the right upper lobe of the 
lung has the highest incidence of lung cancer, and the 
lesion is normally dispersed along the bronchovascular  
bundle (11). This might be because during breathing, the 
right upper lobe’s bronchus receives the greatest amount of 
airflow (11). LUADs in particular are frequently found in 

https://qims.amegroups.com/article/view/10.21037/qims-24-674/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-674/rc
https://cdn.amegroups.cn/static/public/QIMS-24-674-Supplementary.pdf
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the periphery or sub-pleura of the lungs, and rarely appear 
in the central or central third of the lungs (11). This is not 
the case with squamous lung carcinomas, which can be 
found either peripherally or attached to the pleura and are 
also commonly found in the central or central third of the 
lungs (11).

Nodule size

The size of the nodule is a crucial parameter in evaluating 
GGN features. The 2018 Chinese expert consensus defines 
tiny nodules as pulmonary nodules with a diameter of less 
than 5 mm, and small nodules as those with a diameter 

Table 1 The search strategy summary

Items Specification

Dates of searches October 10, 2023, and March 15, 2024

Databases and other sources 
searched

PubMed; Elsevier ScienceDirect; Springer Database; Google Scholar

Search terms used Lung ground-glass nodule; Ground-glass nodule; Ground-glass opacity; Diagnostic imaging; Artificial 
intelligence; Lung biopsy; CT-guided biopsy

Timeframe From January 2000 to March 2024

Inclusion and exclusion criteria Inclusion criteria: articles concerning patients with ground-glass nodules

Exclusion criteria: articles not relevant to the purpose of this review

Selection process All authors engaged in the selection process. A voting minority-majority strategy was used if 
uncertainties arose as to the relevance of any articles

Figure 1 Inflammatory nodule. M, 55 y/o. A COPD patient presented with recurrent cough and sputum for more than 2 months. (A) The 
first CT scan showed a mGGN with a diameter of 7 mm in the dorsal segment of the left inferior lobe (as indicated by the arrow) with clear 
borders; CT value: −549±54.8 HU; CTR: <0.5; no malignant signs. (B) The follow-up examination 1 month later showed that the mGGN had 
changed into a pGGN, and the nodule had increased in size, and had a diameter of 8.6 mm, a CTR of 0, unclear borders, and a CT value of 
−610±49.6 HU; partial absorption of the inflammatory nodule was diagnosed. (C) The follow-up examination 4 months later showed that the 
inflammatory nodule had disappeared. M, male; y/o, years old; COPD, chronic obstructive pulmonary disease; CT, computed tomography; 
HU, Hounsfield unit; mGGN, mixed ground-glass nodule; CTR, consolidation tumor ratio; pGGN, pure ground-glass nodule.

A B C
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between 5 and 10 mm. According to the Fleischner 
guidelines (2), patient follow up is not required for a single 
pGGN or mGGN less than 6 mm in diameter; however, 
for a solitary pGGN more than 6 mm in diameter, a CT 
examination should be performed to confirm persistence 

in 6 to 12 months, and then every 2 years thereafter for  
5 years (Figures 2,3), while for a solitary mGGN more than 
6 mm in diameter, a CT examination should be performed 
to confirm persistence in 3 to 6 months, and then every year 
for 5 years if it is unaltered and the solid component is less 

Figure 2 AAH. M, 52 y/o. (A) 2018.09.01 examination: pGGN (as indicated by the arrow); 11 mm × 7 mm; CT value: −629±11.8 HU; 
shallow lobule; no spicules; no tumor vascular signs (type I); no vacuole and cavities; no halo signs; no pleural indentation. (B) 2019.03.30 
reexamination: no change in pGGN density and size, and no other malignant signs. AAH, atypical adenomatous hyperplasia; M, male; y/o, 
years old; pGGN, pure ground-glass nodule; CT, computed tomography; HU, Hounsfield unit.

A B

Figure 3 AIS. F, 65 y/o; pulmonary nodules for 2 months. (A,B) A pGGN in the anterior basal segment of the right inferior lung; interface: 
clear; size: about 17 mm × 18 mm; CT value: −665±89.8 HU; lobulation sign; tumor vascular sign (type II); air bronchial sign (type I, as 
indicated by the arrow); pleural indentation sign (type d). AIS, adenocarcinoma in situ; F, female; y/o, years old; pGGN, pure ground-glass 
nodule; CT, computed tomography; HU, Hounsfield unit.

A B
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A B

Figure 4 IAC. M, 59 y/o. (A,B) A mGGN in the right superior lobe (as indicated by the arrows); clear interface; 31 mm × 20 mm; solid 
component: 7 mm × 8 mm; CTR: 0.26; CT value: −502±213.7 HU; uneven density; lobulation; tumor vascular sign (type IV); vacuole; 
pleural indentation (type b); no spicules or cavities. IAC, invasive adenocarcinoma; M, male; y/o, years old; mGGN, mixed ground-glass 
nodule; CTR, consolidation tumor ratio; CT, computed tomography; HU, Hounsfield unit.

than 6 mm (Figure 4). A persistent mGGN containing a 
solid component of more than 6mm is highly suspicious. 

Lee et al. (12) conducted a retrospective analysis of 253 
cases of pathologically confirmed GGNs using independent 
sample t-tests and a logistic regression analysis to examine 
the relationship between lesion size and invasiveness. 
Another study (13) made use of a Kaplan-Meier analysis, 
log-rank test, and Cox proportional hazards model to 
analyze the factors affecting GGN growth in 125 patients. 
Both studies reported that the optimal diameter cut-off 
value for distinguishing invasive GGNs was 10 mm. For 
a GGN more than 10 mm in diameter that persists for 
more than 3 months, the likelihood that malignant tumors 
will develop ranges from 10% to 50% (14). Generally, the 
diameter of an IAC is notably larger than that of a MIA, 
AIS, or AAH. As the diameter increases, the probability of a 
GGN being a MIA or IAC also increases (15). A thorough 
evaluation of the GGN size has the potential to enhance 
the detection of cancerous tumors. Nevertheless, reliance 
solely on size for identification is inadequate (Figures 5,6). 
A multivariate analysis showed that GGN size does not 
independently predict malignancy, and predictive models 
including size do not demonstrate optimal performance (16). 
Therefore, other CT features should be taken into account 

when making predictions about the benign or malignant 
nature of GGNs.

Mean CT value

The ranges of CT values for different neoplastic GGN 
subtypes frequently overlap, but research has shown that 
there is a statistically significant difference between the 
mean CT values of the subtypes (17). This difference is 
thought to be an independent predictor of the invasiveness 
of GGNs (17). In non-invasive lung cancer, the mean 
CT value was (−643.6±9.4) Hounsfield unit (HU)  
(Figures 2,3), but in invasive lung cancer, it was (−365.9±11.4) 
HU (P<0.0001) (18). Xiong et al. (19) conducted a study 
of 198 patients with a surgically proven diagnosis of 
MIA or IAC, who underwent multi-slice CT scans using 
scanners from various manufacturers (i.e., the Siemens 
SOMATOM Perspective or Emotion 16, General Electric 
Optima CT660, Discovery CT750 HD, Revolution CT 
or LightSpeed 16, and Philips Brilliance 16 P) with the 
following specific scanning parameters: tube voltage: 
120 kV; tube current: 170–200 mA; slice thickness: 
1.00–1.50 mm; matrix: 512×512; and rotation time:  
0.5–0.6 s. The study revealed mean CT values for MIA and 



Luo et al. Imaging diagnostics of pulmonary GGNs6128

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):6123-6146 | https://dx.doi.org/10.21037/qims-24-674

Figure 5 MIA. M, 44 y/o, (A,B) pGGN; 10 mm × 7 mm; CT value: −521±40.4 HU; shallow lobule; no spicules; no vacuoles or cavities; no 
solid components (CTR: 0); tumor vascular sign (type II); no vascular thickening; no vascular bundles; no halo signs; no pleural indentation. 
The red arrows show the lesion. MIA, micro-invasive adenocarcinoma; M, male; y/o, years old; pGGN, pure ground-glass nodule; CT, 
computed tomography; HU, Hounsfield unit; CTR, consolidation tumor ratio.

A B

Figure 6 MIA. F, 69 y/o; bilateral ovarian serous cystadenocarcinoma. (A,B) A mGGN in the right superior lobe with the vacuole sign (as 
indicated by the arrows), and the tumor vascular sign (type II). The interface and boundary were clear; the size was about 11 mm × 8 mm; 
the density was uneven; the CT value was −732.0±83.0 HU; the CTR was less than 0.5; and there was scattered inflammation in the superior 
lobe of the right lung (as indicated by the triangular arrows). MIA, micro-invasive adenocarcinoma; F, female; y/o, years old; mGGN, mixed 
ground-glass nodule; CT, computed tomography; HU, Hounsfield unit; CTR, consolidation tumor ratio.

A B
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ICA of −701.16±61.68 and −612.72±72.48 HU, respectively, 
and maximum cross-sectional mean CT values for MIA and 
IAC of −687.60±66.17 and −598.59±83.32 HU, respectively 
(P<0.001). The results indicated that the magnitude of the 
maximum cross-sectional mean CT value might indicate 
the extent of tumor cell growth along the alveolar septum.

In recent years, mean CT values have been used in 
research to evaluate the development of GGNs. He et al. (20) 
proposed that GGNs with a mean CT value ≥−507.8 HU 
were more likely to exhibit growth. The mean CT threshold 
for predicting GGN progression was determined by Eguchi 
et al. (21) and Tamura et al. (22), who reported values of 
−670 and −677 HU, respectively. For pGGNs specifically, 
the mean CT values were found to be (−659.5±58.7) HU 
during the growth phase, and (−711.2±54.3) HU (20) during 
the non-growth phase. The mean CT value is not yet 
accurate enough to distinguish between different forms of 
GGN; however, it is an effective instrument for diagnosing 
malignant GGNs and provides important diagnostic 
information for patients with lung cancer (17).

Halo sign and reverse halo sign

The term “halo sign” refers to the ground-glass attenuation 
surrounding pulmonary nodules, which can be observed 
in a range of lung conditions (Figure 7). The mGGN may 
present a slight resemblance to the halo sign, while the 
boundary of the halo sign is usually blurred. In addition, 
mGGN-like nodules with halo signs show changes in 
lesion size, shape, and density during short-term follow up. 
Persistent mGGNs show a clear boundary and no change 
in lesion size, shape, and density during short-term follow 
up. The halo sign, which is mainly associated with lesion 
hemorrhage, is thought to be a significant indicator of 
pulmonary aspergillosis in the early stages of CT imaging 
in patients with impaired or deficient immune systems (23). 
Moreover, non-hemorrhagic inflammatory lesions may 
also exhibit “halo sign”. For instance, patients suffering 
from visceral larva migrans caused by Ascaris suum may 
have tiny nodules with a halo of ground-glass attenuation 
and focal areas of ground-glass attenuation in the lung 

A B

Figure 7 Cryptococcal pneumonia. F, 29 y/o. (A,B) Multiple clustered solid lesions and nodules with the halo sign (as indicated by the 
arrows) and air bronchus sign (type I, as indicated by the down-arc arrow) in the basal segment of the inferior lobe of the right lung. F, 
female; y/o, years old.
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periphery on CT scans representing lung involvement (24). 
These abnormalities correspond pathologically to necrosis 
surrounded by infiltrating inflammatory cells and the 
infiltration of marked eosinophils into the alveolar septa 
(24,25). In individuals with normal immune function, AIS is 
the most frequent cause of the “halo sign”, but it is uncommon 
in cases of lung squamous cell carcinoma (26). One of the 
most important factors in differentiating between benign 
and malignant lesions is the transparency of the interface 
between the ground-glass opacity (GGO) and the solid 
components in the nodule or the adjacent lung fields.

The reverse halo sign was initially identified in cases of 
cryptogenic organizing pneumonia (Figure 8). It appears as a 
core GGO surrounded by a periphery annular or crescent-
shaped consolidation shadow on CT. It lacks specificity 
and can be present in both benign and malignant nodules. 
Additionally, it has been observed that the halo sign and the 
reverse halo sign can transition into each other, as evidenced 
by a gradual reversal process from the reverse halo sign to 
the halo sign in a follow-up case of LUAD (27).

In tuberculosis patients, the reverse halo sign is typically 
observed in the right upper lobe. In contrast to non-
organizing pneumonia, the presence of nodule walls or 
granuloma-like micronodules with the reverse halo sign 
strongly indicates active pulmonary tuberculosis (28). 
Mucormycosis, a vaso-invasive fungal infection, presents 
with non-specific clinical signs, making it challenging 
to differentiate from aspergillosis, which often leads to 
delayed diagnosis. The halo sign and reverse halo sign 
may assist in distinguishing between the two conditions 
(29,30). The reverse halo sign shows dynamic evolution 
in leukemia patients with pulmonary mucormycosis; it 

typically appears in 94% of chest CT scans within the first 
five days; however, this figure drops to 64% between days 
six and 14, and vanishes after the 14th day (31). Thus, the 
reverse halo sign represents a specific imaging feature and 
is thought to be a crucial signal of imaging presentations 
in hematological disorders complicated by pulmonary 
mucormycosis. Conversely, the halo sign strongly indicates 
invasive pulmonary aspergillosis. The presence of a reticular 
structure with an outer margin bigger than 1 cm with the 
reverse halo sign strongly suggests invasive mucormycosis 
in immunocompromised patients (32).

The reverse halo sign is also present in cases of pulmonary 
embolism. In patients with pulmonary thromboembolism, 
the reverse halo sign is often detected in the lower lobes of 
the lungs and is associated with acute thromboembolism in 
the corresponding segmental and subsegmental pulmonary 
arteries (33). A study of 62 patients with septic pulmonary 
embolism resulting from intravenous substance use 
disorder found that reverse halo signs were observed in 37 
patients with no specific lobar preference (34). Further, 
episodes of septic pulmonary embolism may exhibit isolated 
consolidation and GGO with the reverse halo sign (34).

Following radiofrequency ablation for lung cancer, a 
reverse halo sign resembling a “bird’s nest” may be observed. 
This phenomenon is primarily attributed to the coagulative 
necrosis of cells resulting from the ablation process (35). 
Similarly, it may also be observed after radiotherapy 
for breast cancer, and is linked to the development of 
organizing pneumonia induced by radiotherapy. Radiation-
induced coagulative necrosis disrupts the permeability of 
the basement membrane, triggering coagulation and fibrin 
accumulation in the alveoli (36).

A B C

Figure 8 COPD. F, 48 y/o, a COPD patient with a cough for more than 20 days. (A-C) CECT showed multiple subpleural exudations, the 
reverse halo sign (as indicated by the arrows), and obvious uniform consolidation. COPD, chronic obstructive pulmonary disease; F, female; 
y/o, years old; CECT, contrast-enhanced computed tomography.



Quantitative Imaging in Medicine and Surgery, Vol 14, No 8 August 2024 6131

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):6123-6146 | https://dx.doi.org/10.21037/qims-24-674

CTR

The CTR is the ratio of the largest solid component’s 
diameter to the overall tumor’s largest diameter in the 
lung window of a high-resolution CT scan. Based on the 
number of solid components present, pulmonary GGNs 
can be divided into the following two categories using 
CTR values: pGGNs, which have a CTR value of 0  
(Figure 5); and mGGNs, which have a CTR value between 
0 and 1 (Figure 9). Previous studies have shown that the 
probability of unfavorable pathology types increases as the 
solid component of a nodule expands (37). A CTR value 
of 0.5 is considered the critical value for aggression in 
GGNs. This value is typically used to separate GGNs into 
GGO-dominant nodules (CTR ≤0.5) and solid-dominant 
nodules (0.5< CTR <1). According to a survival analysis, 
patients with GGO-dominant nodules have a considerably 
greater recurrence-free survival rate than those with 
solid-dominant GGNs (38). Additionally, a CTR value of  
0.53 has been identified as the ideal cut-off value for 
calculating recurrence-free survival (38).

The CTR value also has significant diagnostic value 

in determining the presence of lymph node metastasis, as 
well as the necessity and extent of lymph node dissection 
in peripheral lung cancer (39). Individuals who have a high 
CTR value, especially one greater than 0.62, have a higher 
risk of lymph node metastasis (40). Interestingly, the CTR 
has a predictive potential comparable to positron emission 
tomography/CT in predicting regional lymph node 
metastasis before surgery [receiver operating characteristic 
(ROC) of maximum standardized uptake value: 0.816, ROC 
of CTR: 0.817] (40). Tsai et al. (41) conducted an analysis 
of 352 patients with LUAD who underwent standard 
lobectomy and lymph node dissection, and found that for 
patients with a maximum tumor diameter <1 cm, serum 
carcinoembryonic antigen (CEA) <5 ng/mL, and a CTR 
value <0.5, lymph node dissection may not be required. 
Several studies further indicated that lymph node dissection 
may be unnecessary when the CTR value is <0.5 (42,43). 
However, the clinical applicability of this conclusion 
requires validation through further prospective studies 
to enhance the rigor and standardization of lung cancer 
diagnosis and treatment.

A B C

Figure 9 Primary peripheral invasive lung adenocarcinoma. M, 59 y/o, 5 years after rectal cancer surgery. (A) The first CT scan showed a 
4-mm-diameter mGGN (as indicated by the yellow arrow) in the anterior basal segment of the right inferior lobe with clear borders; CT 
value: −567.9±160.2 HU; CTR >0.5; no malignant signs. (B,C) On the follow-up examination after 1418 days, the mGGN transformed into 
a SPN with clear borders, a 20-mm-diameter, and a CT value of −14.2±106.3 HU, with a significant increase in the nodule volume (VDT: 
309 days), lobulation, spiculation, the pleural indentation sign (① c-type + ② b-type + ③ a-type, as indicated by the curved arrows), and 
air bronchus sign (type III, coexistence of stenosis and dilatation, as indicated by the red arrows). M, male; y/o, years old; CT, computed 
tomography; HU, Hounsfield unit; mGGN, mixed ground-glass nodule; CTR, consolidation tumor ratio; SPN, solitary pulmonary nodule; 
VDT, volume doubling time.
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Vacuole sign

Vacuoles are translucent regions in lesions of low-density 
gas that are less than 5 mm long (Figures 4-6). In cases 
in which LUAD presents as a GGN, the tumor cells 
obstruct the alveoli, leading to the formation of vacuoles 
and preventing the discharge of gas, ultimately resulting in 
alveolar rupture. As the tumor nodules are shrinking, the 
vacuoles can continue expanding. As the nodules progress, 
the vacuoles are filled with tumor cells and disappear. 
Vacuole growth position is a diagnostic marker that can 
be used to differentiate between benign and cancerous 
tumors. Malignant lesions are mainly dispersed throughout 
the lung’s periphery, while benign lesions are mainly found 
close to the heart side of the lung. The vacuole sign, which 
is rare in benign nodules and frequently used to determine 
the risk of GGN, is a significant characteristic of malignant 
pulmonary nodules. The presence of vacuoles also implies 
a faster pace of lesion growth, and research has shown that 
vacuoles are one of the variables that stimulate the growth 
of pulmonary nodules (44).

Air bronchus sign

The air bronchus sign is characterized by the presence of 

air-filled small bronchial shadows in a lesion, and it can 
be categorized into the following four types: type I, which 
resembles a green branch and is typically associated with 
pneumonia (Figures 3,7,10); type II, which is characterized by 
primarily dilated air-filled bronchial lumens (Figure 11); type 
III, which is distinguished by narrow and dilated bronchial 
lumens, irregular tube walls, and incomplete bronchial tree 
(Figure 9); and type IV, which is a mixed type that features 
both the bronchial mucus sign and air bronchus sign. 
However, these types lack distinguishing differences and are 
not precisely associated with specific diseases.

Benign lesions typically exhibit a normal or dilated 
bronchial lumen, while malignant bronchi are often narrow, 
truncated, occluded, or twisted. Further, the length of the 
bronchi affected by the air bronchus sign, the length of the 
diseased bronchi, and the ratio between these lengths are 
valuable in distinguishing between benign and malignant 
lesions (45). Marchiori et al. (46) proposed that the presence 
of an air bronchogram in conjunction with bronchiectasis 
can aid in the diagnosis of pulmonary lymphoma. The 
abnormal bronchial sign in pGGNs has been studied in the 
pathological categorization of LUAD and has been employed 
as a predictor of LUAD grade in certain studies (47). The air 
bronchogram sign, like the vacuole sign, is believed to be 
strongly correlated with the development of GGNs (44).

A B C

Figure 10 IAC. M, 48 y/o. A mGGN in the anterior superior lobe of the right lung was followed up for 847 days. (A-C) The interface was 
clear; the size was about 17 mm × 15 mm (the previous size was 16.0 mm × 15.0 mm); the solid component was about 10.0 mm × 9.0 mm 
(the previous size was about 6 mm × 8 mm); the CTR was 0.59; and the margin was lobulated. The density was not uneven; the CT value 
was −394.8±191.0 HU (the previous CT value was −433.7±197.6 HU); the tumor vascular sign was type IV (as indicated by the red arrow); 
the air bronchial sign was type I (as indicated by the yellow arrow); the pleural depression sign was type d (lower arcuate, as indicated by the 
curved arrow); and the VDT of the solid component was 678 days. IAC, invasive adenocarcinoma; M, male; y/o, years old; mGGN, mixed 
ground-glass nodule; CTR, consolidation tumor ratio; CT, computed tomography; HU, Hounsfield unit; VDT, volume doubling time.
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Vascular-related signs

Tumors and the circulatory system are closely related to 
malignant growths that frequently display altered blood 
flow. Based on imaging features, there are four types of 

associations between GGNs and blood vessels (Figure 12): 
type I: the blood vessels are adjacent to the lesion but there 
is no vascular supply inside the lesion (Figure 2); type II: the 
blood vessels pass through the lesion without undergoing 
significant morphological changes (Figures 3,5,6); type III: 
the blood vessels are bent or rigid without proliferation; 
and type IV: the blood vessels in the lesion exhibit a variety 
of shapes and intricate relationships (Figures 4,10,13), such 
as irregular dilation and the traction of blood vessels (48). 
On contrast-enhanced CT scans of the lungs, angiographic 
signals are described by magnified blood vessel pictures 
in lesions. These affected blood vessels tend to occur 
in malignant lesions, such as malignant lymphoma and 
diffuse lung carcinoma, where they frequently demonstrate 
signs of deformation, truncation, and constriction. The 
encapsulation of pulmonary veins by nodules indicates an 
elevated likelihood of lung cancer. As the nourishing small 
blood vessels penetrate the GGNs, they present as various 
CT features, including confluence, penetration, truncation, 
rigidity, and traction, which are collectively known as 
microvascular signs or tumor microvascular imaging signs. 
These signs are considered common indicators of early-

BA

Figure 11 Pulmonary MALT lymphoma. M, 51 y/o; symptoms: a low fever and right chest pain for 5 days. (A,B) CECT showed 
consolidation in the middle lobe of the right lung, moderate uniform enhancement, the air bronchial sign (type II, as indicated by the 
arrows), and fusiform aneurysmal dilation of the lumen. MALT, mucosa associated lymphoid tissue; M, male; y/o, years old; CECT, contrast-
enhanced computed tomography.

Bronchus 
Pulmonary artery
Pulmonary vein
GGN 
Pleura

Type I

Type II

Type III

Type IV

Figure 12 Diagram of tumor vascular signs. Type I: blood vessels 
adjacent to the lesion but no vascular supply inside the lesion; 
type II: blood vessels pass through lesion undergoing significant 
morphological changes; type III: blood vessels are bent or rigid 
without proliferation; and type IV: blood vessels in the lesion exhibit 
a variety of shapes and intricate relationships, such as irregular 
dilation and traction of blood vessels. GGN, ground-glass nodule.
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stage lung cancer, particularly in peripheral lung cancer. 
It is widely contended that in cross-sectional thin-section 

scanning, it might occasionally be difficult to identify the 
presence of microvessels surrounding the lesion. Novel 
modes of CT image post-processing, such as maximum 
density projection, multi-plane image reconstruction, and 
volume rendering, allow for multi-plane and multi-angle 
imaging observation, thereby enhancing the accuracy of the 
imaging diagnosis of early-stage lung cancer. In addition, 
the vascular bundle sign, which is primarily observed in 
peripheral lung cancer, is a feature in which nearby blood 
vessels congregate around the nodule without directly 
contacting or abutting the nodule’s edge.

Margin features

The uneven lobular contour at the periphery of the nodule 
is known as the lobulation sign, which is a regularly 
detected hallmark of peripheral lung cancer (Figure 9). 
Lobules can be shallow, moderate, or deep in degree, 
and their presence in the nodule is linked to differences 
in growth rate or obstruction by neighboring structures 
(Figures 2-4). Lobulation is a common mark of invasiveness; 

peripheral lung cancer with deep lobulation shows a higher 
level of malignant biological behavior than those lacking 
this trait (49). A unique type of lobulated modification, 
akin to a notch, is commonly observed in cancerous  
nodules (50). A radiological signal that falls between 
lobulation and spiculation is the spinous protuberant sign 
(Figure 4). It appears as a thick, blunt, club-like structure 
denoting the lesion’s infiltrative expansion toward the 
edge. A feature known as the pseudopod sign occurs when 
the spinous protrusions vary in thickness and length, 
resembling crab legs. This signal can assist in discriminating 
between benign and malignant nodules, as it is much more 
common in the latter. The spicule sign, observed on CT 
scans, presents as small spinous protrusions at the margin 
of a nodule, typically displaying consistent thickness  
(Figure 9). Cancerous nodule spicules are generally 
indicative of infiltrative growth, exudation, or proliferative 
stromal reaction in the lesion, often appearing as short and 
fine spicules. Conversely, benign nodule spicules, which 
are typically longer and softer in form, are often made of 
proliferating fibrous connective tissue and can be seen in 
inflammatory pseudotumors and tuberculosis.

Tumorous GGNs are recognized by their distinctive 

A B C

Figure 13 IAC. M, 71 y/o, a GGN in the superior lobe of the right lung for 3 years; mass in the posterior segment of the superior lobe 
of the right lung; a CT-guided percutaneous lung biopsy indicated AAH 2 years ago. (A-C) The lesion showed lobulation, the pleural 
indentation sign (type e, as indicated by the red arrow), and the tumor vascular sign (type IV, as indicated by the yellow arrow). The surgery 
was terminated 3 years ago due to pleural reactions (e.g., decreased blood pressure and arrhythmia) during the thoracoscopic surgery at 
another hospital. IAC, invasive adenocarcinoma; M, male; y/o, years old; GGN, ground-glass nodule; CT, computed tomography; AAH, 
atypical adenomatous hyperplasia.
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development patterns, which result in unique margins on 
imaging. These GGNs often have non-smooth margins 
and are more likely to have irregular, lobulated, serrated, or 
spiculated features. Conversely, benign non-inflammatory 
GGNs frequently feature sharper, smoother angles and 
crisper margins and may have fibrous strands. Moreover, 
inflammatory lesion boundaries often appear indistinct (51).

Pleural depression sign

A linear or cone-shaped shadow that is situated between 
the lesion and the pleura is indicative of pleural depression. 
Usually, this occurrence is explained by the reactive growth 
of peritumoral fibrous tissue, which results in the pleura 
contracting and creating a fluid-filled space between the 
parietal and visceral pleura. A depressed pleura without any 
visible thickening is frequently seen on the lung window 
in LUAD. Conversely, benign lesions, such as sclerosing 
hemangioma, lung abscess, inflammatory pseudotumor, 
and tuberculosis, might show markedly thicker pleura 
of increased density that may be visible in the lung and 
mediastinal windows. Pleural depression can be classified 
into the following five categories based on the relationship 
between the GGNs and the pleura (Figure 14): type a: the 
tumor’s edge attaches to the pleura without causing any 

deformation (Figures 1B,9); type b: a strip or line extends 
from the distal end of the pleura to the pleural surface with 
pleural folding (Figures 4,9); type c: the tumor displays 
pleural vegetation without folding (Figure 9); type  d: 
the tumor wraps around the pleura causing retraction  
(Figures 3,10); and type e: the pleura is invaginated toward 
the tumor, contributing to retraction (Figure 13A) (52). 
Pleural traction depression is more likely to appear in IACs 
than PGLs, and of the different types, pleural deformation 
is the most typical (53).

VDT and MDT

The VDT of nodules is a more useful metric to evaluate 
the pace of growth of persistent GGNs than the diameter 
(Figure 9). In making treatment decisions, this characteristic 
is essential for discriminating between benign and 
cancerous GGNs (54). The accuracy, methodology, and 
reproducibility of the VDT for lung nodules are susceptible 
to several factors. Generally, the following formula is used 
to calculate the VDT (55):
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where V0 is the volume of the nodule measured at the first 
visit (mm3), Vt is the volume of the nodule measured at the 
last visit (mm3), and t is the interval time (d).

The volume of the above formula is usually measured 
using the following equation:
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where a is the maximum diameter, and b is the vertical 
diameter.

It can also be calculated by the following formula:
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where d0 is the diameter of the nodule measured at the first 
visit (mm), dt is the diameter of the nodule measured at the 
last visit (mm), and t is the interval time (d).

A VDT of more than 800 days often denotes benign 
lesions, while a VDT of 400 to 600 days is linked to AIS, 
AAH, and MIA, and a VDT of less than 400 days is linked 
to IAC (Figure 10). Conversely, a VDT of less than 20 days 
might suggest the presence of infection or inflammatory 
diseases. Hasegawa et al. (56) carried out a widespread 

GGN 

Pleura

Pleural effusion
Type a

Type b

Type c

Type d

Type e

Figure 14 Pleural depression sign diagram. Type a: the tumor’s 
edge attaches to the pleura without causing any deformation; type 
b: a strip or line extends from the distal end of the pleura to the 
pleural surface with pleural folding; type c: the tumor displays 
pleural vegetation without folding; type d: the tumor wraps around 
the pleura causing retraction; and type e: the pleura is invaginated 
toward the tumor, contributing to retraction. GGN, ground-glass 
nodule.
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high-resolution CT (GE) screening of lung cancer using 
the following scanning parameters: matrix: 512×512; tube 
voltage: 120 kV; tube current: 200 mA; and collimation: 1 or 
3 mm. The study found that the average VDTs were 813 and 
457 days for pGGNs and mGGNs, respectively. Li et al. (57) 
retrospectively analyzed CT scans from 167 individuals over 
three months. They manually segmented the GGN pictures 
in three dimensions, compared the volume growth rate, 
and calculated the VDT. Their data demonstrated that the 
VDT was 848 days for pGGNs and 598 days for mGGNs. 

The growth rate of GGN is also influenced by the CTR. 
The higher the CTR value, the shorter the VDT. It is 
clear that in the case of malignant GGNs, a shorter VDT 
signifies a more aggressive histology tumor (58). Neoplastic 
GGNs develop slowly and inertly even throughout the 
growth phase, usually contributing to a prolonged VDT 
that might remain unchanged for many years. If a GGN 
does not diminish or vanish after three months, long-term 
follow up should be explored as per the 2019 Fleischner 
Pulmonary Disease Guidelines for managing GGNs.

However, in recent years, researchers have focused on 
employing mass double time (MDT) in quantitative analyses 
of specific small and slow-growing nodules, which monitors 
nodule growth sooner than VDT, making measurements of 
observed values more sensitive and realistic (59). MDT is 
expressed as follows:

( )1000 0.001meanMDT V A= × ×  ＋ 	 [4]

where V is the volume of the lesion (mm3), and Amean is the 
mean density change (HU).

AI in GGN

GGN segmentation

The key component of a medical image analysis is image 
segmentation, which plays a crucial role in the precise 
calculation of the GGN volume and clinical management 
(60,61). Studies (62,63) have shown that deep-learning 
image reconstruction algorithms outperform conventional 
techniques in terms of accuracy when it comes to assessing 
GGN volume in low-dose CT. Moreover, because manual 
segmentation takes a great deal of time and is hampered by 
ambiguous borders and inter- or intra-observer variances, 
the use of AI to produce reliable automatic segmentation 
has become popular in clinical practice.

Kido et al. (64) created a novel loss function and 
proposed a nested three-dimensional (3D) fully connected 

convolutional network (CCN) with residual cell structure. 
The Dice coefficient and Intersection over Union (IoU) 
values of the CCN were 0.845±0.008 and 0.738±0.011, 
respectively (Table 2). Luo et al. (65) invented the 3D dual-
attention shadowing network, DAS-Net, which improves 
segmentation accuracy and nodal surface information 
perception. In comparison to the baseline model, the 
model that included the adaptive dual-attention module 
had a Dice coefficient, sensitivity, and Hausdorff distance 
of 0.9205±0.0308, 0.9081±0.0635, and 0.93±0.0187, 
respectively.

The implementation of AI has significantly enhanced 
the segmentation performance of image edges for some 
complex GGNs with fuzzy boundaries, irregular shapes, 
and low contrast with the surroundings. Akila et al. (66) 
introduced a new Wavelet U-Net++ method that combines 
the U-Net++ structure with wavelet pooling to capture 
high- and low-frequency information in the image, 
thus enhancing segmentation accuracy, especially small, 
irregular nodules. Wang et al. (67) developed the dual-
path lung nodule segmentation model, DPBET, which uses 
a hybrid architecture made up of a convolutional neural 
network (CNN) and Cascade-Axial-Prune Transformer 
(CAP-Trans) to produce a global representation of the 
target lesion. Additionally, an edge detection operator is 
incorporated into the edge path to effectively perceive local 
characteristics at various scales and ranges. The test results 
on the public dataset Lung Image Database Consortium 
and Image Database Resource Initiative (LIDC-IDRI) 
had an average Dice coefficient of 89.86% and an average 
sensitivity of 90.50%. To improve the acquisition of the 
images’ edge information, the enhanced random wandering 
algorithm also uses a local search technique to generate 
more reliable seeds, thus enhancing the accuracy of GGN  
segmentation (68).

Automatic identification and classification of GGN

Recently, it has been recognized that AI shows promise in 
improving the sensitivity and accuracy of CT imaging. Due 
to the similarities in imaging, the accurate identification and 
categorization of GGNs is challenging. Currently, there 
is no reliable method for distinguishing among GGNs, 
with physicians relying on their empirical opinions. Deep-
learning techniques, such as CNNs, have demonstrated 
potential in extracting comprehensive features from 
complex datasets, allowing for the screening of a large 
number of CT images and the quick labeling of suspicious 
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Table 2 Application of AI in pulmonary ground-glass nodules

Authors Year Methods Data sources
GGN 
applications

Results Merits Limitations

Kido S,  
et al. (64)

2022 3D-CCN In-house dataset 
(332 cases)

Segmentation IoU: 0.738±0.011; 
DSC: 0.845±0.008

Segments lung 
nodules attached to 
the chest wall or with 
GGOs

Sample number 
and type

Luo S,  
et al. (65)

2022 DAS-Net LIDC-IDRI Segmentation DSC: 0.920±0.030; 
Sn: 0.9081±0.0635; 
HD: 0.93±0.0187

Enhances surface 
detailed information, 
shrinks parameters 
and model 
computation

–

Akila Agnes 
S, et al. (66)

2024 Wavelet 
U-Net++

LIDC-IDRI Segmentation IoU: 0.878±0.09; 
DSC: 0.937±0.14; 
Acc: 0.989±0.08

Improves the 
segmentation of small 
and irregular nodules

–

Wang S,  
et al. (67)

2022 CAP-Trans; 
CNN

LIDC-IDRI Segmentation DSC: 0.8986±0.0859; 
Sn: 0.9050±0.0946

Improves and 
refines boundary 
segmentation

–

Li X, et al. 
(68)

2022 Enhanced 
random 
wandering 
algorithm

LIDC-IDRI Segmentation Acc: 0.9434; OS: 
0.86±0.08; Fscore: 
0.8951

Improves the 
segmentation of GGO 
nodules

–

Miao J,  
et al. (69)

2023 3D-CNN 
transformer

Luna16 dataset  Identification Acc: 0.9589; Fscore: 
0.9594

Enhances 3D image 
automatic feature 
extraction

Single encoding 
method, sample 
number, and type

Meng Q,  
et al. (70)

2022 3D-DCNN In-house dataset 
(736 cases)

Classification Acc: 0.9177; Fscore: 
0.9558; MCC: 0.3715; 
AUC (CI): 0.734 
(0.585–0.884)

Improves clinical 
risk stratification 
management

Single-center, 
retrospective 
study, sample 
type

Ma H,  
et al. (71)

2022 3D U-Net; 
R-CNN

VESSEL12; 
LTRC; LCTSC; 
In-house dataset 
(456 cases)

Identification 
and 
classification

mAP: 0.518 (0.50–
0.531)

Reduces false-
positive rate, and 
improves detection 
accuracy

The ratio of 
benign to 
malignant lesions

Wang C,  
et al. (72)

2024 3D nnU-Net; 
AAG; SAM

LIDC-IDRI; in-
house dataset 
(807 cases)

Identification 
and location

Acc: 0.955; Fscore: 
0.876; Sp: 0.947; 
AUC (CI): 0.992 
(0.984–0.998)

Increases reliability, 
interpretability, and 
accuracy

LIDC dataset 
classification 
standard

Ding Y,  
et al. (73)

2022 3D 
DenseSharp

In-house dataset 
(424 cases)

Diagnosis Sn: 0.8229; Sp: 
0.9048; PPV: 0.9724; 
AUC (CI): 0.899 
(0.851–0.936)

Shows good 
diagnostic 
performance for 
nodules less than  
2 cm

Single-center 
study, sample 
number, and type

AI, artificial intelligence; GGN, ground-glass nodule; 3D, three-dimensional; CCN, connected convolutional network; IoU, Intersection 
over Union; DSC, Dice similarity coefficient; GGO, ground-glass opacity; LIDC-IDRI, Lung Image Database Consortium and Image 
Database Resource Initiative; Sn, sensitivity; HD, Hausdroff distance; –, none reported; Acc, accuracy; CAP-Trans, Cascade-Axial-
Prune Transformer; CNN, convolutional neural network; OS, overlap score; DCNN, deep convolutional neural network; MCC, Matthews 
correlation coefficient; AUC, area under the curve; CI, confidence interval; VESSEL12, VESsel SEgmentation in the Lung 2012; LTRC, Lung 
Tissue Research Consortium; LCTSC, Lung CT Segmentation Challenge 2017; mAP, mean average precision; AAG, anatomical attention 
gate; SAM, soft activation map; Sp, specificity; PPV, positive predictive value.
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lesions (74). Thus, it is a simple, convenient, non-invasive, 
and reproducible method that can aid imaging physicians 
in the identification and classification of GGNs. From the 
perspective of global 3D asymmetric feature representation, 
Miao et al. (69) proposed a transformer-based 3D lung 
GGN recognition model. The model used a 3D-CNN 
as its foundation, allowing it to learn richer global 3D 
asymmetric features and improving its feature extraction 
ability.

Meng et al. (70) integrated a multi-stage 3D-deep CNN 
algorithm (Figure 15) with the cLung Imaging Reporting 
and Data System 1.1 (cLung-RADS 1.1) to predict GGNs 
on the CT images of 506 patients. In the validation test, the 
accuracy, Matthews correlation coefficient (MCC), and area 
under the curve (AUC) were reported as 91.77%, 31.75%, 
and 0.734 [95% confidence interval (CI): 0.585–0.884], 
respectively. Thus, their approach demonstrated excellent 

performance in distinguishing between non-tumorigenic 
and tumorigenic GGNs. Another study proposed a two-
stage 3D-GGN detection and classification framework, 
which used a two-stage image processing approach with a 
3D U-Net and region CNN (R-CNN) on the CT images 
of 456 patients (71). Subsequently, the 3D model was used 
to detect and classify the GGNs. The detection accuracy 
was further improved through feature-weighted clustering.

Wang et al. (72) developed a multi-task interpretable 
deep-learning model called ExPN-Net. This model not 
only detects and pinpoints important nodule features, 
such as subtlety, calcification, texture, sphericity, and edge 
features, but also diagnoses GGNs using the 3D nnU-Net, 
the anatomical attention gate (AAG) mechanism, and the 
soft activation map (SAM) module. The AUC values on the 
LIDC public and internal datasets were impressive at 0.992 
and 0.923, respectively.

Figure 15 The deep-learning algorithm of the lung nodule diagnosis model comprises the following three steps: (Step 1) pulmonary 
nodule segmentation; (Step 2) ROI classification; and (Step 3) nodule classification. Steps 1 and 2 extract high-quality nodule data using the 
ConvNet model and a faster convolutional neural network detector, while step 3 employs some kind of network (e.g., the FPRNet-101) for 
precise lung nodule classification. ROI, region of interest.
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There has been an increasing number of studies in the 
field of multimodal collaborative AI modeling in recent 
years. Ding et al. (73) built a new lung nodule detection 
model by combining seven autoantibodies (p53, GAGE7, 
PGP9.5, CAGE, MAGEA1, SOX2, and GBU4-5), CEA, 
and a 3D DenseSharp network. The diagnostic model 
performed well in differentiating between benign and 
malignant lung nodules, especially those under 2 cm. The 
sensitivity, specificity, AUC, and positive predictive value 
of the model were 82.29%, 90.48%, 97.24%, and 0.899 
(95% CI: 0.851–0.936), respectively. A joint AI model 
that integrated 3D-CNN, radiomics, and clinical data was 
shown to improve the benign/malignant classification, 
histologic type classification, and Lung-RADS classification 
of GGNs (75).

Assessment of GGN invasiveness

Radiologists typically use chest CT morphologic and 
quantitative data to evaluate the invasiveness of GGNs. 
Nonetheless, subjectivity and inter-observer variation 
in morphology are intrinsic and rely on the radiologists’ 
experience. Compared to morphological features, 
quantitative features are more reproducible when used in 
AI-assisted diagnosis (76).

A few studies (77,78) have shown that the use of AI-
based nomograms might provide some important radiolytic 
parameters that could not be recognized by the naked 
eye, such as skewness, kurtosis, and entropy, which appear 
to have a good clinical application in assessing GGN 
invasiveness. Thus, an increasing number of scholars have 
combined nomograms with AI during the research process 
to explore their potential.

To screen out independent predictors of GGN 
invasiveness and establish an AI diagnostic model of 
CT histogram quantitative parameters, Deng et al. (79) 
retrospectively analyzed 102 chest high-resolution CT 
images of GGNs with a pathologically confirmed diameter 
≤10 mm. The results showed that the entropy and mean 
CT value had a high diagnostic efficacy. Similarly, some 
researchers (80) assessed the efficacy of CT histogram 
metrics analyzed by AI in predicting GGN invasiveness in 
both plain and enhanced CT. These findings revealed that 
the mean CT value was an independent predictor of tumor 
invasiveness, and the presence of a contrast agent did not 
appear to affect its predictive performance. 

The use of CT-guided percutaneous biopsy in 
the diagnosis of persistent lung GGNs

CT-guided transthoracic lung biopsy is a well-established 
and  commonly  prac t i ced  procedure  in  thorac ic 
interventional radiology for the histologic diagnosis of lung 
lesions (81). Indications for imaging-guided chest biopsy 
include a new or enlarging solitary nodule or mass, multiple 
nodules in a patient without known neoplastic disease or 
in prolonged remission, focal parenchymal infiltrates in 
which an infectious organism cannot be isolated, a diagnosis 
of hilar masses following negative bronchoscopy, an 
undiagnosed mediastinal mass, and biopsy or re-biopsy of 
malignancy for targeted therapy (81).

Obtaining lesion tissue by percutaneous lung lesion 
biopsy under CT guidance is a minimally invasive, safe, 
and repeatable approach. It is crucial for diagnosing lung 
nodules and establishing the pathological diagnosis of lung 
lesions. LUNG-RADS version 1.1 recommends biopsy for 
four categories of nodules to determine the pathological 
diagnosis. A single-center retrospective analysis (82) of 114 
patients with 117 lung nodules, of which 40 were GGNs 
and 77 were solitary pulmonary nodule (SPNs), sought to 
determine the accuracy of biopsy for nodules smaller than 
8 mm. The sensitivity for malignant nodules, specificity for 
benign nodules, and the total diagnostic accuracy of lung 
nodule biopsy were 95.8% (91/95), 95.5% (21/22), and 
95.7% (112/117), respectively. The positive and negative 
predictive values were 98.9% (91/92) and 87.5% (21/24), 
respectively, and the incidence of pneumothorax requiring 
chest tube placement was 6.8% (8/117). According to 
another meta-analysis (83), the sensitivity, specificity, 
diagnostic odds ratio, and AUC of the CT-guided 
percutaneous lung nodule biopsy were 0.91, 0.99, 138.72, 
and 0.97, respectively.

Nevertheless, false-negative results from lung nodule 
biopsies, particularly for mGGNs, can sometimes arise 
for a variety of reasons, including off-target sampling or 
failing to capture the invasiveness of the GGN (Figure 13). 
Meanwhile, bleeding (84.6%), pneumothorax (41.0%), and 
air embolism (0.9%) are among the complications of lung 
biopsy that increase medical expenses and put patients at 
risk (82). 

It is necessary to discuss the advantages and disadvantages 
of lung GGN biopsy. As current research shows, the vast 
majority of lung GGNs, which are continuously present, 
correspond to various development stages of LUAD. CT 
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plays an important role in the diagnosis of pulmonary 
GGNs, due to its high diagnostic accuracy and specificity, 
and radiomics is also excellent at predicting the invasiveness 
of GGNs (75). The integrity of the alveolar basement 
membrane and the vessel may be disrupted by biopsy for 
pGGNs. A single-center study showed Grade 1 pulmonary 
hemorrhages occurred in 10 of 92 (10.9%) procedures 
immediately after CT-guided fine needle aspiration  
biopsy (84). Pulmonary hemorrhage raises concerns about 
lesion basement membrane integrity. A key factor in 
determining the prognosis of LUAD is whether tumor cells 
invade through the basement membrane. Thus, CT-guided 
transthoracic lung biopsy might stimulate the lesion, speed 
up its progression, or even spread cancer cells (85). As a 
result, for patients with persistent GGNs, biopsy should 
be performed cautiously (Figure 10). Patients with GGNs 
who suffer from excessive anxiety may choose to engage 
in a form of mind-body exercise (e.g., Baduanjin) to help 
distract themselves, reduce their anxiety, and improve their 
lung function (86), or may ultimately choose to undergo 
thoracoscopic surgical resection to confirm the diagnosis of 
the lesion.

Discussion and outlook

According to the Fleischner guidelines, 6 mm was used as a 
cut-off value to define whether solitary GGNs require follow 
up to monitor the possibility of malignant changes (2). Mean 
CT values were used not only to predict GGN invasiveness 
but also to evaluate GGN growth (17). Previous studies 
have shown that the probability of unfavorable pathology 
types increases with an expansion in the solid component 
of a nodule (37). Further, the CTR value holds significant 
diagnostic value in determining the presence of lymph node 
metastasis, as well as the necessity and extent of lymph 
node dissection in peripheral lung cancer (39). VDT is 
used to estimate the growth rate of persistent GGNs, and 
a shorter VDT in malignant GGNs compared to benign 
lesions indicates a more histologically aggressive tumor (58). 
Malignant GGNs frequently exhibit invasive manifestations, 
such as vacuoles, air bronchus signs, tumor vascular signs, 
spicules, lobulations, and pleural depression (78,87,88). 
Among these, benign lesions typically exhibit a normal or 
dilated bronchial lumen, while malignant bronchi are often 
narrow, truncated, occluded, or twisted.

Near the hilum of the lung and superior lung lobe, 
especially the right lung, GGNs are more likely to be 
missed, and on CT images, it can be challenging for doctors 

to recognize GGNs that are overlaid with surrounding 
structures, such as the ribs, lung vessels, heart, and 
mediastinum (89), which complicates image interpretation 
and reduces diagnostic accuracy. To quantify the association 
between blood vessels and GGNs, some researchers (90) 
created a Residual U-Network (ResUNet) structure for the 
fully automated detection and quantification of vascular 
structures in GGNs. In cases in which lung nodules are 
too small, doctors may overlook them. Physician sensitivity 
is quite low when small lung nodules are present. The 
development of multi-slice CT technology and computer-
aided design tools has improved the ability of radiologists to 
identify very small pulmonary lesions (89).

A nodule’s edge characteristics can aid radiology doctors 
to better define a nodule’s nature and make a differential 
diagnosis; however, indistinct edges can also contribute 
to the identification of pulmonary nodules being ignored. 
Benzakoun et al. (91) proposed that GGO makes it 
more difficult for software to distinguish attenuation 
variations from the surrounding thin-walled tissue, which 
could complicate diagnosis. Saha et al. (92) conducted a 
study focusing on the segmentation, morphology, and 
distribution patterns of GGOs, and developed an end-to-
end unsupervised deep-learning method, PointNet++, to 
detect and quantify GGOs in the CT scans of COVID-19 
patients, achieving GGO detection with an accuracy of up 
to 98%.

At the moment, the most used technique for evaluating 
GGN features is thin-layer CT imaging. Morphologic 
features can be used to distinguish between benign and 
malignant GGNs. A single indicator is not particularly 
helpful in determining invasiveness because of its low 
sensitivity and specificity. A more promising method 
for predicting pathologic invasiveness would be to use 
combined prediction models that incorporate numerous 
variables. The prediction of GGN invasiveness has greatly 
improved with the use of AI, and column-line drawings 
based on AI have the potential to enhance diagnostic 
efficacy and support clinical GGN management (77).

Diagnostic models based on deep learning, which have 
made significant strides in image processing and diagnosis, 
can quickly identify suspicious lesions in a large number of 
CT images. This allows physicians to make more informed 
decisions, reduces workloads, and enhances the precision 
of differential diagnosis. Greffier et al. (93) discovered that 
applying AI deep-learning reconstruction methods enhances 
the contrast-to-noise ratio and lowers image noise, which 
enhances lesion identification and boosts diagnostic 
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confidence. Similarly, a related study discovered that 
using higher degrees of iterative reconstruction intensity 
led to decreased picture noise and enhanced contrast-to-
noise ratios (94), further optimizing the effectiveness of 
automated nodule recognition. Despite their benefits, to 
reach a high accuracy, models require a large amount of 
high-quality training data, most of the published studies 
lack generalization, internal work is opaque, and there 
is little information available as to how these tools affect 
radiologists’ decision making and patient prognosis. 
Further, one major problem with AI pulmonary nodule 
identification is the false-positive rate (95).

Given the high detection rate of pulmonary GGNs, it 
is encouraging that more and more significant guidelines 
and new technologies are being developed to provide 
better diagnostic and prognostic indicators. It is essential 
that the questions of how to optimize and rationally 
combine existing diagnostic tools and techniques to 
improve diagnostic sensitivity and specificity, and how to 
choose and implement therapy methods are explored and 
addressed. In the future, we anticipate that further research 
and investigations will be conducted on GGN diagnostic 
imaging (e.g., on the use and improvement of magnetic 
resonance imaging in diagnosing pulmonary GGNs) 
and molecular imaging (e.g., on the effects of contrast 
agent-carrying nanoparticle material on diagnosing the 
aggressiveness of GGNs).
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