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ABSTRACT
Background. The clumping bamboo Bambusa oldhamii Munro, known as ‘‘green
bamboo’’, is famous for its edible bamboo shoots and fast-growing timber. The green
and yellow striped-culm B. oldhamii variety, named B. oldhamii f. revolutaW.T. Lin &
J. Y. Lin, is an attractive system for researching the culm color variation of B. oldhamii.
Methods. Millions of clean reads were generated and assembled into 604,900 tran-
scripts, and 383,278 unigenes were acquired with RNA-seq technology. The quantifi-
cation of ABA, IAA, JA, GA1, GA3, GA4, and GA7 was performed using HPLC–MS/MS
platforms.
Results. Differential expression analysis showed that 449 unigenes were differentially
expressed genes (DEGs), among which 190 DEGs were downregulated and 259 DEGs
were upregulated in B. oldhamii f. revoluta. Phytohormone contents, especially GA1
and GA7, were higher in B. oldhamii. Approximately 21 transcription factors (TFs)
were differentially expressed between the two groups: the bZIP, MYB, and NF-YA
transcription factor families had the most DEGs, indicating that those TFs play
important roles in B. oldhamii culm color variation. RNA-seq data were confirmed by
quantitative RT-PCR analysis of the selected genes; moreover, phytohormone contents,
especially those of ABA, GA1 and GA7, were differentially accumulated between the
groups. Our study provides a basal gene expression and phytohormone analysis of B.
oldhamii culm color variation, which could provide a solid fundamental theory for
investigating bamboo culm color variation.

Subjects Agricultural Science, Molecular Biology, Plant Science, Forestry
Keywords Bambusa oldhamii, Culm color variation, Phytohormone, Transcription factors, MYB,
HY5, ABA, GA1, GA7, RNA-seq

INTRODUCTION
Bamboo belongs to the Poaceae subfamily Bambusoideae, comprises over 1,600 bamboo
species, and is extensively distributed in tropical and subtropical regions, such as Africa,
South America, and South Asia (Vorontsova et al., 2016). Owing to its rapid growth,
bamboo is widely used as a material in the biofuels, charcoal, timber, craft, furniture, house
building, and paper-making industries (Ramakrishnan et al., 2020). Based on the rhizome
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structure and expansion characteristics of the plant, bamboos are divided into two major
classifications: clumping bamboos (pachymorph or sympodial), such as Dendrocalamus
latiflorus, Bambusa oldhamii, and Bambusa chungii; and running bamboos (leptomorph or
monopodial), such as Phyllostachys edulis (Ramakrishnan et al., 2020), Phyllostachys vivax,
and Phyllostachys violascens (Lieurance et al., 2018).

B. oldhamii is a species of clumping bamboo known as ‘‘green bamboo’’; it is generally
distributed in the southeast of China and is famous for its delicious edible rhizome buds
(bamboo shoots, locally called ‘MaTiSun’) and fast-growing culm timber (Wu et al., 2009;
Lieurance et al., 2018). B. oldhamii is characterized by its clumping rhizome and entirely
green culm; however, a natural variety of B. oldhamii, named B. oldhamii f. revoluta W.T.
Lin & J. Y. Lin, has green and yellow striped culms. The amazing culm color variation of
B. oldhamii is of great interest. Research on color variation in bamboo is rare, but such
studies have been widely conducted on colorful trees and flowers, such as blue-petal water
lily (Nymphaea colorata) (Zhang et al., 2020), Paeonia suffruticosa (Lv et al., 2020), and
Rosa chinensis (Raymond et al., 2018).

Chlorophyll, carotenoids, anthocyanins, and betalains are major pigments that
contribute to plant colors (Grotewold, 2006). Chlorophyll can absorb sunlight for
plant photosynthesis and it is responsible for the green color of almost all green plants
(Hörtensteiner, 2009). Carotenoids are liposoluble and produce red, orange, and yellow
pigments in photoautotrophic organs in plants (Stanley & Yuan, 2019). Anthocyanins are
water soluble and less stable than carotenoids, and they cause flower and fruit colors ranging
from shiny orange to pink and red to blue (Castañeda Ovando et al., 2009). Betalains are
water soluble and indole-derived glycoside pigments discovered in the Caryophyllales order
and Basidiomycota phylum; they comprise red to red-violet betacyanins and yellow-orange
betaxanthins (Azeredo, 2009).

The plant hormones abscisic acid (ABA) and jasmonic acid (JA) could promote
anthocyanin biosynthesis, while auxin and gibberellin (GA) could inhibit anthocyanin
biosynthesis (Jaakola, 2013). Abscisic acid (ABA) treatment can increase anthocyanin
accumulation in berry peels, and upregulate the expression of MYB113-like, bZIP42-like,
and UGT85A2-like genes (Saito et al., 2018). JA treatment could increase chlorophyll and
carotenoid accumulation (Poonam, Kaur & Geetika, 2013). JA treatment causes senescence
symptoms with visible yellowing in Arabidopsis (He et al., 2002). The accumulation of
anthocyanins is suppressed by auxin (Jeong et al., 2004). The plant hormone gibberellin
(GA) can influence plant growth, germination, elongation, and flower development
(Schwechheimer, 2012). GA3 increased vegetative growth and delayed fruit ripening time
(Zang et al., 2016). Treatment with ABA and GA3 could increase the content of total
chlorophyll, chlorophyll a, chlorophyll b, and carotenoids (Gomathinayagam et al., 2009).

The colorful flowers and fruits of the majority of plants are generated from the
accumulation and balance of chlorophyll, carotenoids, and anthocyanins, even though each
pigment has unique biosynthesis, regulation, and degradation pathways. Anthocyanins
are flavonoids that play multiple roles in plant environmental stress responses, plant
development, and food additives (Winkel-Shirley, 2001). The clade of R2R3-MYB
transcription factors can increase anthocyanin production in tobacco and apples
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(Allan, Hellens & Laing, 2008). In apples, a cold-induced bHLH transcription factor,
MdHLH3, can interact with its MYB partner to regulate the expression of anthocyanin
biosynthesis genes MdDFR and MdUFGT and influence fruit coloration (Xie et al., 2012).
MBW (MYB-bHLH-WDR) complexes can control flavonoid biosynthesis by regulating
late biosynthetic gene expression (Xu, Dubos & Lepiniec, 2015).

The genome size of B. oldhamii was measured (Zhou et al., 2017), and the chloroplast
genome size was found to be 139,350 bp (Wu et al., 2009). Phenylalanine ammonia-lyase
(PAL) is a key enzyme in phenylalanine metabolism, phenylpropanoid biosynthesis,
metabolic pathways, and the biosynthesis of secondary metabolites, and PAL influences
the biosynthesis of lignins, alkaloids, flavonoids, and anthocyanins. The BoPAL gene was
isolated from B. oldhamii and it has similar biochemical properties to those of PALs from
other plants (Hsieh et al., 2010a;Hsieh et al., 2010b;Hsieh et al., 2011). RNA-seq technology
changed the method of studying the transcriptome and exploring gene structure and
expression (Shendure, 2008; McIntyre et al., 2011). In this paper, RNA-seq technology was
applied to investigate the culm color variation of B. oldhamii. Key differentially expressed
genes and transcription factors were discovered by comparing culm skin samples between
B. oldhamii and B. oldhamii f. revoluta. Our results provide scientific and theoretical
implications for understanding bamboo culm color variations.

MATERIALS AND METHODS
Plant materials
The middle and lower culm internode epidermis samples that were removed from
B. oldhamii (LZ) were labeled LZ_1, LZ_2, and LZ_3, and those from B. oldhamii f.
revolutaW.T. Lin & J. Y. Lin (HLZ) were labeled HLZ_1, HLZ_2, and HLZ_3, representing
three biological replicates of each type of bamboo. The culm skin samples were frozen in
liquid nitrogen immediately for further phytohormone detection, RNA-seq, and relative
gene expression. Total RNA was isolated using plant RNA isolation kits (Tiangen Biotech,
Beijing, China).

Library construction and sequencing
Library construction and sequencing steps were performed based on the Illumina
HiSeq platform for RNA-seq protocols (https://www.illumina.com) at Wuhan Metware
Biotechnology Co., Ltd. (Wuhan, China). The output data contained raw reads in fastq
format, that were then processed for quality control, including filtering and trimming of
low confidence bases, biased nucleotide composition, adapters, duplicates and low-quality
reads to acquire clean reads. Trinity (2.6.6) (Grabherr et al., 2011) and Corset (1.07)
(Davidson & Oshlack, 2014) were used to assemble the clean data and process the transcript
cluster analysis, and the longest transcripts in each cluster were filtered out as unigenes. All
of the following analyses were performed using unigene sequences.

Gene annotation
Nr (NCBI nonredundant protein sequences), Pfam (Protein family), KOG (Protein family),
Swiss-Prot, Trembl, KEGG (Kyoto Encyclopedia of Genes and Genomes), and GO (Gene
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Ontology) were used for gene annotation. The Nr, KOG, Swiss-Prot, Trembl, KEGG,
and GO annotations were performed using BLAST (v2.7.1) with an e-value = 1e−5, and
the Pfam annotation was performed using the hmmscan command of the HMMER 3.2
package with e-value = 0.01. Transcription factor annotation was performed with iTAK
(1.7a) (Zheng et al., 2016) with default parameters.

Gene expression analysis
We used the assembled transcriptome of Trinity as a reference and then mapped the clean
reads of each sample to the reference with RSEM software. FPKM (Fragments Per Kilobase
of transcript per Million fragments mapped) values were calculated to estimate gene
expression and abundance after normalization of the mapped reads and transcript lengths.
The R package Pheatmap was used to draw a heatmap with normalized log2(FPKM+1)
data and clusters of expression patterns with kmeans_k = 10. The color from red to blue
indicates gene expression from high to low.

Differential expression analysis
After acquiring the abundance information and performing normalization, gene expression
between the groups was compared. DESeq2 (1.22.2) was used to calculate the differentially
expressed genes between the LZ and HLZ groups, which were corrected with FDR (False
Discovery Rate) by Benjamini–Hochberg methods. Differentially expressed genes were
filtered with the condition of |log2(Fold Change)| ≥ 1 and FDR < 0.05.

Validation of RNA-seq analysis via qRT-PCR
The RNA-seq results were validated for selected genes using qRT-PCR assays. cDNA was
synthesized with HiScript R© II Q RT SuperMix for qPCR (Vazyme, China). Quantitative
Real-TimePCR (qRT-PCR)was performedon aLightCycler R© 480 II Real-TimePCR system
(Roche International Diagnostics system, Switzerland) using the Unique AptamerTM qPCR
SYBR R© GreenMasterMix. The components of the qRT-PCRwere as follows: SYBR Premix
Ex Taq (2x) (10 µl), forward primers (0.5 µM), reverse primers (0.5 µM), cDNA template
(2 µl), and ddH2O to 20 µl. Then, qRT-PCR was performed as follows: initial denaturation
at 95 ◦C for 5 min; 40 cycles of denaturation at 95 ◦C for 10 s and annealing at 72 ◦C; and
finally, steps for melt-curve analysis (95 ◦C for 15 s, 60 ◦C for 60 s, 95 ◦C for 15 s). Actin
was used as the internal control (Zeng et al., 2015; Table S1), and relative expression was
calculated with the 2−11CT method (Livak & Schmittgen, 2001).

Detection of phytohormone contents
The quantification of endogenous abscisic acid (ABA), auxin (indole-3-acetic acid, IAA),
jasmonic acid (JA), and gibberellic acid (GA1, GA3, GA4, and GA7) was performed by
Genepioneer Biotechnologies Co., Ltd. (Nanjing, China) using anHPLC–MS/MS platform.

Statistical analysis
The enrichment of up- and downregulated genes was determined using GOseq and
KOBAS (Mao et al., 2005). The cor.test function was used to calculate the correlation
between phytohormone contents and gene expression within the corresponding periods.
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Figure 1 The bamboo of Bambusa oldhamii. (A) A clumping forest of Bambusa oldhamii, (B) an en-
tirely green culm of Bambusa oldhamii (LZ), (C) a green culms with yellow stripes of Bambusa oldhamii f.
revoluta (HLZ).

Full-size DOI: 10.7717/peerj.12796/fig-1

Bar chart data of the phytohormone contents are reported as the mean ± SEM (n= 9)
with a significant difference (p< 0.05) according to unpaired t -tests.

RESULTS
Plant materials
B. oldhamii (LZ) is a species of clumping bamboo (Fig. 1) and it has entirely green culms.
The B. oldhamii variety referred to as B. oldhamii f. reboluta W.T. Lin & J. Y. Lin (HLZ)
has green culms with yellow stripes of random widths. The culm skin was removed from
LZ and HLZ to research the correlation of culm color variation on the phytohormone
contents and gene expression levels.

Transcriptome sequences and data output
Total RNA was isolated from the culm epidermis samples of B. oldhamii with three
biological replicates marked LZ_1 - LZ_3 and from B. oldhamii f. revoluta with three
biological replicates marked HLZ_1 - HLZ_3. After the cDNA library was constructed
and sequenced, approximately 282 million raw sequence reads were obtained from the
RNA-seq experiment, and 267 million clean sequence reads remained after filtering with a
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Table 1 The read statistics of the data output and quality control.

Sample Raw
reads

Clean
reads

Clean
base(G)

Error
rate(%)

Q20(%) Q30(%) GC
content(%)

HLZ_1 51366578 47374034 7.11 0.02 98.56 95.33 51.4
HLZ_2 48793904 46491202 6.97 0.02 98.46 95.15 52.13
HLZ_3 44892558 43124866 6.47 0.02 98.57 95.4 52.72
LZ_1 48657910 46863938 7.03 0.02 98.4 94.99 52.72
LZ_2 46541436 43510176 6.53 0.02 98.47 95.22 52.19
LZ_3 42360436 40385740 6.06 0.02 98.63 95.6 52.29

Table 2 Statistics of assembly transcripts and unigenes.

Type Number Mean
length

N50 N90 Total Bases

Transcript 604,900 670 1,033 264 405,044,455
Unigene 383,278 906 1,221 433 347,398,391

Q20 above 98% after quality control was performed. The error correction and GC content
are shown as follows (Table 1).

De novo assembly
The clean data were used for de novo assembly with Trinity (Grabherr et al., 2011), and
overall, 604,900 transcripts and 383,278 unigenes were generated (Table 2). The average
length of the transcripts was 670 bp, with an N50 of 1,033 bp and an N90 of 264 bp. Most
(80%) of the transcripts were between 200 and 1,000 bp, while the remaining 20% of the
transcripts had a length longer than 1,000 bp. The average length of the unigenes was 906
bp, with an N50 of 1,221 bp and an N90 of 433 bp. About 70% of the unigenes were shorter
than 1,000 bp, while the remaining 30% of the unigenes were longer than 1,000 bp.

Gene annotation and functional classification
All of the unigenes were annotated using seven databases (Table 3) (https://doi.org/10.
6084/m9.figshare.16912324). The annotation results produced 38.64%, 70.18%, 44.92%,
69.23%, 40.03%, 57.24%, and 47.26% unigenes annotated in the KEGG, NR, SwissProt,
Trembl, KOG, GO, and Pfam databases, respectively. Approximately 274,681 unigenes
were annotated in at least one database.

The unigenes annotated with GO functions were assigned to three main ontologies:
molecular function (MF), cellular component (CC), and biological process (BP).
The terms cellular process (GO:0009987), metabolic process (GO:0008152), biological
regulation (GO:0065007), and response to stimulus (GO:0050896) were the most common
BP ontologies; the terms cell (GO:0005623), cell part (GO:0044464), and organelle
(GO:0043226) were the most common CC ontologies; and binding (GO:0005488),
catalytic activity (GO: 0003824), transporter activity (GO:0005215), and transcription
regulator activity (GO:0140110) were the most commonMF ontologies (Fig. 2A; Table S2).
The unigenes with KOG annotation were categorized as posttranslational modification,
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Table 3 Unigenes annotation statistics across seven databases.

Database Number
of genes

Percentage (%)

KEGG 148104 38.64
NR 268986 70.18
SwissProt 172168 44.92
Trembl 265339 69.23
KOG 153428 40.03
GO 219395 57.24
Pfam 181140 47.26
Annotated in at least one Database 274681 71.67
Total Unigenes 383278 100

protein turnover, and chaperones; signal transduction mechanisms; translation, ribosomal
structure and biogenesis; energy production and conversion; transcription; intracellular
trafficking, secretion, and vesicular transport (Fig. 2B; Table S3). The majority of the
annotated genes were characterized as ribosome pathway (ko03010) (1,841), glyoxylate
and dicarboxylate metabolism (ko00630) (1,778), metabolic pathways (ko01100) (1,774),
biosynthesis of secondary metabolites (ko01110) (1,768), oxidative phosphorylation
(ko00190) (1,764), phenylpropanoid biosynthesis (ko00940) (1,755), carbon metabolism
(ko01200) (1,742), glycolysis/gluconeogenesis (ko00010) (1,723), MAPK signaling
pathway-plant (ko04016) (1,720), biosynthesis of amino acids (ko01230) (1,714), and
pyruvate metabolism (ko00620) (1,710) (Table S4).

Expression patterns of differentially expressed genes (DEGs)
Differential expression analysis between the LZ and HLZ groups revealed 449 differentially
expressed genes; approximately 190 DEGs were downregulated in the HLZ group, and
259 DEGs were upregulated in HLZ group. The downregulated genes in HLZ were
classified into 10 clusters (Fig. 3A; Table S5). The results showed that cluster 2 included
1 gene (unigene-21666.123476) annotated with metallothionein that was highly expressed
in all six samples, and cluster 1 included 8 genes that were more highly expressed
in LZ samples. unigene-21666.69211 (mitogen-activated protein kinase kinase kinase
ANP1), unigene-21666.134631 (SAUR family protein), unigene-21666.128797 (EREBF-like
factor), and others without a specific annotation were included. The upregulated genes
in HLZ were classified into 10 clusters (Fig. 3B; Table S6), where cluster 5 included 2
genes, and cluster 1 contained 9 genes that might play a vital role, including unigene-
21666.113648 (phenylalanine ammonia-lyase), unigene-21666.90795 (phenylalanine
ammonia-lyase); unigene-21666.169778 (serine/threonine-protein kinase PBS1), unigene-
21666.167280 (granule-bound starch synthase), unigene-21666.149531 (acyl-[acyl-carrier-
protein] desaturase), unigene-21666.125526 (anthranilate O-methyltransferase), unigene-
21666.107961 (serine/threonine-protein kinase PBS1), and others without specific
annotations (Fig. 3). Random DEGs were chosen for qRT-PCR analysis to validate the
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Figure 2 The GO and KOG functional classification of all unigenes. (A) The GO functional classifica-
tion, (B) the KOG functional classification.

Full-size DOI: 10.7717/peerj.12796/fig-2

accuracy of the RNA-Seq data results. The relative expression results showed a strong
correlation between the RNA-Seq and qRT-PCR data (Fig. 4; Table S7).

Functional classification of all DEGs
All 449 DEGs were processed for GO, KOG, and KEGG classification. The cellular process
(GO:0009987), metabolic process (GO:0008152), response to stimulus (GO:0050896),
and biological regulation (GO:0065007) terms were the most common BP ontologies;
cell (GO:0005623), cell part (GO:0044464), organelle (GO:0043226), and membrane
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Figure 3 The cluster expression patterns of DEGs between HLZ and LZ. (A) The clusters expression
patterns of downregulated DEGs in HLZ samples. (B) the clusters expression patterns of upregulated
DEGs in HLZ samples. The size indicates the number of unigenes in each cluster.

Full-size DOI: 10.7717/peerj.12796/fig-3

Figure 4 Validation of the RNA-Seq data by qRT-PCR. The green line indicates the RNA-Seq expression
data, and the dark yellow bars indicate the qRT-PCR results.

Full-size DOI: 10.7717/peerj.12796/fig-4
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(GO:0016020) were the most common CC ontologies; and binding (GO:0005488) and
catalytic activity (GO:0003824) were the most common MF ontologies (Fig. 5A; Table S8).
For the KOG classification, the majority of the DEGs were involved in signal transduction
mechanisms, followed by posttranslational modification, protein turnover, chaperones,
transcription, translation, ribosomal structure, and biogenesis (Fig. 5B; Table S9). Based
on the KEGG classification results, the DEGs were mostly involved in metabolic pathways
(ko01100), followed by biosynthesis of secondary metabolites (ko01110) and plant-
pathogen interactions (ko04626) (Fig. 5C).

Functional enrichment of up- and downregulated DEGs
Differential expression analysis between the LZ and HLZ groups showed that 190 and 259
DEGs were down- and upregulated in the HLZ culm skin samples. The GO functional
enrichment revealed that the downregulated DEGs were more enriched in monocarboxylic
acid transport (GO:0008028), transporter complex (GO:1990351), transmembrane
transporter complex (GO:1902495), replication fork (GO:0005657), organelle envelope
lumen (GO:0031970), lipid transporter activity (GO:0005319), and monocarboxylic acid
transmembrane transporter activity (GO:0008028) (Fig. S1; Table S10).

The upregulated DEGs were more enriched in biological processes and molecular
functions. In particular, the top three terms were L-phenylalanine metabolic process
(GO:0006558), L-phenylalanine catabolic process (GO:0006559), and entrainment of
the circadian clock (GO:0009649), followed by photoreceptor activity (GO:0009881),
phenylalanine ammonia-lyase activity (GO:0045548), NAD(P)H dehydrogenase (quinone)
activity (GO:0003955), and carbon-nitrogen lyase activity (GO:0016840) (Fig. S2;
Table S11).

The downregulated DEGs were enriched in the alpha-linolenic acidmetabolism pathway
(ko00592) (Fig. S3), and the upregulated DEGs were enriched in the unsaturated fatty acids
biosynthesis (ko01040), linoleic acid metabolism (ko00591), biosynthesis of secondary
metabolites (ko01110), phenylpropanoid biosynthesis (ko00940), and phenylalanine
metabolism (ko00360) pathways (Fig. S4).

Phytohormones control culm color variation
To reveal how phytohormones control culm color variation in B. oldhamii, the content
of endogenous abscisic acid (ABA), auxin (indole-3-acetic acid, IAA), jasmonic acid (JA),
and gibberellic acid (GA1, GA3, GA4, and GA7) was detected (Fig. 6A). The majority of
phytohormones were highly accumulated in LZ, especially GA1 and GA7, which were
significantly accumulated in LZ; the contents of ABA were relatively highly accumulated
in HLZ (Fig. 6A; Table S12). The phytohormones of GA1, GA7 and ABA were choosen for
further study, and the relationship between phytohormones (ABA, GA1, andGA7) and gene
expressionwas analyzedwith corresponding samples. Therewere 18 geneswhose expression
was significantly related to ABA accumulation patterns (Table S13), while 35 and 91 genes
were significantly related to GA1 (Table S14) and GA7 (Table S15) accumulation patterns
respectively. The genes significantly related to ABA,GA1 andGA7 weremore enriched in the
GO terms of chloride channel complex (GO:0034707), ion channel complex (GO:0034702),
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Figure 5 The GO, KOG, and KEGG functional classifications of all DEGs between LZ and HLZ culm
skins. (A) The GO functional classification, (B) the KOG functional classification, (C) the KEGG func-
tional classification.

Full-size DOI: 10.7717/peerj.12796/fig-5
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Figure 6 Phytohormones conduct culm color variation in bamboos. (A) The differences in phytohor-
mone contentss between LZ and HLZ, (B) The GO functional enrichment of genes significantly related to
ABA, GA1, and GA7, (C) The KEGG functional enrichment of genes significantly related to ABA, GA1, and
GA7 , (D) The expression heatmap of the genes significantly related to ABA, GA1, and GA7.

Full-size DOI: 10.7717/peerj.12796/fig-6

protein kinase complex (GO:1902911), transporter complex (GO:1990351), anion channel
activity (GO:0005253), chloride channel activity (GO:0005254), phosphatidylinositol
bisphosphate binding (GO:1902936), and phosphatidylinositol-3,5-bisphosphate binding
(GO:0080025) (Fig. 6B; Table S16). All the genes significantly related to ABA, GA1 and
GA7 were also enriched in the circadian rhythm (plant) pathway (ko04712) (Fig. 6C;
Table S17). In the circadian rhythm (plant) pathway, the bZIP transcription factor HY5
(unigene-21666.126192 and unigene-21666.239597) and protein FLOWERING LOCUS T
(FT ) (unigene-54902.0) were up-regulated. Moreover, the expression of genes significantly
related to ABA, GA1 and GA7 showed that unigene-21666.90795 (phenylalanine/tyrosine
ammonia-lyase, PTAL) was relatively highly expressed in HLZ (Fig. 6D). The gene of PTAL
is a crucial gene in phenylalanine metabolism and phenylpropanoid biosynthesis pathway
which might conduct bamboo culm color variation.
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Differentially expressed transcription factors
Differentially expressed transcription factors were filtered out of the annotated unigenes. A
total of 21 differentially expressed transcription factors were identified (Fig. 7; Table S18).
The genes unigene-21666.57044 (bHLH), unigene-21666.218036 (MYB-related), and
unigene-21666.41135 (SBP) were not detected in the HLZ samples and were only detected
in the LZ samples. bHLH transcription factors can interact with MYB transcription
factors to regulate anthocyanin biosynthesis (Hichri et al., 2010). However, unigene-
21666.194872 (FAR1), unigene-21666.98709 (MADS-M-type), unigene-21666.139384
(MYB), and unigene-21666.212035 (TRAF) were not detected in the LZ samples and
were only detected in the HLZ samples. MADS-box transcription factors are involved in
flower promotion and development, and simultaneous death usually follows after mass
production of bamboo flowers (Abe, Miguchi & Nakashizuka, 2001). Four genes belonged
to the bZIP transcription factor family, among which three genes (unigene-21666.126192,
unigene-21666.239597, and unigene-43769.0) were annotated as the transcription factor
HY5. The target genes of HY5 participate in many biological signaling processes, such as
light signaling, circadian clock, anthocyanin biosynthesis, and chlorophyll biosynthesis
(Gangappa & Botto, 2016). HY5 could induce the expression of the structural genes CHS
(chalcone synthase), CHI (chalcone isomerase), and FLS (flavonol synthase) to regulate
anthocyanin biosynthesis (Gangappa & Botto, 2016). There were three genes (unigene-
21666.139348, unigene-21666.15994, and unigene-61591.0) that were members of the
MYB transcription factor family. MYB transcription factors could regulate anthocyanin
biosynthesis (Wang et al., 2019) and combine with other transcription factors to form
MYB-bHLH-WDR complexes to regulate flavonoid biosynthesis (Xu, Dubos & Lepiniec,
2015).

DISCUSSION
Chlorophyll is a natural green pigment, and during green plant senescence, chlorophyll
breakdown leads to a decrease in green color (Hörtensteiner, 2009). In the ripening
phase of many fruits, such as tomato and banana, the color variation is caused by the
massive degradation of chlorophyll. The unigene-21666.231610 gene is upregulated in
the photosynthesis pathway and was annotated as psbP (photosystem II oxygen-evolving
enhancer protein 2). The psbP protein is required for the photosystem II complex and
normal thylakoid architecture in Arabidopsis thaliana (Yi et al., 2007; Yi et al., 2009). The
unigene-54902.0 (FT ) gene is upregulated in the circadian rhythm (plant) pathway. The FT
gene (FLOWERINGLOCUST), amobile stimulus expressed in leaves and then translocated
to the shoot apex, is essential for floral induction in Arabidopsis (Liu, Zhang & Yu, 2020).
The MADS-box transcription factor unigene-21666.98709 (MADS-M-type) is relatively
highly expressed in HLZ. MADS-box genes are essential for flower induction, promotion,
and maturation (Theißen, 2001). The reproductive cycle of bamboo varies from 3 to 120
years (Janzen, 1976). Mass flowering in some bamboos is usually followed by simultaneous
death at some levels (Abe, Miguchi & Nakashizuka, 2001; Miyazaki et al., 2009). Flowering
is a hallmark event in the bamboo life cycle, followed by senescence (Marchesini, Sala &
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Figure 7 Differentially expressed transcription factors between LZ and HLZ.
Full-size DOI: 10.7717/peerj.12796/fig-7

Austin, 2009). The decreased chlorophyll contents and increased FT and MADS-box gene
expression levels revealed that the culm color variation of B. oldhamii might be related to
the bamboo flowering trends.

ABA contents were higher in HLZ with green and yellow striped culms in our study.
Exogenous ABA could promote the accumulation of anthocyanins in Lycium fruits, and
the structural genes involved in the flavonoid biosynthetic pathway were upregulated by
ABA treatment (Li et al., 2019). The application of ABA could influence the expression
of R2R3 MYB and the bHLH family (Li et al., 2019). The transcription of structural
anthocyanin biosynthesis genes is regulated by MYB-bHLH-WD40 complexes (Jaakola,
2013). In Prunus avium L., ABA treatment could influence the expression of PacMYBA
and induce anthocyanin accumulation (Shen et al., 2014). The GA1 and GA7 contents
were significantly higher in LZ with green culms. Gibberellins delayed both chlorophyll
depletion and total carotenoid accumulation (Alós et al., 2006). GA1 and GA 7 delayed
fruit coloration in the flavedo of ‘Washington’ navel sweet orange when girding the fruit
peduncle (Gambetta et al., 2012). GA3 delayed flavedo chlorophyll degradation and delayed
fruit color break by reducing β-cryptoxanthin and β-citraurin biosynthesis (Gambetta et
al., 2014).
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The bZIP transcription factor HY5 can transmit blue light signaling to the circadian
rhythm pathway by binding to the promoter of circadian regulated genes (Lee et al., 2007;
Hajdu et al., 2018). In Arabidopsis, circadian rhythm pathway genes can synchronize light
signals to regulate reproductive growth (Andronis et al., 2008). The HY5 gene not only
regulates light signaling and circadian clock pathways but also regulates anthocyanin
biosynthesis, chlorophyll biosynthesis, and hormone signaling pathways (Gangappa &
Botto, 2016). Carotenoids produce red, orange, and yellow colors in plants (Stanley &
Yuan, 2019). The hormone ABA needs carotenoids as precursors in its synthesis (Fang
et al., 2008). HY5 binds to the promoter of ABI5 and mediates ABA responses (Chen et
al., 2008). HY5 also binds to the promoter of the R2R3-MYB transcription factor PAP1
to regulate anthocyanin biosynthesis. Three unigenes were annotated as HY5, among
which unigene-21666.126192 and unigene-43769.0 were relatively more highly expressed
in HLZ, and unigene-21666.239597 was relatively more highly expressed in LZ. These
results indicated that bZIP transcription factors play important roles in bamboo culm
color variation.

MYB transcription factors with a highly conserved DNA-binding domain consist of
four imperfect amino acid sequence repeats (R). These proteins are usually divided into
four classes: (1) R2R3-MYB, (2) 1R-MYB, MYB-related, and others, (3) 3R-MYB, and (4)
4R-MYB (Dubos et al., 2010). Among the plant MYB transcription factors, R2R3-MYB is
the most common and is involved in the regulation of flavonoid biosynthesis (Chen et al.,
2006; Stracke et al., 2007). Flavonoid-based pigments are produced in the phenylpropanoid
pathway.MYB transcription factors can interact with other transcription factors or proteins
to form a complex to regulate the phenylpropanoid pathway (Morita et al., 2006). Three
MYB genes were highly expressed in HLZ culm skin samples, and the MYB-related gene
unigene-21666.218036 is relatively highly expressed in LZ samples. In kiwifruit, AcMYB123
and AcHLH42 can interact with each other to activate anthocyanin biosynthesis genes
(Wang et al., 2019).

The family of Basic Helix-Loop-Helix (bHLH) transcription factors contains
approximately 60 conserved amino acid domains that bind to the promoter of E-box
cis-elements to regulate downstream genes (Toledo-Ortiz, Huq & Quail, 2003; Hichri et
al., 2011), and they play multiple roles in plant development (Hichri et al., 2011). In
Arabidopsis, bHLH proteins are involved in flavonoid metabolism and modify seed
pigmentation (Nesi et al., 2000). In grapevine, the bHLH transcription factor MYC1
can physically interact with MYB5a, MYB5b, MYBA1/A2, and MYBPA1 to induce
transcription from the promoters of flavonoid pathway genes involved in anthocyanin and
proanthocyanidin (PA) synthesis (Hichri et al., 2010). Flavonoid biosynthesis is controlled
by MYB-bHLH-WDR complexes and is regulated by hormones, the environment, and
development (Xu, Dubos & Lepiniec, 2015). Only one bHLH transcription factor, unigene-
21666.57044, was differentially expressed. These results demonstrate that MYB and bHLH
transcription factors could regulate the color variation of bamboos. However, how the
crosstalk among the transcription factors and hormone regulation influences color variation
still needs further investigation.

Jiao et al. (2022), PeerJ, DOI 10.7717/peerj.12796 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.12796


CONCLUSIONS
This paper focused on investigating the culm color variation of the clumping bamboo
B. oldhamii via combined RNA-seq and endogenous phytohormone content variation
analyses. The results showed that bZIP, MYB, HY5, and other differentially expressed
transcription factors play a role in B. oldhamii culm color variation. Moreover,
phytohormone contents, especially GA1 and GA 7, were more highly accumulated in LZ,
but many flower-regulated genes were more highly expressed in HLZ, which indicates that
HLZmay flowermore rapidly than LZ and that the senescence pathwaysmay be involved in
bamboo culm color variation. The transcription factors HY5, MYB, and bHLH participate
in culm color variation by regulating pigment biosynthesis pathways to cause bamboo
culm color variation, but how the regulatory pathways between transcription factors and
phytohormones influence culm color variation still needs to be deeply investigated.
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