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Abstract
In this work, we study and analyze the aggregate death counts of COVID-19 
reported by the United States  Centers for Disease Control and Prevention (CDC) 
for the fifty states in the United States. To do this, we derive a stochastic model 
describing the cumulative number of deaths reported daily by CDC from the first 
time Covid-19 death is recorded to June 20, 2021 in the United States, and provide a 
forecast for the death cases. The stochastic model derived in this work performs bet-
ter than existing deterministic logistic models because it is able to capture irregulari-
ties in the sample path of the aggregate death counts. The probability distribution of 
the aggregate death counts is derived, analyzed, and used to estimate the count’s per 
capita initial growth rate, carrying capacity, and the expected value for each given 
day as at the time this research is conducted. Using this distribution, we estimate the 
expected first passage time when the aggregate death count is slowing down. Our 
result shows that the expected aggregate death count is slowing down in all states 
as at the time this analysis is conducted (June 2021). A formula for predicting the 
end of Covid-19 deaths is derived. The daily expected death count for each states is 
plotted as a function of time. The probability density function for the current day, 
together with the forecast and its confidence interval for the next four days, and the 
root mean square error for our simulation results are estimated.
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1 Introduction

Several mathematical models (Wu et al. 2020; Stutt et al. 2020; Linka et al. 2020; 
Okuonghae and Omame 2020; Ndairou et  al. 2020; Ladde et  al. 2020; Otunuga 
2020; Mummert and Otunuga 2019; Otunuga 2018; Santosh 2020) have been devel-
oped to study the transmission of the COVID-19 virus caused by the virus species 
”severe acute respiratory syndrome-related corona virus”, named SARS-CoV-2. 
The airborne transmission occurs by inhaling droplets loaded with SARS-CoV-2 
particles that are expelled by infectious people. According to Wu et al. (2020), the 
”severe acute respiratory syndrome coronavirus” (SARS-CoV) and the ”Middle East 
respiratory syndrome coronavirus” (MERS-CoV) are two other novel coronaviruses 
that emerged as major global health threats since 2002. Several public health inter-
ventions have been put in place to eradicate or reduce the spread of the disease. 
According to CDC, the first U.S. laboratory-confirmed case1 of COVID-19 in the 
U.S. was recorded on January 20, 2020 from the samples taken 2 days earlier in 
Washington state. The first COVID-19 death in the United States was first reported 
in the same state by CDC on February 29, 2020. As of June 24, 2021, the total num-
ber of Covid-19 cases in the United States was reported by CDC to be 33, 437, 643, 
resulting in about 601, 221 deaths2. On December 11 and December 18, 2020, the 
United States Food and Drug Administration (FDA)3 issued an Emergency Use 
Authorization (EUA) for the Pfizer-BioNTech and the Moderna COVID-19 vaccine, 
respectively, in the United States. An EUA for the third vaccine, the Johnson and 
Johnson (J &J) vaccine, was first issued in the United States on February 27, 20214. 
A pause on the usage of the J &J vaccine was recommended by CDC and the FDA 
on April 13, 2021 due to the serious blood clots (a condition called thrombosis) in 
six women between the ages of 18 and 49 years with thrombocytopenia syndrome 
(TTS)5 following the usage of the vaccine. As of June 7, 2021, about 51.5% of the 
total population of the United States have received at least one dose of the vaccina-
tion, with 41.9% fully vaccinated. The study done in this work is to check the effects 
of these interventions. That is, with these vaccines, we check if the number of deaths 
resulting from the Covid-19 disease slows down as time proceeds and as the number 
of those who are vaccinated increases.

The trajectory of the aggregate death counts in most states in the United States 
follows the same dynamics. At first, it follows a somewhat exponential trajectory, 
with its growth slowing down at some point and speeding up at other points. With 
public health interventions like vaccination mitigating the growth of the virus, this 
pattern is expected to continue until a certain steady-state is reached. This dynamic 

1 https:// www. cdc. gov/ museum/ timel ine/ covid 19. html, accessed 06.04.2022
2 https:// covid. cdc. gov/ covid- data- track er, accessed 06.24.2021 at 9:09PM.
3 https:// www. fda. gov/ emerg ency- prepa redne ss- and- respo nse/ coron avirus- disea se- 2019- covid- 19/ covid- 
19- frequ ently- asked- quest ions, accessed 03.09.2021.
4 https:// www. fda. gov/ emerg ency- prepa redne ss- and- respo nse/ coron avirus- disea se- 2019- covid- 19/ janss 
en- covid- 19- vacci ne, accessed 06.08.2021.
5 https:// www. healt hline. com/ health/ vacci natio ns/ johns on- and- johns on- vacci ne, accessed 06.07.2021.

https://www.cdc.gov/museum/timeline/covid19.html
https://covid.cdc.gov/covid-data-tracker
https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-frequently-asked-questions
https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-frequently-asked-questions
https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/janssen-covid-19-vaccine
https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/janssen-covid-19-vaccine
https://www.healthline.com/health/vaccinations/johnson-and-johnson-vaccine
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follows roughly the well known Verhulst logistic equation and its generalization 
(Beddington and May 1977; Li and Wang 2010; Prajneshu 1980; Pelinovsky et al. 
2020; Pella and Tomlinson 1969; Wang et al. 2020). The model was first derived by 
Verhulst (1838) to study population growth. Some other methods (Baud et al. 2020; 
Bhapkar et al. 2020; Satpathy et al. 2021; Kaciroti et al. 2021) have been developed 
to estimate mortality following the Covid-19 infection. In this work, we consider the 
logistic model

where t0 ≥ 0 , N0 > 0 , N(t) denotes the total number of Covid-19 death counts 
at time t, K is the maximum number of Covid-19 deaths, and �̄ is the per capita 
initial growth rate, to interpret the aggregate number of COVID-19 death tra-
jectories in the United States. We see from (1.1) that dN

dt
> 0 on (0,K) and 

d2N

dt2
=

�̄
2

K
2 (K − N)(K − 2N)N . From this, we have d

2N

dt2
> 0 on the interval (0,K∕2) , 

and d
2N

dt2
< 0 on (K∕2,K) . That is, the trajectory of the aggregate number speeds up 

in the interval (0,K∕2) and slows down in the interval (K∕2,K) . Also, since N(t) 
represents the aggregate number of deaths at a given time t, it follows that the daily 
number of deaths is at the maximum at the time when N(t) = K∕2.

From this analysis, if the current day aggregate death counts in time series is more 
than K∕2 , then we know that its growth is slowing down and the virus spread has 
been controlled. Otherwise, the virus is spreading, with speeding growth. The prob-
lem with using this model to analyze the aggregate number of cases is that it fails to 
account for the fluctuations or perturbations in the data resulting from fluctuations in 
the rates of infection or death. These noises/fluctuations can be caused by many fac-
tors like the rates at which Covid-19 testing is done, vaccination rates, mask use per 
capital, social behavior, public health intervention (Linka et al. 2020), and so on. In 
addition, CDC6 reported on their websites that counting exact aggregate confirmed 
and probable COVID-19 cases and deaths is not possible due to delays in reporting 
from different voluntary jurisdictions. The number of death cases reported on CDC’s 
website might not be complete because it takes several weeks for death records to be 
processed, coded, submitted, and tabulated on the National Center for Health Sta-
tistics (NCHS). As a result, these cause the counts to fluctuate substantially, with a 
possibility of a negative number of probable cases reported on a given day if more 
probable cases were disproven than were initially reported on that day.

Several authors (Lv et al. 2019; Li and Wang 2010; Lungu and Øksendal 1997; 
Yang et al. 2019; Gardiner 1985) have worked on model (1.1) and its extension to 
a stochastic model. In this work, we derive a stochastic model governing the aggre-
gate number of Covid-19 death counts in the United States by extending model 
(1.1) to a stochastic case. The proposed model is better in the sense that it captures 

(1.1)dN =
�̄

K
(K − N)N dt, N(t0) = N0,

6 https:// data. cdc. gov/ Case- Surve illan ce/ United- States- COVID- 19- Cases- and- Deaths- by- State-o/ 9mfq- 
cb36/ data.

https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36/data
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36/data
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fluctuations in the aggregate counts better than the widely used logistic model (1.1) 
with lesser root mean square error. Our aim in this study is to determine whether the 
virus infection and death counts resulting from the infection are still growing sharply 
or slowing down. Upon analyzing the COVID-19 data collected from CDC, we see 
that the path of the aggregate number of Covid-19 death counts over time follows a 
logistic model with irregular trajectories. We assume this fluctuation is caused by 
many factors such as listed above, causing the per capita growth rate to fluctuate 
over time. We account for the fluctuations in this rate by extending the deterministic 
logistic model (1.1) to a stochastic model. This is done by assuming the parameter 
�̄ is not constant over time, but fluctuates about a particular mean value. In order to 
estimate the epidemiological parameters K (the carrying capacity of Covid-19 death 
counts), �̄ (the per capita initial growth rate), and the death rate noise intensity, we 
derive the transition probability density function for the aggregate number of death 
counts and apply a Maximum Likelihood Estimate (MLE) scheme. The distribution 
is also used to calculate the expected aggregate count at a particular period in time. 
Using the parameter estimates for the fitted data, we forecast the cumulative number 
of Covid-19 deaths and provide a 95% confidence interval for the forecast.

The organization of the work done is as follows: In Sect. 2, we derive a stochastic 
model describing the cumulative number of deaths by assuming �̄ is not constant, 
but changes with time and fluctuates around a mean value. We show that the model 
is well defined, with a unique closed-form solution. In Sect. 3, the transition prob-
ability density function for the aggregate number of death counts is derived. Using 
the MLE scheme, we estimate the epidemiological parameters in the model. Since 
the aggregate count N(t) is random, we calculate the expected number of Covid-19 
aggregate death counts for each states in the United States. We show that with prob-
ability one the aggregate count remains in the interval (0,K) if it starts from there. In 
Sect. 4, the expected first hitting time when the aggregate count N(t) reaches K − � 
is calculated for some small positive constant 𝜖 > 0 . We also estimate the expected 
first passage time when the aggregate death counts started slowing down. Numerical 
simulations, forecast, and analysis of the aggregate death counts for the fifty states in 
the United States are carried out in Sect. 5. The summary of the work done is given 
in Sect. 6.

2  Methodology

2.1  Data Sources

The Covid-19 aggregate death counts in the United States is collected from the 
United States Centers for Disease Control and Prevention (CDC) website and pro-
vided by the CDC Case Task Force7. The data was collected for the period ranging 
from January 22, 2020 to June 24, 2021, and it includes the date of counts, state/

7 https:// data. cdc. gov/ Case- Surve illan ce/ United- States- COVID- 19- Cases- and- Deaths- by- State-o/ 9mfq- 
cb36, accessed 06.25.2021.

https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
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jurisdiction, total/aggregate number of death cases (including total confirmed and 
probable deaths), number of new and new probable deaths with the date and time 
the records were created. The definition of each of these can be found on the CDC’s 
website7.

2.2  Modeling the Covid‑19 Aggregate Death Counts

In this section, we describe the dynamics of the aggregate number of deaths in the 
United States by extending the well-known deterministic logistic model (1.1) to a 
stochastic differential equation. Analysis of the data (see Figs. 1, 2) shows that its 
growth rate fluctuates with time. Some works (Lagarto and Braumann 2014; Maz-
zuco et  al. 2018; Zocchetti and Consonni 1994) have been done in analyzing the 
distribution of mortality rate. The dynamics of male and female crude death rates of 
the Portuguese population over the period 1940–2009 were modeled in the work of 
Lagarto and Braumann (2014) using a bi-dimensional stochastic Gompertz model 
with correlated Wiener processes. Zocchetti and Consonni (1994) showed in their 
work that when the number of deaths is sufficiently elevated, the Gauss distribu-
tion (also referred to as the normal distribution) can be used as a good approxi-
mation distribution for the variability in the mortality rate. In their work, Maz-
zuco et al. (2018) derived a new model for mortality rate based on the mixture of 
a half-normal distribution with a generalization of the skew-normal distribution. 
The Wiener process (Khasminskii 2012; Kloeden and Platen 1995; Mao 2007; 
Øksendal 2003), often called Brownian motion, is a real-valued continuous-time 
stochastic process {W(t) ∶ t ≥ 0} defined on a probability space (Ω,F,ℙ) with 
stationary independent Gaussian increments such that W(0) = 0 with probability 
one, W(t + Δt) −W(t) is normally distributed with mean 0 and variance Δt , and 
W(t) −W(s) is independent of the past random variable W(u), 0 ≤ u ≤ s . In addi-
tion, the random variables {W(tj) −W(sj), j = 1, 2,⋯ , n} are jointly independent, 
for 0 ≤ s1 < t1 ≤ s2 < t2 ⋯ ≤ sn < tn < ∞ . The independence and stationarity of 
the increment, together with the continuous (almost everywhere) sample path of the 
process W(t) lead to its great tractability, making it one of the most important sto-
chastic process in continuous time used in biological systems to model perturbed 
epidemiological parameters. Following a similar assumption made in the work of 
Prajneshu (1980), Yang et  al. (2019), and Otunuga (2021b), where a logistic sto-
chastic population model with the population’s transition probability density func-
tion were derived to study the distribution of a population subjected to a continuous 
spectrum of disturbances, with fluctuations in the intrinsic growth rate, we assume 
the dynamics of �̄ shouldn’t be constant over time, but instead be driven by fluctua-
tions that can be modeled to follow a process of the form

where W(t) is a standard Wiener process, � is the average death counts per capita 
initial growth rate, � is the noise intensity, and ◦ is the Stratonovich integral sym-
bol (Arnold 1974). We use the Stratonovich calculus instead of the Itô calculus to 
describe this dynamic simply because it obeys the traditional rule of chain rule and 

(2.1)�̄dt = 𝜇dt + 𝜎◦dW(t),
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allows white noise to be treated as a regular derivative of a Brownian or Wiener pro-
cess (West et al. 1979; Wong and Zakai 1965). For more reading on the Itô and Stra-
tonovich calculus, we direct readers to the work of Kloeden and Platen (1995) and 
Øksendal (2003). Substituting into (1.1), the proposed stochastic differential equa-
tion (SDE) for the aggregate number of deaths is given by

where N0 > 0 , K is the carrying death capacity, � and � are as described in (2.1). 
We note here that the stochasticity added in model (2.2) leads to a non-monotonic 
cumulative death sample path, a property that makes it able to capture irregulari-
ties in the sample path better than the deterministic counterpart, with a smaller root 
mean square error. The interpretation of the stochastic differential equation as a 
Stratonovich differential equation follows the work of Otunuga (2019, 2021a). We 
shall later compare model (2.2) with its deterministic equivalent (1.1) and show 
that model (2.2) performs better in capturing the trajectory of (and the noise in) the 
aggregate death counts. We convert (2.2) into a Itô stochastic differential equation as

In order to show that model (2.3) is biologically feasible, we show in Theorem 2 
(using Corollary 3.1 of Khasminskii (2012)) that the solution N(t) of (2.3) exists, 
and it remains in (0,K) with probability one whenever it starts from there. A state-
ment of the corollary, together with definition of some terminologies in the corollary 
are given below.

Definition 1 L-operator.
Given a one-dimensional stochastic differential equation

we define the L-operator (Mao 2007) associated with (2.4) as

If L acts on a nonnegative function V(t, x) which is continuously differentiable with 
respect to t and twice continuously differentiable with respect to x, then

The usefulness of the expression for LV(t, x) is seen in the Itô Lemma (a Lemma 
which gives the formula for the stochastic analogue of the chain rule or change 
of variable rule in calculus), which simply states that the stochastic differential of 
V(t, x) is given by

(2.2)dN =
�

K
(K − N)N dt +

�

K
(K − N)N◦dW(t), N(t0) = N0,

(2.3)

dN =

(
�

K
(K − N)N +

�2

2K2
(K − N)(K − 2N)N

)
dt +

�

K
(K − N)NdW(t), N(t0) = N0.

(2.4)dx = f (t, x)dt + g(t, x)dW(t), x(t0) = x0,

(2.5)L =
�

�t
+ f (t, x)

�

�x
+

1

2
g2(t, x)

�2

�x2
.

LV(t, x) =
�V(t, x)

�t
+ f (t, x)

�V(t, x)

�x
+

1

2
g2(t, x)

�2V(t, x)

�x2
.
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We see here that LV(t, x) is the drift part of the differential dV(t, x).

Theorem 1 (From Corollary 3.1 of Khasminskii (2012))

Let Dn be an increasing sequence of open sets whose closure are contained in 
an open set D such that 

⋃
Dn = D . Suppose that the drift and diffusion coefficients 

f(t, x) and g(t, x), respectively, in (2.4) satisfy the Lipschitz and linear growth con-
ditions in (0,∞) × Dn and there exists a function V(t, x), twice continuously differ-
entiable in x and continuously differentiable in t in the domain (0,∞) × D , which 
satisfies

for some positive constant c. Then for every random variable x(t0) independ-
ent of W(t) −W(t0) , there exists a solution x(t) of (2.4) which is an almost surely 
continuous stochastic process and is unique up to equivalence8 provided that 
ℙ(x(t0) ∈ D) = 1 . Moreover the solution satisfies the relation

Since the drift and diffusion coefficients of (2.3) are non-linear, the classical 
existence and uniqueness theorem of SDE (Kloeden and Platen 1995; Khasminskii 
2012; Mao 2007; Øksendal 2003) does not apply. We use Theorem 1 to prove the 
existence and uniqueness of the solution of (2.3) in the interval (0,K) in Theorem 2.

Theorem  2 Let the stochastic differential equation (2.3) be given for any t0 ≥ 0 
and initial value N0 ∈ (0,K) independent of W(t) −W(t0) . Then there exists a 
unique global positive solution N ∶ [t0,∞) → ℜ+ such that with probability one 
N(t) ∈ (0,K) . That is,

Proof Define the sequence {Dr} by

Clearly, {Dr} is an increasing sequence of open sets whose clo-
sures are contained in (0,K) . The drift and diffusion coefficients 
b(N) =

�

K
(K − N)N +

�2

2K2 (K − N)(K − 2N)N and g(N) = �

K
(K − N)N , respectively, 

(2.6)dV(t, x) = LV(t, x)dt + g(t, x)
�V(t, x)

�x
dW(t).

LV ≤cV ,
inf

t>0, x∈D�Dn

V(t, x) →∞ as n → ∞,

ℙ(x(t) ∈ D) = 1 for all t ≥ t0.

ℙ
{
N(t) ∈ (0,K), t ≥ t0

}
= 1.

Dr =
(
1

r
,K −

1

r

)
, r = 1, 2,⋯ .

8 Two solutions x1 ∶ [t0,T] → ℜ+ and x2 ∶ [t0,T] → ℜ+ are said to be equivalent if 
ℙ
(
x1(t) = x2(t) for all t ∈ [t0,T]

)
= 1.
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of (2.3) satisfy the Lipschitz and linear growth conditions locally in Dr . Define a 
function V ∶ (0,K) → ℜ+ by

Applying the L-operator ((2.5)) associated with (2.3) on V, we have

where C = � + 3�2∕2 . For any x ∈ D�Dr =
�
0,

1

r

�⋃�
K −

1

r
,K

�
 , we have

The result follows from Theorem 1.   ◻

We give the exact solution of (2.3) in the following theorem. This solution will be 
used in the simulation process to plot the sample path of the death counts.

Theorem 3 For any given initial value N0 ∈ (0,K) , the exact solution of the SDE 
(2.3) is obtained as

where

Proof As shown in Theorem (2), there is a unique global positive solution 
N(t) ∈ (0,K) for all t ≥ t0 with probability one. Define

It follows from (2.3) and (2.6) that

V(N) =
K

N(K − N)
.

LV =
�V

�t
+ b(N)

�V

�N
+

g2(N)

2

�2V

�N2

=
�

K
(K − N)N

(
−

1

N2
+

1

(K − N)2

)
+

�2

K
2
(K − N)2N2

(
1

N3
+

1

(K − N)3

)

+
�2

2K2
(K − N)(K − 2N)N

(
−

1

N2
+

1

(K − N)2

)

≤ �

K

K

K − N
+

�2

K
2

(
K

3

(K − N)N
− 3K

)
+

�2

2K2

(
K(K − N)N

(K − N)2
+

2(K − N)N2

N2

)

≤CV ,

inf
t>0, x∈D�Dr

V(x) = r +
1

K
→ ∞ as r → ∞.

(2.7)N(t) =
K

1 +
K−N0

N0

Φ−1(t)
,

Φ(t) = e�(t−t0)+�(W(t)−W(t0)).

(2.8)u = ln
(

N

K − N

)
, N ∈ (0,K).

(2.9)du = �dt + �dW(t), u(t0) = u0,
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with solution

The result follows by substituting (2.10) into (2.8) and solving for N(t).   ◻

Remark 1 Theorem  2 shows that the aggregate number of deaths cannot grow 
past a particular value, K , with probability one if its starting point is in (0,K) . If 
0 < N0 < K , then it follows from Theorems 2 and 3 that the feasible epidemiologi-
cal region of interest for the solution N(t) is the set

The following theorem shows that if 𝜇 > 𝜎2∕2 and the process N(t) starts 
from (0,K) , then it converges almost surely to a random variable N∞ with finite 
expectation.

Theorem  4 For any given initial condition N0 ∈ (0,K) , the process N(t) is a 
submartingale if 𝜇 > 𝜎2∕2 . That is,

Furthermore, there exists a random variable N∞ such that �
[(
N∞

)]
< ∞ and

Proof It follows from (2.2) that for s ≤ t , we have

If 𝜇 > 𝜎2∕2 , we obtain

Clearly, we see from (2.7) that 0 < N(t) < K for all t ≥ 0 . Hence, 
sup
t≥0

�
[(
N(t)+

)]
< ∞ . By the Martingale Convergence Theorem, we have 

�
(
N∞

)
< ∞ and equation (2.12) is satisfied.   ◻

Remark 2 The Martingale Convergence Theorem is a stochastic analogue of the 
Monotone Convergence Theorem. Here, we also see that a submartingale prop-
erty is a stochastic analogue of a non-decreasing sequence. Since aggregate death 
count is expected to be increasing with time and the process N(t) is stochastic, we 
need a condition that will guarantee a stochastic analogue of an increasing function. 

(2.10)u(t) = u0 + �(t − t0) + �(W(t) −W(t0)).

(2.11)T =
{
n ∈ ℜ

+ | 0 < n < K
}
.

�[N(t)|N(s), s ≤ t] ≥ N(s).

(2.12)lim
t→∞

N(t) = N∞.

N(t) = N(s) + ∫
t

s

(
�

K
(K − N(u))N(u) +

�2

2K
2
(K − N(u))(K − 2N(u))N(u)

)
du

+ ∫
t

s

�

K
(K − N(u))N(u)dW(u).

�[N(t)|N(s)] =N(s) + �
t

s

(
�

K
(K − N(u))N(u) +

�2

2K2
(K − N(u))(K − 2N(u))N(u)

)
du

≥N(s).
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Theorem 4 gives such condition. It shows that the expected aggregate death counts 
is an increasing function provided N0 ∈ (0,K) and 𝜇 > 𝜎2∕2 . It has been shown in 
several works (Mendez et al. 2012; Otunuga 2018, 2020) that the presence of envi-
ronmental perturbations can affect the dynamic nature of biological systems if the 
noise intensity grows beyond a certain value. The latter condition shows that the 
noise intensity, � , of the environmental perturbation must not be allowed to grow 
beyond a certain function of the average death count’s growth rate � if the submart-
ingale property is to be maintained. Following Theorem 4, we assume for the rest of 
this work that the noise intensity 𝜎 <

√
2𝜇.

We discuss and analyze the distribution of the random aggregate number of death 
counts process N(t) by first deriving its transition probability density function. The dis-
tribution will be used to estimate the epidemiological parameters K , � , and � , and to 
calculate the expected aggregate number of death counts at a particular time t in the 
United States. These estimates will later be used in simulating and forecasting the total 
death counts.

3  Probability Distribution of the Aggregate Number of Deaths 
Following (2.3)

Let pN(n|t,N0) represents the transition probability density function (PDF) for the 
aggregate death counts N(t) given t and N0 . Following the results in (2.8) and (2.10), 
the transition probability density function pN(n|t,N0) is obtained as

The purpose of deriving this PDF is to be able to estimate the epidemiological 
parameters in model (2.3) using the MLE scheme.

3.1  Parameter Estimates

Let T be a number corresponding to the current date the Covid-19 aggregate data is 
collected, and t0 < t1 < ⋯ < tm = T be a partition P of the interval [t0, T] . Denote 
N(tj) by Nj and let N0,N1,N2,⋯ ,Nm be samples satisfying (2.3) at a given time. Let 
Δtj = tj − tj−1 , j = 1, 2,⋯ ,m . The likelihood and log-likelihood functions L(Θ|N) and 
L(Θ|N) , respectively, of the samples are obtained using (3.1), the transformation (2.8), 
and the distribution of u in (2.10), as

(3.1)

pN(n�t,N0) =
K

n(K − n)𝜎
√
2𝜋(t − t0)

exp

⎛
⎜⎜⎜⎝
−

�
ln
�

n

(K−n)

(K−N0)

N0

�
− 𝜇(t − t0)

�2

2(t − t0)𝜎
2

⎞
⎟⎟⎟⎠
, 0 < n < K.
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and

where Θ = {K,�, �} represents the parameter set to be estimated. The maximum 
likelihood estimates K̂ , �̂� , �̂�2 of K , � , �2 are estimated from (3.2) as

where K̂ satisfies

Remark 3 The initial point N0 can also be estimated for better simulation result. In 
this case, the estimates K̂ , �̂� , �̂�2 , N̂0 of K , � , �2 , and N0 reduce to

where K̂ satisfies

L(Θ�N) =
m�
j=1

pN(Nj�tj,Nj−1)

=

m�
j=1

K

Nj(K − Nj)�
√
2�Δtj

exp

⎛⎜⎜⎜⎝
−

�
ln
�

Nj

(K−Nj)

(K−Nj−1)

Nj−1

�
− �Δtj

�2

2Δtj�
2

⎞⎟⎟⎟⎠
,

(3.2)
L(Θ�N) = m lnK −

m∑
j=1

ln
�
Nj

�
K − Nj

��
−

m

2
ln �2 −

1

2�2

m∑
j=1

1

Δtj

�
ln

�
Nj

(K−Nj)
(K−Nj−1)

Nj−1

�
− �Δtj

�2

,

(3.3)
�̂� =

m∑
j=1

ln

�
Nj

(K̂−Nj)
(K̂−Nj−1)

Nj−1

�

m∑
j=1

Δtj

=
ln

�
N(T)

(K̂−N(T))
(K̂−N0)

N0

�

T−t0
,

�̂�2 =
1

m

m∑
j=1

1

Δtj

�
ln
�

Nj

(K̂−Nj)
(K̂−Nj−1)

Nj−1

�
− �̂�Δtj

�2

,

(3.4)

m

K̂
−

m∑
j=1

1

K̂ − Nj

−
1

2�̂�2

m∑
j=1

1

Δtj

(
ln

(
Nj(

K̂ − Nj

)
(
K̂ − Nj−1

)
Nj−1

)
− �̂�Δtj

)

(
Nj − Nj−1(

K̂ − Nj−1

)(
K̂ − Nj

)
)

= 0.

(3.5)

�̂� =
ln

�
N(T)

(K̂−N(T))
(K̂−N1)

N1

�

T−t0
,

N̂0 =
K̂

1+
K̂−N1
N1

e�̂�Δt
,

�̂�2 =
1

m

m∑
j=1

1

Δtj

�
ln
�

Nj

(K̂−Nj)
(K̂−Nj−1)

Nj−1

�
− �̂�Δtj

�2���N0=N̂0
,



 O. M. Otunuga, O. Otunuga 

1 3

   25  Page 12 of 29

3.2  Expected and Simulated Number of Deaths

Since the aggregate death counts N(t) is a random process, it is important to cal-
culate the expected number of total deaths at each given time. Given the initial 
value N0 , the expected aggregate number of deaths, denoted �

[
N(t)|N0

]
 , at time t 

is calculated from (3.1) as

We show in the next theorem that for each time t, the expected death counts falls in 
(0,K) if the death counts starts there.

Theorem 5 If N0 ∈ (0,K) , then 0 < �[N(t)|N0] < K.

Proof If N0 ∈ (0,K) , then it follows from (3.7) that

  ◻

Theorem  5 shows that the expected aggregate number of deaths will always 
be in the feasible region T  if the initial point N0 starts from there. The follow-
ing theorem gives the total deaths expected on the long run and shows condi-
tion under which this number converges to the point N = K using Theorem 5.3 of 
Khasminskii (2012).

Theorem 6 If 𝜇 > 𝜎2∕2 and N0 ∈ (0,K) , then the total deaths expected on the long 
run is K.

Proof Consider the random process z(t) = K − N(t) . It follows from (3.1) that the 
probability density function pz(z|t, z0) of the random variable z given the initial point 
z0 is obtained as

(3.6)

m

K̂
−

m∑
j=1

1

K̂ − Nj

−
1

2�̂�2

m∑
j=1

1

Δtj

(
ln

(
Nj(

K̂ − Nj

)
(
K̂ − Nj−1

)
Nj−1

)
− �̂�Δtj

)

(
Nj − Nj−1(

K̂ − Nj−1

)(
K̂ − Nj

)
)
|||N0=N̂0

= 0.

(3.7)

�
�
N(t)�N0 = n0

�
= ∫ K

0
n pN(n�t,N0) dn = ∫ ∞

−∞

K

�
√
2�t

�
1+

K−N0

N0
e−u

� exp
�
−

(u−�t)2

2�2t

�
du.

�[N(t)�N0] = ∫
∞

−∞

K

𝜎
√
2𝜋t

�
1 +

K−N0

N0

e−u

� exp

�
−
(u − 𝜇t)2

2𝜎2t

�
du

< ∫
∞

−∞

K

𝜎
√
2𝜋t

exp

�
−
(u − 𝜇t)2

2𝜎2t

�
du = K.
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For any 𝛿 > 0,

and

We deduce from the Squeeze Theorem that

Hence, the result follows from Khasminskii (2012).   ◻

4  Predicting the End of Covid‑19 Death

Since N(t) denotes the aggregate death counts at a particular time t, it follows that 
dN/dt will describe the daily death counts. Following Theorems 2 and 6, we know 
that the daily death counts converges to zero as N(t) converges asymptotically to K . 
So, in order to calculate an approximate time that people will stop dying of Covid-
19, we need to calculate, in an 𝜖 > 0 neighborhood of K , a time when the aggre-
gate number K − � is reached. For some positive small constant � , define the open 
interval

Following Theorem 6, we plan to calculate the first-hitting-time �� until the process 
N(t) enters A�.

Definition 2 We define the first passage time �� as

pz(z�t, z0) = K

(K − z)z𝜎
√
2𝜋(t − t0)

exp

⎛
⎜⎜⎜⎝
−

�
ln
�

(K−z)

z

z0

(K−z0)

�
− 𝜇(t − t0)

�2

2(t − t0)𝜎
2

⎞
⎟⎟⎟⎠
, 0 < z < K.

0 ≤ sup
�z0�>𝛿, t≥t0

�
�
z(t)�z0

� ≤ �
∞

−∞

K

𝜎
√
2𝜋(t − t0)

�
1 +

K−𝛿

𝛿
eu

�

exp

�
−

�
u − 𝜇(t − t0)

�2
2𝜎2(t − t0)

�
du → 0 as 𝛿 → 0

0 < �
�
z(t)�z0

�
< ∫

∞

−∞

K

𝜎
√
2𝜋(t − t0)

�
K−z0

z0

eu

� exp

�
−

�
u − 𝜇(t − t0)

�2
2𝜎2(t − t0)

�
du

=
z0

K − z0

exp

�
−

�
𝜇 −

𝜎2

2

�
(t − t0)

�
.

(3.8)lim
t→∞

�[z(t)|z0] = 0.

(4.1)A� = (K − �,K).
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Let g(t) = ℙ
(
�� ≤ t

)
 and f�� (t) = dg(t)∕dt be the First Passage Time Density 

(FPTD), the probability that the aggregate number of death counts N(t) has first 
reached a point K−� at exactly time t. We derive f�� (t) and the expected first hitting 
time in the theorem below for small �.

Theorem 7 If N0 ∈ (0,K) , then the probability f�� (t) that the aggregate number of 
death counts N(t) has first reached a point K − � at exactly time t is obtained as

Furthermore, for  t0=0, the expected first hitting time �
(
��
)
 is obtained as

Proof 
From this, and the Fundamental Theorem of Calculus, we have

and for  t0=0,

  ◻

Equation (4.3) and Theorem 7 can be used to calculate an approximate expected 
time when people in the United States will stop dying of the Covid-19 by making � 
to be as small as possible.

(4.2)𝜏𝜖 = inf
{
t > t0 ∶ N(t) = K − 𝜖

}
.

f𝜏𝜖 (t) =
1

𝜎
√
2𝜋(t − t0)

3
ln

�
K − 𝜖

𝜖

K − N0

N0

�
exp

⎛⎜⎜⎜⎝
−

�
ln
�

K−𝜖

𝜖

K−N0

N0

�
− 𝜇(t − t0)

�2

2𝜎2(t − t0)

⎞⎟⎟⎟⎠
, t > t0.

(4.3)�
(
��
)
=

1

�
ln

(
(K − �)

(
K − N0

)
�N0

)
.

ℙ
�
�� ≤ t

�
=

1√
� �

∞

ln

�
K−�
�

K−N0
N0

�
−�(t−t0)

�
√
2(t−t0 )

e−y
2

dy +
e

2�

�2
ln
�

K−�

�

K−N0

N0

�

√
� �

∞

ln

�
K−�
�

K−N0
N0

�
+�(t−t0)

�
√
2(t−t0 )

e−y
2

dy.

f𝜏𝜖 (t) =
d

dt
ℙ
�
𝜏𝜖 ≤ t

�

=
1

𝜎
√
2𝜋(t − t0)

3
ln

�
K − 𝜖

𝜖

K − N0

N0

�
exp

⎛⎜⎜⎜⎝
−

�
ln
�

K−𝜖

𝜖

K−N0

N0

�
− 𝜇(t − t0)

�2

2𝜎2(t − t0)

⎞
⎟⎟⎟⎠
, t > t0,

�
�
𝜏𝜖
�
=

1

𝜎
√
2𝜋 ∫

∞

0

�
t−1∕2 ln

�
K − 𝜖

𝜖

K − N0

N0

��
exp

⎛
⎜⎜⎜⎝
−

�
ln
�

K−𝜖

𝜖

K−N0

N0

�
− 𝜇t

�2

2𝜎2t

⎞
⎟⎟⎟⎠
dt

=
1

𝜇
ln

�
(K − 𝜖)

�
K − N0

�
𝜖N0

�
, 0 < 𝜖 < K.
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Remark 4 For the solution N�=0(t) =
K

1+
K−N0

N0
e−�t

 of (1.1), the time 

T� =
1

�
ln
(

(K−�)(K−N0)
�N0

)
 at which N�=0(t) = K − � satisfies T� = �

(
��
)
.

As shown in Sect.  1 with respect to model (1.1), the aggregate death count’s 
growth speeds up in the interval (0,K) and slows down in the interval (K∕2,K) . This 
shows that the maximum number of daily deaths can be calculated as 
max

(
dN

dt

)
=

�

4
K , occurring at time TK∕2 =

1

�
ln
(

K−N0

N0

)
= �

(
�K∕2

)
 . In the next theo-

rem, we calculate the expected first time when the aggregate death counts reaches 
the size K∕2 for the stochastic case.

Corollary 8 If N0 ∈ (0,K) , we have lim
�→0+

�
(
��
)
= +∞ . That is, the process N(t) 

never reaches the point K . Also, �
(
�K∕2

)
=

1

�
ln
(
(K−N0)

N0

)
.

Proof The proof follows from (4.3) and Theorem 7.   ◻

The expected first time passage �
(
�K∕2

)
 is analogous to the deterministic time TK∕2 

when the process N(t) starts slowing down. That is, the time where the maximum num-
ber of daily deaths occurs.

As discussed in Sect. 2, we showed, with respect to the deterministic model (1.1), 
the current day’s aggregate death count’s growth is slowing down starting from the 
moment when the current day’s aggregate count is more than K∕2 . Otherwise, the 
virus is spreading, with speeding growth. Numerical results in Figs. 7 and 8 also show, 
for the stochastic case, that the expected aggregate count slows down starting from the 
time �

(
�K∕2

)
.

5  Numerical Simulation and Forecast for the Aggregate Death 
Counts in the United States

As discussed earlier, W(t) is a Wiener process that depends continuously on 
t ∈ [0, T] with independent increment property such that W(t0 = 0) = 0 , 
W(t) −W(s) ∼

√
t − s N(0, 1) for 0 ≤ s < t ≤ T , where N(0,  1) is the standard nor-

mal distribution. Let ΔWj = Wj −Wj−1 , j = 1, 2,⋯ ,m , where Wj+1 = W(tj+1) , 
tj = t0 + (j − 1)Δtj . We discretize the Wiener processes ΔWj with time step Δtj , and 
W(tj) as ΔWj ∼

√
Δtj N(0, 1) and W(tj) = W(tj−1) + ΔWj , j = 2, 3,⋯ ,m with 

W(t1) = ΔW1.
Let N̂j be the discretized aggregate death counts satisfying the solution (2.7) at time 

tj , j = 1, 2,⋯ ,m . We estimate N̂j using (2.7) as

(5.1)N̂j =
�K

1 +
�K−N0

N0

exp
(
−�̂� tj − �̂� W(tj)

) , j = 1, 2,⋯ ,m,
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Table 1  Parameter estimates using stochastic model (2.3) for the first day Covid-19 deaths is recorded to 
June 20, 2021

State K̂ �̂� �̂� N0 RMSE RAMSE �
(
�K∕2

)

AK 366 0.0235 0.0190 1.0172 11.3997 11.2450 250.6866 ( 23-Nov-2020)
AL 12269 0.0142 0.0111 237.8943 448.4912 434.3204 276.0435 ( 29-Nov-2020)
AR 6020.2 0.0208 0.0168 28.0941 136.1947 117.4587 257.9212 ( 07-Dec-2020)
AZ 19306 0.0137 0.0328 419.7449 996.1320 843.8170 280.1291 ( 25-Dec-2020)
CA 71273 0.0139 0.0212 648.3989 3806.2 3686.1 338.2706 ( 05-Jan-2021)
CO 6941.6 0.0128 0.0442 265.8343 438.0126 323.4614 258.6176 ( 29-Nov-2020)
CT 8824.2 0.0080 0.0434 1638.1 731.9427 539.3944 200.3560 ( 04-Oct-2020)
DE 2018.8 0.0085 0.0274 166.8309 97.1994 77.3889 288.3975 ( 08-Jan-2021)
FL 40794 0.0126 0.0000 1.2765 1191.6 1191.6 273.3731 ( 07-Dec-2020)
GA 25150 0.0113 0.0040 817.7736 645.5268 639.6664 300.7165 ( 07-Jan-2021)
HI 517.11 0.0178 0.0001 6.0115 16.7624 16.7624 249.3262 ( 05-Dec-2020)
IA 6308.2 0.0180 0.0334 58.1454 243.9217 184.7225 261.9713 ( 12-Dec-2020)
ID 2122.0 0.0210 0.0243 10.7009 49.0611 33.2558 251.9702 ( 03-Dec-2020)
IL 26890 0.0119 0.0358 1.3726 1407.4 1013.6 249.2160 ( 21-Nov-2020)
IN 14358 0.0153 0.0422 298.5343 803.2925 603.8770 255.4122 ( 27-Nov-2020)
KS 5259.6 0.0233 0.0270 6.1572 155.4604 142.3990 290.0863 ( 27-Dec-2020)
KY 8567.7 0.0130 0.0180 97.4734 202.7383 177.6680 344.4590 ( 25-Feb-2021)
LA 11488 0.0102 0.0166 1.1347 436.0073 375.6429 218.4941 ( 19-Oct-2020)
MA 19462 0.0084 0.0337 3.0196 1289.9 983.2224 210.8422 ( 15-Oct-2020)
MD 10656 0.0091 0.0335 995.9400 568.9196 397.9094 255.0706 ( 28-Nov-2020)
ME 868.01 0.0165 0.0563 7.0728 53.0840 40.3454 296.6184 ( 18-Jan-2021)
MI 22940 0.0085 0.0323 1862.2 1221.2 931.3025 292.8191 ( 20-Dec-2020)
MN 7759.4 0.0152 0.0372 170.5692 376.5030 277.8504 251.9335 ( 28-Nov-2020)
MO 9325.2 0.0196 0.0268 80.8314 302.6209 236.9409 243.3070 ( 16-Nov-2020)
MS 7649.2 0.0144 0.0230 264.3824 270.1491 214.1997 233.0122 ( 24-Oct-2020)
MT 1651 0.0237 0.0001 2.8173 26.8629 28.8074 269.1468 ( 20-Dec-2020)
NC 14141 0.0155 0.0210 207.0690 487.1274 427.1619 271.8087 ( 11-Dec-2020)
ND 1523 0.0338 0.0156 0.6061 37.0740 37.0678 231.9706 ( 14-Nov-2020)
NE 2294.8 0.0216 0.0402 11.5529 101.2707 77.5800 246.9092 ( 29-Nov-2020)
NH 1497.1 0.0106 0.0424 79.2622 88.0697 60.7974 280.1738 ( 28-Dec-2020)
NJ 26374 0.0091 0.0516 4.8141 2381.3 1602.9 180.5213 ( 07-Sep-2020)
NM 4380.8 0.0209 0.0535 22.4488 232.2403 160.4579 255.3504 ( 03-Dec-2020)
NV 6068.2 0.0146 0.0242 101.9782 225.0800 191.6449 280.5323 ( 22-Dec-2020)
NY 23267 0.0070 0.0359 3360.5 1663.7 1313.5 267.5434 ( 08-Dec-2020)
OH 23400 0.0123 0.0271 496.0223 1173 1068.3 314.31 ( 28-Jan-2021)
OK 7550.7 0.0219 0.0352 21.9981 249.1718 188.7447 267.6021 ( 12-Dec-2020)
OR 2785.0 0.0164 0.0287 25.2546 83.2097 60.4606 288.1383 ( 28-Dec-2020)
PA 2996.6 0.0113 0.0419 1240.5 1790.9 1334.7 283.8442 ( 27-Dec-2020)
RI 2986.6 0.0102 0.0375 252.4832 190.8369 143.3343 240.9393 ( 15-Nov-2020)
SC 10576 0.0141 0.0132 251.1180 391.9012 373.3641 264.1748 ( 05-Dec-2020)
SD 2027 0.0286 0.0380 0.9668 51.6401 43.1584 268.6586 ( 05-Dec-2020)
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where �K, �̂�, �̂� are calculated in Sect. 3. In order to generate pseudo samples for each 
point N̂j , we define ΔWl

j
= Wl

j
−Wl

j−1
 , j = 1, 2,⋯ ,m , l = 1, 2,⋯ , L , for sample size 

m and L number of simulations. Using Milstein scheme (Gaines and Lyons 1994), 
the l-th discretized solution Nl

j
≡ N(tj)

l of (2.3) satisfies

for j = 1, 2,⋯ ,m , l = 1, 2,⋯ , L . We use the estimate (5.1), together with the esti-
mated parameters K̂ , �̂� and �̂� in (3.5)–(3.6) to fit the aggregate COVID-19 death 
counts in the fifty states in the United States from the period when the first death 
count is recorded to June 20, 2021, and also to forecast from June 21, 2021 to June 
24, 2021. Model (5.2) and (3.1) are used to generate the probability density function 
for the aggregate death counts for each time tj . Let N̂j,𝜎=0 denote the deterministic 
equivalent of (5.1), which is the discretization of solution of (1.1) with � = 0 . The 
parameters in N̂j,𝜎=0 are also estimated using the Non-Linear Least Square estimate 
scheme (Coleman and Li 1996; May 1963) for model comparison purposes. Denote 
the root mean square error for the deterministic and stochastic discretization scheme 
by RMSE and RAMSE , respectively. We define

(5.2)
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(5.3)

RMSE =

�
1

m

m∑
j=1

�
N̂j,𝜎=0 − N(tj)

�2
� 1

2

,

RAMSE =

�
1

m

m∑
j=1

�
N̂j − N(tj)

�2
� 1

2

,

Table 1  (continued)

State K̂ �̂� �̂� N0 RMSE RAMSE �
(
�K∕2

)

TN 12757 0.0211 0.0325 51.1127 378.6108 261.3577 263.1342 ( 08-Dec-2020)
TX 53563 0.0154 0.0215 959.9323 1975.8 1734.3 260.4598 ( 30-Nov-2020)
UT 2424.9 0.0164 0.0270 24.7834 61.0702 37.3714 279.9737 ( 27-Dec-2020)
VA 14144 0.0102 0.0229 458.0540 542.5815 471.6913 336.5766 ( 15-Feb-2021)
VT 301.44 0.0100 0.0436 11.7290 19.7914 16.1092 330.1658 ( 12-Feb-2021)
WA 6749.6 0.0095 0.0179 377.1470 224.7571 191.6103 298.7084 ( 24-Dec-2020)
WI 8047 0.0200 0.0294 41.1695 285.9822 232.0415 264.1555 ( 09-Dec-2020)
WV 2890.9 0.0231 0.0314 4.2413 67.4599 47.9361 283.0646 ( 06-Jan-2021)
WY 734 0.0340 0.0180 0.1363 14.1754 14.4533 252.5651 ( 22-Dec-2020)
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Fig. 1  Real and simulated aggregate counts of COVID-19 death counts for the states: AR, AZ, CO, FL, 
GA, IA, IN, KS, KY, MA, MD, ME, MN, MT, NC, NE in the United States

where 
{
N(tj)

}m

j=1
 is the real aggregate death counts data. In order to show the superi-

ority of model (2.3) over (1.1), we compare the root mean square errors RMSE and 
RAMSE and show that model (2.3) has a smaller root mean square error.

Table  1 shows the parameter estimates for the stochastic model (2.3) together 
with the root mean square errors RMSE and RAMSE in (5.3) for the determinis-
tic and stochastic cases, respectively, using the Covid-19 aggregate death counts in 
the United States for the period when the first death case is reported to June 20, 
2021. Here, N0 denotes the estimate of the starting value when the first death case 
is reported. The expected first time the aggregate death counts is more than half its 
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carrying capacity is calculated. The root mean square error RMSE was calculated 
by first estimating the parameters in the deterministic model (1.1) using the Non-
Linear Least Square estimate scheme (May 1963; Coleman and Li 1996). The esti-
mated parameters for the deterministic model are not reported in this work. Within 
the analysis period, we see that the expected aggregate death counts started slowing 
down around mid December when the first vaccine was administered for most states. 
A quick comparison of RMSE and RAMSE in Table  1 shows that the stochastic 
model (2.3) performs better than the deterministic model (1.1) in describing the tra-
jectory of the aggregate count of Covid-19 in the United States. In order to minimize 
space, we only show the real and simulated death counts for 24 out of 50 states in 
the United States in Figs. 1 and 2.

Figures 1 and 2 show the real and simulated aggregate death counts for some of 
the fifty states in the United States. In order to forecast the aggregate death counts 
from June 21, 2021 to June 24, 2021, we analyze the data starting from June 4, 2021 
to June 20, 2021. The parameter estimates are shown in Table 2.

Table 2 contains parameter estimates derived using data set from June 4, 2021 to 
June 20, 2021. Here, N0 denotes the estimate of the starting value for June 4, 2021. 
These estimates are used in the forecast for the aggregate death counts from June 21, 
2021 to June 24, 2021. In Table 2, N06∕21∕2021 denotes the forecast aggregate death 
counts estimate for June 21, 2021. The 95% confidence interval for the forecast esti-
mate is also calculated and presented in Figs. 3 and 4.

Figures 3 and 4 show simulated and forecast estimate for the aggregate death 
counts of Covid-19 in the United States. The parameter estimates used for the 
simulation are given in Table  2 using the data set for June 4, 2021 to June 20, 
2021. These parameters are used to forecast the aggregate death counts for June 
21, 2021 to June 24, 2021.

Fig. 2  Real and simulated aggregate counts of COVID-19 death counts for the states: NM, NV, OK, OR, 
TN, UT, WI, WY in the United States
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Table 2  Parameter estimates using stochastic model (2.3) from June 4, 2021 to June 20, 2021

State K̂ �̂� �̂� N0 N06∕21∕2021 N06∕22∕2021 N06∕23∕2021 N06∕24∕2021

AK 368.4 0.0938 0.0179 360.41 366.75 366.87 367.01 367.11
AL 11441 0.0057 0.0001 11299 11312 11313 11314 11315
AR 6013.6 0.0131 0.0018 5842.1 5876.2 5877.7 5879.5 5881.0
AZ 28387 0.0015 31527 17665 17847 17857 17867 17877
CA 93187 0.00047 0.0001 62447 62620 62630 62639 62649
CO 6925.7 0.0337 0.0001 6593.5 6740.5 6746.4 6752.2 6757.8
CT 8279.6 0.0800 0.0001 8241.6 8270.6 8271.2 8271.9 8272.5
DE 3021.4 0.00057 0.0001 1675.0 1682.7 1683.1 1683.5 1683.9
FL 38744 0.0300 0.0039 36925 37643 37671 37703 37729
GA 28840 0.0042 0.0001 20917 21341 21364 21387 21410
HI 4824.5 0.0011 0.0001 498.64 507.73 508.24 508.75 509.26
IA 6156.3 0.0520 0.0001 6060.2 6118.2 6120.1 6121.9 6123.6
ID 2160.4 0.0295 0.0001 2101.3 2125.3 2126.3 2127.3 2128.2
IL 26192 0.0249 0.0001 25282 25603 25618 25631 25645
IN 18348 0.0014 0.0001 13702 13789 13794 13799 13804
KS 5320.7 0.0176 0.0064 5081.1 5138.8 5141.0 5144.3 5146.2
KY 7213.6 0.0634 0.0043 7166.4 7198.1 7199.0 7199.9 7200.7
LA 17722 0.0012 0.0001 10602 10696 10701 10706 10711
MA 18433 0.0088 0.00022 17898 17974 17978 17982 17985
MD 10000 0.0151 0.0001 9635.8 9720.3 9724.4 9728.4 9732.4
ME 1068.6 0.0075 0.0036 836.96 857.57 858.35 859.73 860.41
MI 21561 0.0263 0.0015 20541 20909 20925 20941 20956
MN 8094.2 0.0129 0.00039 7535.8 7644.0 7649.3 7654.8 7659.9
MO 9424.0 0.0266 0.00069 9141.8 9246.6 9251.0 9255.5 9259.8
MS 7601.6 0.0128 0.00069 7326.0 7380.2 7382.8 7385.5 7388.1
MT 2749.7 0.0024 0.0006 1628.7 1654.9 1656.1 1657.8 1658.9
NC 18353 0.0015 0.0001 13245 13342 13348 13353 13358
ND 1530.0 0.0605 0.0194 .514.2 1524.1 1524.4 1524.7 1524.9
NE 2259 0.2955 0.0978 2243.4 2258.9 2258.9 2258.9 2258.9
NH 1811.7 0.0027 0.0005 1353.2 1368.8 1369.5 1370.5 1371.2
NJ 26778 0.0158 0.0003 26259 26385 26391 26397 26403
NM 4526.7 0.0052 0.0012 4315.9 4332.9 4333.7 4334.7 4335.4
NV 10653 0.0013 0.0001 5592.0 5652.4 5655.7 5659.1 5662.4
NY 20320 0.0128 0.0003 19810 19912 19917 19922 19927
OH 20761 0.0190 0.0001 19948 20176 20187 20197 20208
OK 8005.6 0.0060 0.0026 7315.4 7373.4 7375.6 7379.4 7381.4
OR 2877.7 0.0304 0.0001 2680.4 2760.1 2763.5 2766.8 2770.0
PA 28203 0.0222 0.0008 27305 27592 27605 27618 27630
RI 2796.8 0.0064 0.0001 2717.1 2725.5 2726.0 2726.4 2726.9
SC 10210 0.0057 0.0004 9771.0 9811.3 9813.3 9815.5 9817.5
SD 2028.9 0.0982 0.0001 2020.4 2027.4 2027.6 2027.7 2027.8
TN 13509 0.0027 0.0001 12474 12520 12523 12525 12527
TX 51977 0.0236 0.0001 50572 51050 51071 51092 51112
UT 2395.8 0.0159 0.0001 2309.1 2330.1 2331.1 2332.1 2333.1
VA 11616 0.0282 0.0031 11218 11369 11375 11382 11388



1 3

Stochastic Modeling and Forecasting of Covid‑19 Deaths:… Page 21 of 29    25 

Table 2  (continued)

State K̂ �̂� �̂� N0 N06∕21∕2021 N06∕22∕2021 N06∕23∕2021 N06∕24∕2021

VT 256.4 0.00005 0.0001 256.00 256.00 256.00 256.00 256.0
WA 12305 0.000 0.0009 5824.1 5809.7 5807.3 5807.9 5805.0
WI 8267.0 0.0263 0.0001 7942.5 8061.8 8067.0 8072.1 8077.0
WV 2882.0 0.0995 0.0002 2800.1 2868.0 2869.3 2870.5 2871.6
WY 3320.9 0.0021 0.0011 718.2092 737.1472 737.8835 739.2320 739.87

Fig. 3  Forecast of aggregate counts of COVID-19 death counts for the states: AR, AZ, CO, FL, GA, IA, 
IN, KS, KY, MA, MD, ME, MN, MT, NC, NE in the United States
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In order to verify the validity of the obtained probability density function (3.1), 
we show in the following graphs the comparison of the probability density func-
tion for the random variable Nl

T
 given in (5.2) for l = 10, 000 simulations with the 

probability density function in (3.1) by setting t = tm = T  . The time t = T  corre-
sponds to the day: June 24, 2021.

By generating the histogram of {Nl
T
}10,000
l=1

 in (5.2), we show the comparison 
of the graphs of the probability density function for the random variable Nl

T
 and 

pN(N|T ,N0) in Figs. 5 and 6. The graphs show that the probability density func-
tion concentrates on a particular value. To know what this value is, we calculate 
the expected value of the aggregate death counts obtained in (3.7) for each of 
the fifty states in the United States and noticed the probability density function 
concentrates on the expected aggregate count �(N(T)) on June 24, 2021, with 
t = tm = T  denoting June 24, 2021. We also noticed that this value is close to the 
equilibrium point K , which is the maximum aggregate death counts as at the time 
this research is conducted. Define

The comparison of the value NT ,max where the probability density function 
pN(N|T ,N0) concentrates on, with the expected aggregate count on June 24, 2021 
is shown in Table 3. The plot of the expected aggregate death counts is plotted in 
Figs. 7 and 8 as a function of time.

Using the result obtained in (3.7), we plot the graph of the expected value of 
the aggregate death counts �

(
N(t)|N0

)
 with time for each states in the United 

States in Figs. 7 and 8. The graph shows that the expected value of the aggregate 

(5.4)NT ,max = argmax N∈(0,K)pN(N|T ,N0)

Fig. 4  Forecast of aggregate counts of COVID-19 death counts for the states: NM, NV, OK, OR, TN, 
UT, WI, WY in the United States
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death counts is increasing for t ≥ 0 . We also see from the graphs that the expected 
aggregate death counts started slowing down sometimes around the month of 
December 2020 for most states. This number is still slowing down as at the time 
this analysis is carried out (June 2021).

6  Summary and Discussion

In this work, we study and analyze the aggregate death counts N(t) resulting from 
the Covid-19 virus infection in the United States. Recent studies use the determin-
istic logistic model to analyze this counts by assuming the death count’s per capita 

Fig. 5  Probability density function for COVID-19 death counts for the states: AR, AZ, CO, FL, GA, IA, 
IN, KS, KY, MA, MD, ME, MN, MT, NC, NE on June 24, 2021
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growth rate of the Covid-19 virus is constant over time. Our studies show that this 
is not the case. We assume, based on some analysis, that this growth rate can be 
affected by external perturbations causing fluctuations that can be modeled as a 
white noise described using a Wiener process. This assumption is used to modify 
and extend the existing logistic model to a stochastic differential equation. We 
analyze this model by first showing that it has a unique solution and its solution is 
bounded, with probability one. Analogue to an increasing function, we show that the 
process N(t) is a submartingale that converges almost surely to a random variable  
on the long run if � is greater than �2∕2 . By calculating the first hitting time when 
the aggregate death counts reach K − � for small 𝜖 > 0 , we calculate an approximate 
expected time when the death counts slow down for each state in the United States. 
To do this, we first calculate the probability of the first passage time �� described in 
(4.2), and later calculate the expected first passage time. Our result shows that the 
aggregate death counts is now slowing down as at June 2021 when this analysis is 
conducted. By comparing the estimate K∕2 with the estimate N(T) and �

[
N(T)|N0

]
 

for the current day, June 24, 2021, our analysis shows that the Covid-19 death crisis 
slows down in the month of June in most states in the United States.

By deriving the transition probability density function for the process N(t), 
we show that the expected aggregate death counts is bounded, and approaches K 
asymptotically. We also studied the distribution of the counts for the time T when 
this analysis is conducted and our result shows that the distribution concentrates on 
the expected aggregate count for that day (June 24, 2021).

Using the Maximum Likelihood Estimate scheme, we estimate the epidemiologi-
cal parameters K , � , and � using (3.3)–(3.4). These are used together with the Mil-
stein scheme (5.2) to simulate and forecast the aggregate death counts for each states 
in the United States. A 95% confidence interval is provided for the forecast result. 
To show that our model (2.3) performs better than existing model (1.1), we compare 

Fig. 6  Probability density function for COVID-19 death counts for the states: NM, NV, OK, OR, TN, 
UT, WI, WY on June 24, 2021
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Table 3  Table containing N
T ,max 

with the expected aggregate 
count �[N(T)] on June 24, 2021

State N
T ,max �

[
N(T)|N0

]

AK 365 364
AL 11, 651 11, 603
AR 5932 5915
AZ 18, 316 17, 528
CA 65, 907 64, 308
CO 6752 6344
CT 8391 7680
DE 1700 1600
FL 37, 763 37, 592
GA 21, 786 21, 757
HI 504 503
IA 6188 6072
ID 2116 2106
IL 25, 766 24, 581
IN 14, 094 13, 583
KS 5198 5161
KY 7269 7153
LA 10, 711 10, 584
MA 18, 129 17, 085
MD 9747 9111
ME 854 780
MI 20, 256 18, 718
MN 7595 7367
MO 9234 9179
MS 7474 7401
MT 1640 1638
NC 13, 581 13, 412
ND 1526 1526
NE 2281 2257
NH 1399 1264
NJ 25, 936 24, 031
NM 4369 4279
NV 5754 5630
NY 20, 259 18, 310
OH 20, 735 19, 714
OK 7485 7408
OR 2689 2624
PA 28, 225 25, 783
RI 2822 2647
SC 10, 004 9943
SD 2026 2020
TN 12, 630 12, 507
TX 51, 732 51, 136
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Table 3  (continued) State N
T ,max �

[
N(T)|N0

]

UT 2334 2285
VA 11, 499 10, 979
VT 267 230
WA 5828 5687
WI 7977 7899
WV 2854 2822
WY 739 738

Fig. 7  Expected aggregate counts for the states: AR, AZ, CO, FL, GA, IA, IN, KS, KY, MA, MD, ME, 
MN, MT, NC, NE in the United States
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the root mean square errors RAMSE and RMSE for the stochastic and deterministic 
models, respectively, and show that RAMSE < RMSE . This research is still ongo-
ing and an update will be provided when available.
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