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The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a
variety of critical signaling pathways and promotes the malignant progression of cancer.
The success rate of cancer therapy through targeting single molecule of this crosstalk
may be extremely low, whereas co-targeting multiple components could be complicated
design and likely to have more side effects. The six members of cellular communication
network (CCN) family proteins are scaffolding proteins that may govern the TME, and
several studies have shown targeted therapy of CCN family proteins may be effective for
the treatment of cancer. CCN protein family shares similar structures, and they mutually
reinforce and neutralize each other to serve various roles that are tightly regulated in a
spatiotemporal manner by the TME. Here, we review the current knowledge on the
structures and roles of CCN proteins in different types of cancer. We also analyze
CCN mRNA expression, and reasons for its diverse relationship to prognosis in different
cancers. In this review, we conclude that the discrepant functions of CCN proteins in
different types of cancer are attributed to diverse TME and CCN truncated isoforms,
and speculate that targeting CCN proteins to rebalance the TME could be a potent
anti-cancer strategy.

Keywords: CCN proteins, isoforms, targeted therapy, tumor microenvironment, pan-cancer

Abbreviations: Cancer types: ACC, adrenocortical carcinoma; AML, acute myeloid leukemia; BLCA, bladder urothelial
carcinoma; BRCA, breast invasive carcinoma; CESC, cervical and endocervical cancers; CHOL, cholangiocarcinoma; COAD,
colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM,
Glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney
renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; AML, Acute Myeloid Leukemia; LGG, brain lower
grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; MESO, mesothelioma; OV, ovarian
serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD,
prostate adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT,
testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma;
and UVM, uveal melanoma. Other abbreviations: TME, tumor microenvironment; CCN cellular communication network;
CCN1/CYR61, cysteine-rich 61; CCN2/CTGF, connective tissue growth factor; CCN3/NOV, nephroblastoma overexpressed;
CCN4/WISP-1, Wnt1-inducible signaling pathway proteins 1; CCN4/WISP-2, Wnt1-inducible signaling pathway proteins
2; CCN4/WISP-3, Wnt1-inducible signaling pathway proteins 3; TCGA, The Cancer Genome Atlas; IGFBP, insulin-like
growth factor-binding protein; VWC, Von Willebrand factor type C; BMPs, bone morphogenic proteins; TSP-1, The
thrombospondin type 1 repeat; VEGF, vascular endothelial growth factor; HSPGs, heparan sulfate proteoglycans; CT,
carboxyterminal; EMT, epithelial-mesenchymal transition.
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INTRODUCTION

Cancer is the second leading cause of death in the United States
and is becoming a major public health problem and central
focus of modern medical research in China (Arbyn et al.,
2020). Although early diagnosis and surgical resection are
primary anti-tumor strategies, the prognosis of cancer patients
remain generally dismal, with unfavorable outcomes attributed
to the high frequency of tumor recurrence, metastasis and
therapeutic resistance (Winkler et al., 2020). Therefore,
continued identification of new molecules for the development
of molecular targeted therapy is still urgently needed (Jiang
et al., 2019). An increasing body of research suggests that
crosstalk between tumor cells and the tumor microenvironment
(TME), including revascularization, immune tolerance,
fibrotic components and many cytokines, trigger a variety
of critical signaling pathways and promotes the malignant
progression of cancer in an integrated manner. Thus, the
efficacy of targeting single molecule in cancer therapy may
be low, whereas combination therapy could be more benefit
for human cancers (Palmer and Sorger, 2017). Here, we
present a scaffolding-like protein family that can bind with
a variety of molecules and exhibit a multi-target regulatory
effects through orchestrating the TME and intracellular
signaling pathways.

Cellular communication network (CCN) family are
scaffolding proteins that may govern and balance the
interconnection among individual signaling pathways.
CCN proteins, first described in 1993, are a six-member
family of cysteine-rich regulatory proteins that exist only in
vertebrates, including CCN1 (cysteine-rich 61, CYR61), CCN2
(connective tissue growth factor, CTGF), CCN3 (nephroblastoma
overexpressed, NOV), CCN4 (Wnt1-inducible signaling pathway
proteins, WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). CCN
proteins do not behave like individual cytokines in that they do
not perform a single function but instead coordinate in various
functions of extracellular and intracellular proteins (Perbal,
2018). All CCN proteins serve as extracellular, cytoplasmic and
nuclear proteins in their full-length and/or truncated forms
and play key roles in regulating tumor cellular function and
crosstalk with the TME (Brigstock, 2003). Thus, targeting CCN
proteins expression hold promise for remodeling the TME and
rebalancing intracellular signaling pathways (Jun and Lau, 2011;
Jia et al., 2016).

Although CCN proteins were discovered three decades ago,
they have not received widespread interest, and their roles and
modes of action in human cancers are still ambiguous. CCN
protein members always appear to have paradoxical effects across
different types of cancer (Li et al., 2016) and even within the
same cancer (Kleer, 2016), and which were often due to the
diverse TME. Thus, summative work and further investigations
are urgently needed to dissect the actions of CCN proteins
considering the diverse TME and their multifunctional domains.
Here, we review the current knowledge on the structures and
roles of CCN proteins in different types of cancer. We also
analyze CCN mRNA expression, its relationship to prognosis,
and its isoforms in pan-cancer based on The Cancer Genome

Atlas (TCGA) using the bioinformatics tool GEPIA2 (Tang
et al., 2019). We conclude that the contradictory nature of the
biological properties of CCN proteins in cancer are attributed
to their multiple functional domains, which allow them to
act as multifunctional regulators in the TME and cancer
signaling pathways, and speculate that targeting CCN proteins
could be a potent anti-cancer strategy, and the efficacy of
which is orchestrated by the different location and existence of
diverse ligands.

STRUCTURES AND FUNCTIONS OF
FULL-LENGTH CCN PROTEINS IN
CANCER

CCN proteins are secreted proteins, with full-length CCN
proteins consisting of a signal peptide for extracellular release
followed by four structural domains (with CCN5 lacking the
CT domain): IGFBP, VWC, TSP-1, and CT (Perbal and Perbal,
2016). Prototypic CCN proteins are encoded by five exons. Exon
1 encodes a signal peptide, and exons 2– 5 encode IGFBP, VWC,
TSP-1, and CT modules, respectively. CCN proteins exhibit
similar structure with 60% amino acid homology, and share
a series of 38 cysteine residues that are strictly conserved in
position and number. Owing to the signal peptide, CCN proteins
are characteristically expressed in the cytoplasm and accumulate
in the external environment in the form of paracrine. Their
four discrete functional domains determine the types of binding
ligands with which they interact, including diverse integrins,
HSPGs, IGFs, TGFβ, VEGF, and LRPs et al., resulting in a variety
of biological functions of full-length CCN proteins (Perbal, 2004;
Figure 1).

CCN proteins are multifunctional regulatory molecules in
the TME that are involved in many vital biological functions,
including angiogenesis, fibrosis, tissue regeneration and repair,
and cancer (Yeger and Perbal, 2016). The diverse functions
of CCN proteins in the TME are attributed to their modular
structural features, which allow binding and interactions with
well-known functional ligands (Holbourn et al., 2009). CCN
proteins also serve as cytoplasmic and nuclear proteins in their
truncated forms and play key roles in regulating tumor cellular
function. Thereof, CCN proteins physically located at the center
of communication network and exhibit diverse functionalities
(Perbal, 2019).

Multi-Domain Structure of Full-Length
CCN Proteins
IGFBP Domain in CCN Proteins
The insulin-like growth factor-binding protein (IGFBP) domain
of CCN proteins is found in every CCN family members, and
shares strong sequence homology to the N-terminal domain of
traditional IGFBPs, which bind to and influence the actions of
IGFs (Perbal, 2018). Although its IGF binding ability is lower
than that of full-length IGFBPs, the IGFBP domain of CCN3
reduces activation of IGF1-IGF1R signaling in inflammatory
breast cancer, and downregulation of CCN6 enhances the effects
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FIGURE 1 | Structure of CCN proteins. Schematic of four conserved functional domains coded by associated exons. CCN proteins could serve different functions
via interactions with a variety of cell surface receptors and extracellular ligands (e.g., integrins, HSPGs, LRPs, TGFβ, VEGF, and PDGF).

of IGF1 on growth, motility, and invasiveness (Kleer et al., 2004;
Zhang et al., 2005). Repudi et al. (2013) reported that CCN6
not only co-localizes with IGF1 but also blocks IGF1 secretion.
Different CCN family members exhibit diverse IGF binding
ability, in CCN3, the IGFBP domain cannot substitutes for the
IGFBP3 amino-proximal sequence for IGF binding (Yan et al.,
2006). Up to now, little information is available concerning the
exact roles played by the IGFBP domain in CCN function, but
the direct and indirect control of IGF function implicates CCN
proteins could be a promising intervention strategy.

VWC Domain in CCN Proteins
The Von Willebrand factor type C (VWC) domain is also found
in every CCN family member, and the VWC domain most
commonly binds to bone morphogenic proteins (BMPs) (Canalis,
2007), TGF-β (Inkson et al., 2008), and diverse integrins (i.e.,
αMβ2, α2β1, αvβ5, α5β1, α6β1) (Kaur and Roberts, 2021). In
CCN2, its interaction with TGF-β enhances TGF-β signaling,
such that CCN2 might function as a chaperone for TGF-β,
and less TGF-β is required to stimulate downstream signaling
(Abreu et al., 2002). In CCN3, its interaction with BMP2
inhibits BMP2-induced osteoblast differentiation (Minamizato
et al., 2007). Integrins, the primary signaling receptors of CCN
proteins, consist of α- and β-subunits that are commonly
transmembrane (Karimi et al., 2018). The VWC domain in
CCN proteins binds with various integrin subtypes that differ
across CCN family members, thereby mediating different forms
of cell adhesion and activating signaling pathways in tumor
and stromal cells (Li et al., 2015). The ability of the VWC
domain to bind with functional ligands suggests that it plays
a key role in some biological functions associated with CCN
proteins. In considering the interactions between the VWC
domain in CCN proteins and TGF-β, BMP-4 et al., the CCN
proteins could also be a potential target for cancer therapy,
while the specific roles are depended on the type and number of
ligands in the TME.

TSP-1 Domain in CCN Proteins
The thrombospondin type 1 repeat (TSP-1) domain is another
common domain in CCN proteins and plays strong roles
in some biological functions of tumor, primarily through
interactions with lipoprotein-related receptors (Gerritsen et al.,
2016), vascular endothelial growth factor (VEGF) (Tsai et al.,
2017), diverse integrins (Alday-Parejo et al., 2019), and heparan
sulfate proteoglycans (HSPGs) (Neubauer et al., 2017). As the
TSP-1 domain is conserved across CCN family members, this
suggests that all CCN family members modulate cell adhesion,
maintains ECM composition, and participates in regulating
tumor signaling (Jayakumar et al., 2017). Indeed, some studies
have linked CCN proteins with mutant or missing TSP-1 domains
with colorectal and gastric carcinomas (Perbal, 2016) and Wilm’s
tumors (Subramaniam et al., 2008). Therefore, the TSP-1 domain,
like other CCN domains, could be a potential target of cancer
therapy (Leask, 2020).

CT Domain in CCN Proteins
The carboxyterminal (CT) domain is thought to mediate
key functions in several CCN proteins (except CCN5),
because it also acts as a dimerization module in a manner
analogous to domains in other molecules, such as nerve
growth factor (NGF), TGF-β, VEGF, BMPs, platelet-derived
growth factor (PDGF) and diverse integrins. In addition,
many biological functions of cytokines arise through their
interactions with heparin (Crijns et al., 2020). Interestingly,
many basic residues at the CT domain in N-terminus follow
the heparin-binding pattern, suggesting heparin as a candidate
for CCN protein-targeted therapy (Jia S. et al., 2017). Its
interactions with Notch, lipoprotein receptor-related protein 6
(LRP6), and integrin α6β1 suggest that CCN proteins regulate
cellular differentiation and proliferation (Thakur and Mishra,
2016). Furthermore, CT domain-mediated dimerization likely
influences other domains in CCN proteins, such as VWC
domain (Perbal, 2006b). Together, these reports indicate
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that the CT domain of CCN proteins plays a crucial role in
regulating tumor biology.

Functions and Progress of Full-Length
CCN Proteins in Tumor Progression
CCN Proteins Acting as Critical Modulators of the
TME
One fascinating aspect of TME that adds to the complexity of
tumor progression. CCN proteins can be potential therapeutic
targets that can be manipulated to rebalance the TME. Recently,
Tao et al. proved that CCN4 was preferentially secreted by glioma
stem cells (GSCs), and which played critical roles in maintaining
GSCs and tumor-supportive macrophage (Tao et al., 2020). Jia
et al. also proved CCN4-induced type I collagen linearization
facilitates tumor cell invasion and promotes spontaneous breast
cancer metastasis, without significantly affecting gene expression
(Jia et al., 2019). CCN2 and its fragments also have been
implicated in the regulation of a multitude of biological
phenomena in cancers, which was not only associated with
fibrosis, but also with mesenchymal stem cells (Leguit et al.,
2021). Different CCN proteins also enhance or suppress each
other’s action in the TME (Peidl et al., 2019). The available
evidence strongly supports that CCN proteins are related to the
tumor progression, while the same CCN proteins play different
roles in the same type of cancer, and the reason is related to the
complexity of the TME (Li et al., 2015; Yeger and Perbal, 2016).
Based on these, the final biological properties of the CCN proteins
might be dependent on different combinations, and the cocktail
containing CCN proteins in different combinations should be
applied to rebalance the TME in tumor therapy.

CCN Proteins Acting as Direct Modulators of Tumor
Progression
Recently, CCN members also play direct roles in tumor
progression through diverse signaling pathways. CCN1 has
been shown to promotes cell adhesion and migration as a
mediator of Notch1 signaling in breast cancer (Ilhan et al.,
2020). Overexpression of CCN2 also has been shown to induce
the upregulation expression of Wnt/β-catenin transcriptional
target genes, and our group also proved CCN2 was associated
with the Wnt signaling activation in hepatocellular carcinoma
(HCC) (Jia S. et al., 2017). CCN3 has been proved to promotes
epithelial-mesenchymal transition (EMT) via FAK/Akt/HIF-
1α/twist signaling in prostate cancer (Chen et al., 2017). CCN4
also has been proved to stimulates melanoma invasion and
metastasis by promoting EMT-like process (Deng et al., 2019).
CCN5 is a tumor suppressor, which restored ER-α expression at
the transcription level via integrins-α6β1/Akt/FOXO3a signaling
activation in breast cancer (Sarkar et al., 2017). CCN6 is also
acts as a tumor suppressor in HCC by negative regulation of
β-catenin/TCF/LEF signaling (Gao et al., 2019). Because of the
four functional domains of CCN proteins, CCNs mediate tumor
progression primarily through binding and interacting with well-
known receptors, including integrins, HSPGs, IGFs and LRPs
relating the signaling pathways such as Wnts, TGF-β, and Notch
signaling et al. (Li et al., 2015).

Functions and Progress of Truncated
CCNs Associated With Cancer
Progression
CCN proteins lacking one or more of the functional domains
can be produced by alternative splicing (Perbal, 2009) or post-
translational processing (Viloria and Hill, 2016). The existence
of CCN isoforms may have different activities than full-length
CCNs and may be regarded as a means of increasing the
diversity of their biological roles in cancer (Kaasboll et al., 2018).
Our GEPIA2 analysis provides the schematic organization of
various CCN isoforms (Figure 2). Despite compelling evidence
of the important biological activities of these CCN isoforms,
their potential regulatory functions are still vague. Truncated
CCN proteins deprived of a signal peptide commonly exist
in cytoplasm and/or nucleus have been identified in several
physiology and pathological situations (Perbal, 2006a; Planque
et al., 2006). Nuclear localization of truncated CCN proteins
could serve as a transcriptional factors. Also, their nuclear
localization could be influenced by their CT domain (Bleau et al.,
2007). Therefore, the existence of truncated CCN proteins could
be an important means to discovering their diverse biological
functions in different types of cancer. However, the intracellular
localization and diverse function of truncated forms of CCN
proteins are still unclear and has been a primary research
focus of our group.

DIVERSE EXPRESSION AND ROLES OF
CCN FAMILY MEMBERS IN
PAN-CANCER

Although all CCN family members (except CCN5) have four
highly conserved functional domains, they have different roles
within particular types of cancer. Some CCN proteins have
established associations with cancer malignancy progression and
are considered as prognostic markers and therapeutic targets
for certain types of cancer (Jun and Lau, 2011). However, CCN
proteins always appear to have contradictory roles in different
types of cancer, which may be due to differences in their TMEs
and isoforms (Peidl et al., 2019; Figure 2 and Table 1).

Expression and Roles of CCN1 in
Pan-Cancer
CCN1 exhibits varying mRNA levels and associations with
prognosis across different types of cancer. Comparisons of CCN1
mRNA levels among 32 human cancer types and adjacent normal
tissue using GEPIA2 revealed significantly upregulated CCN1
expression in four types of cancer [lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC), glioblastoma multiforme (GBM),
pancreatic adenocarcinoma (PAAD), and thymoma (THYM)]
and significantly downregulated expression in 14 types of cancer
[adrenocortical carcinoma (ACC), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC),
colon adenocarcinoma (COAD), kidney chromophobe (KICH),
kidney renal papillary cell carcinoma (KIRP), acute myeloid
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FIGURE 2 | Isoform structures of CCN family members were obtained from GEPIA2 based on the TCGA/GTEx data. Truncated isoforms of different CCN family
members indicate diverse biological functions with based on their different functional domains.

leukemia (LAML), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
rectum adenocarcinoma (READ), skin cutaneous melanoma
(SKCM), and uterine corpus endometrial carcinoma (UCEC)].
To evaluate the association between CCN1 mRNA expression
and prognosis, we also examined 32 human cancers using
GEPIA2. The relationship between CCN1 expression and
prognosis varied across different types of cancer. High expression
of CCN1 was associated with shorter overall survival (OS) in
five types of cancer [ACC, BLCA, brain lower grade glioma
(LGG), mesothelioma (MESO), and stomach adenocarcinoma
(STAD)] and longer OS only in SKCM, suggesting its role as
a tumor suppressor. These bioinformatics results revealed the
heterogeneous expression and functions of CCN1 in different
types of cancer (Figure 3A).

Several previous studies reported that CCN1 participates in
cancer development and can serve as both a tumor suppressor
and promoter (Barreto et al., 2016). In most types of cancer,
CCN1 acts as an oncogene (Tan et al., 2009; Xie et al., 2011, 2019;
Niu et al., 2014; Liu et al., 2015; Su et al., 2019; Khandelwal et al.,
2020). By contrast, in esophageal (Dang et al., 2018), liver (Feng
et al., 2008), prostate (D’Antonio et al., 2010), lung (Tong et al.,
2001), and endometrial (Chien et al., 2004) cancer, CCN1 serves
as a protective role. Mori et al. reported that CCN1 mRNA level is
lower in lung cancer tissue than in normal lung tissue (Mori et al.,
2007), consistent with our bioinformatics results. Also, Tong et al.
(2001) showed that overexpression of CCN1 in non-small cell
lung cancer cell lines reduces colony formation and proliferation,
thus serving as a tumor suppressor. As summarized in Table 1,
previous, mostly in vitro, studies showed that CCN1 serves as
a tumor promoter in most cancers but can also acts as a tumor
suppressor in some cancers. Thus, to resolve the discrepant roles
of CCN1 in different types of cancer, future studies should take
diverse TMEs and different isoforms into consideration.

Expression and Roles of CCN2 in
Pan-Cancer
CCN2 mRNA levels and their association with prognosis also
vary across different types of cancer. Comparison of CCN2

mRNA levels among different cancer tissues and their adjacent
normal tissues revealed significantly higher CCN2 expression
in five types of cancer (DLBC, GBM, LGG, PAAD, and
THYM) and significantly lower expression in 11 types of
cancer [ACC, BLCA, CESC, KICH, KIRC, KIRP, LUAD, LUSC,
SKCM, esophageal carcinoma, and uterine carcinosarcoma
(UCS)]. When we evaluated associations between CCN2 mRNA
levels and prognosis, we found that high expression of CCN2
was associated with shorter OS in STAD and THCA and
longer OS only in SKCM, suggesting that it acts as a tumor
suppressor. Thus, these bioinformatics results further revealed
the heterogeneous expression and function of CCN2 in different
types of cancer (Figure 3B).

After reviewing the current studies on CCN proteins. In
gastric cancer, high CCN2 expression correlates with more lymph
node metastases, more peritoneal dissemination, and poorer 5-
year survival (Cheng et al., 2014). After CCN2 downregulation,
gastric cancer cells show attenuated migratory/invasive abilities
and decreased protein expression of MMPs (Jiang et al., 2011).
Recently, Pamrevlumab (FG-3019), a first-in-class antibody that
inhibits the activity of CCN2, received fast-track designation
from the U.S. Food and Drug Administration for the treatment
of patients with idiopathic pulmonary fibrosis and locally
advanced unresectable pancreatic cancer (Ramazani et al.,
2018). CCN2 overexpression is related to poor prognosis
in most types of cancer (Chien et al., 2004). Even so,
there have been plenty of opposite reports in gastrointestinal
cancer (Chen et al., 2015), liver cancer (Isbert et al., 2007),
lung cancer (Chang et al., 2013), ovarian cancer (Barbolina
et al., 2009), and melanoma (Chen J. et al., 2016). Table 1
summarizes the functional roles of CCN2 across different
types of cancer.

Expression and Roles of CCN3 in
Pan-Cancer
Comparison of CCN3 mRNA levels among different types of
cancer tissues and their adjacent normal tissues revealed that
CCN3 expression was significantly upregulated in two types of
cancer [ovarian serous cystadenocarcinoma (OV) and PAAD]
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TABLE 1 | Roles of CCN1-6 in pan-cancer.

Cancer type CCN1 CCN2 CCN3 CCN4 CCN5 CCN6

Bladder cancer ↑(Khandelwal et al., 2020) ↑(Wang et al., 2017) ↑(Lee et al., 2018) ↑(Zeng et al., 2015)

Breast cancer ↑(Xie et al., 2001a) ↑(Shimo et al., 2006) ↓(Dobson et al., 2014) ↑(Xie et al., 2001b; Chiang
et al., 2015) ↓(Taghavi
et al., 2016)

↑(Zoubine et al., 2001;
Banerjee et al., 2003)
↓(Haque et al., 2015)

↓(Martin et al., 2017)

Chondrosarcoma ↑(Tan et al., 2009) ↑(Hou et al., 2011) ↑(Fong et al., 2012)

Colorectal tumor ↑(Jeong et al., 2014; Xie
et al., 2019)

↑(Ubink et al., 2016) ↓(Li et al., 2017) ↑(Fischer et al., 2001; Wu
et al., 2016)

↓(Davies et al., 2010) ↓(Lu et al., 2016)

Esophageal cancer ↑(Xie et al., 2011) ↓(Dang
et al., 2017, 2018)

↑(Deng et al., 2007) ↑(Nagai et al., 2011) ↓(Chai et al., 2019)

Gastric cancer ↑(Mao et al., 2011;
Su et al., 2019)

↑(Kidd et al., 2007)
↓(Chen et al., 2015)

↑(Jia Q. et al., 2017) ↓(Ji et al., 2015) ↑(Fang et al., 2014)
↓(Lee et al., 2016)

Glioma ↑(Xie et al., 2004a) ↑(Xie et al., 2004b) ↓(Gupta et al., 2001)
↑(Laurent et al., 2003)

↑(Tao et al., 2020) ↑(Minchenko et al., 2015)

Head and neck cancer ↑(Liu et al., 2015) ↑(Wu et al., 2017)

Kidney cancer ↓(Liu et al., 2012) ↑(Xu et al., 2000)

Leukemia ↑(Niu et al., 2014) ↑(Wells et al., 2016) ↓(McCallum et al., 2012) ↑(Zhang X. et al., 2015)

Liver cancer ↑(Li et al., 2018) ↓(Feng
et al., 2008)

↑(Jia S. et al., 2017; Makino
et al., 2018) ↓(Isbert et al.,
2007)

↑(Jia Q. et al., 2017) ↑(Chen et al., 2018)
↓(Zhang H. et al., 2015)

↑(Chen Z. et al., 2016) ↓(Gao et al., 2019)

Lung cancer ↓(Tong et al., 2001) ↓(Chang et al., 2004, 2013) ↑(Matsubara et al., 2005)
↓(Soon et al., 2003)

Ovarian cancer ↑(Gery et al., 2005) ↓(Barbolina et al., 2009) ↑(Graumann et al., 2019)

Pancreatic cancer ↑(Haque et al., 2011; Maity
et al., 2014)

↑(Bennewith et al., 2009) ↑(Cui et al., 2014) ↑(Yang et al., 2015) ↑(Wang et al., 2013)

Prostate cancer ↑(Sun et al., 2008)
↓(D’Antonio et al., 2010)

↑(Yang et al., 2005) ↑(Chen et al., 2014) ↑(Tai et al., 2014) ↓(Ono
et al., 2013)

Melanoma ↓(Chen J. et al., 2016) ↑(Deng et al., 2019)

Salivary gland tumors ↑(Lai et al., 2014) ↑(Lencioni et al., 2016) ↓(Kouzu et al., 2006)

Oral squamous cell carcinoma ↑(Kok et al., 2010) ↓(Chuang et al., 2011) ↑(Jung et al., 2017; Chang
et al., 2019)

Endometrial cancer ↓(Chien et al., 2004)

Laryngeal cancer ↑(Wang et al., 2019)

The numbers in brackets are reference numbers. ↑ CCN acting as tumor promotor; ↓CCN acting as tumor suppressor.
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FIGURE 3 | mRNA levels of CCN1-6 differ between human pan-cancer and normal tissue, suggesting their potential role as prognostic and therapeutic biomarkers.
(A) CCN1 expression and association with OS. (B) CCN2 expression and association with OS. (C) CCN3 expression and association with OS. (D) CCN4 expression
and association with OS. (E) CCN5 expression and association with OS. (F) CCN6 expression and association with OS. For gene expression profile dot plot,
color-coded cancers’ abbreviation suggests significant results (p < 0.05) and red mean gene over expressed in cancer tissue compared with the normal tissue, while
green have reversed meaning. For survival heat map, blocks with border suggest significant results (p < 0.05) and red blocks mean high expression of CCNs has a
poor prognosis, while blue blocks have reversed meaning.

and significantly downregulated in six types of cancer [ACC,
BRCA, CESC, LGG, testicular germ cell tumors (TGCT), and
thyroid carcinoma (THCA)]. When we further evaluated the
association between CCN3 expression and prognosis in pan-
cancer, we found that high CCN3 expression was associated with
shorter OS in seven types of cancer (ACC, BLCA, GBM, LAML,
MESO, STAD, and uveal melanoma) and longer OS in two types
of cancer (CHOL and KIRC, Figure 3C).

CCN3 was first discovered as an overexpressed gene in
myeloblastosis-associated virus type-1-induced nephroblastoma
(Joliot et al., 1992) and has since been implicated in many diverse
biological processes, such as proliferation, differentiation,
angiogenesis and fibrosis, all of which promote cancer
development (Barreto et al., 2016). CCN3 has anti-tumor
effects in breast cancer (Dobson et al., 2014), colorectal tumors
(Li et al., 2017), kidney cancer (Liu et al., 2012), glioma
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(Gupta et al., 2001), and leukemia (McCallum et al., 2012). By
contrast, CCN3 acts as a tumor promoter in liver (Jia Q. et al.,
2017), pancreatic (Cui et al., 2014), and prostate (Chen et al.,
2014) cancer. Laurent et al. (2003) reported that in glioma, CCN3
triggers a cascade of gene expression resulting in increased
cell adhesion and migration. Our group showed that CCN3 is
a hallmark in the development and chemoresistance of liver
cancer (Holbourn et al., 2009; Perbal and Perbal, 2016) via
regulation of cell stemness and the TME (Holbourn et al.,
2009; Tang et al., 2019). Table 1 provides a summary of CCN3
expression and functional roles in different types of cancer, and
the heterogeneous roles of CCN3 are also revealed in different
types of cancer.

Expression and Roles of CCN4 in
Pan-Cancer
Similar to other CCN family members, CCN4 mRNA levels
and their association with prognosis vary across different types
of cancer. Comparison of CCN4 mRNA levels among diverse
cancer types and adjacent normal tissue revealed significantly
higher CCN4 expression in seven types of cancer (BRCA, DLBC,
ESCA, GBM, HNSC, PAAD, and STAD). When evaluating the
association between CCN4 expression and prognosis in pan-
cancer, we found that high CCN4 expression was associated with
shorter OS in five types of cancer (ACC, KICH, LGG, MESO,
STAD). The results of these bioinformatics analyses suggest that
CCN4 mainly acts as a tumor promoter (Figure 3D).

The participation of CCN4 in cancer development has been
reported by many previous studies, which showed that CCN4
serves as a tumor promoter in colorectal (Wu et al., 2016), breast
(Xie et al., 2001b), pancreatic (Yang et al., 2015), and lung (Chen
et al., 2007) cancer by enhancing cell migration and promoting
epithelial-mesenchymal transition (EMT). However, in breast
(Taghavi et al., 2016), lung (Soon et al., 2003), and liver (Zhang H.
et al., 2015) cancer, CCN4 appears to play an opposing role.
Davies et al. (2007) showed that CCN4 acts as a tumor suppressor
in breast cancer based on examination of mRNA levels in human
breast tumor tissues compared with normal tissues. Tao et al.
(2020) showed that CCN4 plays dual roles in glioblastoma—
both maintaining glioma stem cells and constructing a pro-TME
via the infiltration of tumor-supportive macrophages. Zhang X.
et al. (2015) found reduced CCN4 expression in liver tumors
compared with normal liver tissue, suggesting that CCN4 serves
as a tumor suppressor. CCN4 expression is regulated by various
signaling pathways and is sensitive to different biochemical
perturbations in the TME, which may explain its diverse roles
in cancer progression. Table 1 provides a summary of CCN4
expression and its functional roles in different types of cancer.

Expression and Roles of CCN5 in
Pan-Cancer
CCN5 mRNA levels also vary across different types of cancer.
Comparison of CCN5 mRNA levels across different cancer
types and adjacent normal tissue revealed significantly lower
expression of CCN5 in 16 types of cancer (BLCA, BRCA,
CESC, COAD, ESCA, LUAD, LUSC, OV, PRAD, READ, SKCM,

SATD, TGCT, THCA, UCEC, and UCS). Increased expression
of CCN5 was not observed in any type of cancer. High CCN5
expression was associated with shorter OS in four types of cancer
(COAD, KIRC, KIRP, and STAD) and longer OS only in SARC,
suggesting that CCN5 acts as an anti-oncogene. The results of
these bioinformatics analyses suggest that CCN5 expression and
function vary across different types of cancer, perhaps due to
differences in its structure compared with other CCN family
members (Figure 3E).

As CCN5 lacks a CT domain, this striking difference in
structure compared with other CCN family members may allow
it to have unique functional roles. Like its family members,
however, previous studies reported inconsistent roles of CCN5
in carcinogenesis. CCN5 is downregulated in human leiomyoma
(Mason et al., 2004), pancreatic adenocarcinoma (Dhar et al.,
2007), salivary gland cancer (Dhar et al., 2007), colorectal tumors
(Pennica et al., 1998; Davies et al., 2010), and gallbladder cancer
(Yang et al., 2014), suggesting that it acts as a tumor suppressor.
Chai et al. (2019) showed that CCN5 overexpression inhibits
cell growth, induces apoptosis, and suppresses cell migration
and invasion in esophageal squamous cell carcinoma. Banerjee
et al. (2008) showed that the expression of CCN5 is undetectable
in normal breast tissues but increased in non-invasive breast
cancer lesions, suggesting that it acts as a negative regulator of
migration and invasion. By contrast, in glioma (Minchenko et al.,
2015), liver cancer (Chen Z. et al., 2016), and pancreatic cancer
(Wang et al., 2013), CCN5 acts as a tumor promoter. Whereas
CCN5 mainly localizes in the nucleus in human cancer tissue
(Wiesman et al., 2010), we found that CCN5 is expressed in both
the cytoplasm and nucleus in malignant kidney tumors, with
predominate cytoplasmic expression (unpublished data). Table 1
summarizes the expression and diverse roles of CCN5 across
different types of cancer.

Expression and Roles of CCN6 in
Pan-Cancer
CCN6 mRNA levels and prognostic value also vary depending on
the type of cancer. Comparison of CCN6 mRNA levels among
diverse cancer types and adjacent normal tissue revealed that
CCN6 expression was significantly downregulated in four types
of cancer (KICH, KIRC, SKCM, and TGCT) and significantly
upregulated only in OV. When evaluating the association
between CCN6 expression and prognosis, we found that high
CCN6 expression was associated with shorter OS only in
LIHC. These bioinformatics analyses further suggest that the
expression and functions of CCN6 are inconsistent across cancer
types (Figure 3F).

CCN6 has received much attention in the last few years due
to its involvement in many cancer-related processes, including
EMT, cell death, invasion, and metastasis, and its function as
a tumor suppressor (Tran and Kleer, 2018). However, many
studies reported that CCN6 can serve as both a tumor suppressor
and promoter (Lee et al., 2016). CCN6 is expressed in normal
breast epithelium but is reduced or lost in 60% of invasive
breast carcinomas (Huang et al., 2008). CCN6 limits breast
cancer invasion and metastasis by modulating the BMP signaling
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pathway (Pal et al., 2012). By contrast, CCN6 is overexpressed
in 63% of human colon tumors and appears to be associated
with colon tumorigenesis (Pennica et al., 1998). In addition,
CCN6 is related to microsatellite instability in colorectal cancer
(Thorstensen et al., 2001). As summarized in Table 1, the
studies showed expression and functional roles of CCN6 are also
inconsistent among different types of cancer.

CONCLUSION AND PERSPECTIVES

The six members of CCN proteins have established associations
with cancer malignancy progression and are considered as
prognostic markers and therapeutic targets for several types
of cancer. However, CCN proteins always appear to have
contradictory roles in different types of cancer. After a
retrospective analysis of the literature, we come to the
conclusions (Arbyn et al., 2020). Cellular locations, tissue
specificity of CCN proteins expression and the diverse TME
provide some explanation for their apparently conflicting
functions (Winkler et al., 2020). The presence of multiple
functional domains of CCN proteins and the altered biological
activity of truncated CCN proteins increasing the diversity of
CCNs biological roles in cancer (Jiang et al., 2019). CCN protein
functions could be orchestrated by other CCN members, and the
final biological properties of a specific CCN protein might be
dependent on the combinations of CCN members.

Targeting CCN protein expression or signaling pathways
holds promise in the development of diagnostics and therapeutics
for cancers, and the cocktail containing CCN proteins in
different combinations should be a potential antitumor
approach. Since the current literature has certain limitations
in clarifying the exact role of CCN proteins, continued
studies are still needed to reveal the exact roles of CCN
proteins in cancer.
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