Behavior Research Methods (2019) 51:2390-2404
https://doi.org/10.3758/513428-019-01219-z

®

Check for
updates

A method, framework, and tutorial for efficiently simulating models
of decision-making

Nathan J. Evans'2
Published online: 28 March 2019
© The Author(s) 2019

Abstract

Evidence accumulation models (EAMs) have become the dominant models of rapid decision-making. Several variants of
these models have been proposed, ranging from the simple linear ballistic accumulator (LBA) to the more complex leaky-
competing accumulator (LCA), and further extensions that include time-varying rates of evidence accumulation or decision
thresholds. Although applications of the simpler variants have been widespread, applications of the more complex models
have been fewer, largely due to their intractable likelihood function and the computational cost of mass simulation. Here, I
present a framework for efficiently fitting complex EAMs, which uses a new, efficient method of simulating these models.
I find that the majority of simulation time is taken up by random number generation (RNG) from the normal distribution,
needed for the stochastic noise of the differential equation. To reduce this inefficiency, I propose using the well-known
concept within computer science of “look-up tables” (LUTSs) as an approximation to the inverse cumulative density function
(iCDF) method of RNG, which I call “LUT-iCDF”. I show that when using an appropriately sized LUT, simulations using
LUT-iCDF closely match those from the standard RNG method in R. My framework, which I provide a detailed tutorial on
how to implement, includes C code for /2 different variants of EAMs using the LUT-iCDF method, and should make the
implementation of complex EAMs easier and faster.

Keywords Decision-making - Evidence accumulation models - Random number generation -
Probability density approximation

Introduction

Evidence accumulation models (EAMs; Stone 1960) are
currently the dominant modeling framework within rapid
decision-making, having aided our understanding of stop-
signal paradigms (Matzke, Dolan, Logan, Brown, &
Wagenmakers, 2013), absolute identification (Brown, Mar-
ley, Donkin, & Heathcote, 2008), performance optimality
(Starns & Ratcliff, 2012; Evans & Brown, 2017; Evans,
Bennett, & Brown, 2018), clinical populations (Ho et al.,

All associated code for this manuscript is available on OSF:
https://osf.io/7jzcb/. This research was supported by NSF grant
SES-1556415.

< Nathan J. Evans
nathan.j.evans@uon.edu.au

Department of Psychology, University of Amsterdam,
Amsterdam, The Netherlands

Department of Psychology, Vanderbilt University,
Nashville, TN, USA

@ Springer

2014), performance improvement over practice (Evans,
Brown, Mewhort, & Heathcote, 2018), more complex deci-
sions (Hawkins et al., 2014), and having provided links to
other types of data, such as personality measures (Evans,
Rae, Bushmakin, Rubin, & Brown, 2017), genetic informa-
tion (Evans, Steyvers, & Brown, 2018), and neural record-
ings (Forstmann et al., 2011). EAMs propose that decisions
are made through a process where evidence accumulates
for each of the different decision alternatives at some rate
(known as the “drift rate”) until the evidence for one of
these alternatives reaches some threshold level of evidence
(known as the “decision threshold”), where a response
is triggered. Importantly, EAMs are able to account for
the well-known speed—accuracy tradeoff (SAT) by analyz-
ing response time and accuracy data in unison, and esti-
mate theoretically meaningful parameters from the observed
response time distributions (Donkin, Averell, Brown, &
Heathcote, 2009).

Although all EAMs contain the general process described
above, each EAM differs in the specifics of the proposed
process. Where some EAMs have attempted to provide a

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-019-01219-z&domain=pdf
https://osf.io/7jzcb/
mailto: nathan.j.evans@uon.edu.au

Behav Res (2019) 51:2390-2404

2391

parsimonious model suitable for easy application (e.g., the
linear ballistic accumulation [LBA; Brown & Heathcote
2008]), several other EAMs have attempted to provide a
more process-focused model definition. For example, the
leaky-competing accumulator (LCA; Usher & McClelland
2001) contains a process based upon what would be
expected from underlying neural architecture, derived from
findings within the neuroscience and neurophysiology
literature (e.g., Rumelhart, Hinton, & McClelland, 1986;
Softky & Koch, 1993; Shadlen & Newsome, 1994; Amit
& Tsodyks, 1991; Chelazzi, Miller, Duncan, & Desimone,
1993). Beyond the LCA, several new proposals have
incorporated time-varying drift rates (Servant, Montagnini,
& Burle, 2014; Evans, Hawkins, Boehm, Wagenmakers, &
Brown, 2017)or decision thresholds (Hawkins, Forstmann,
Wagenmakers, Ratcliff, & Brown, 2015), where the
values of these parameters systematically vary across
the course of the trial. These proposals have included
“urgency signals” that are applied to the accumulated
evidence to prevent overly slow responses (Cisek, Puskas,
& El-Murr, 2009; Thura, Beauregard-Racine, Fradet, &
Cisek, 2012), piecewise models to account for objectively
changing evidence over the course of the decision (Holmes,
Trueblood, & Heathcote, 2016; Holmes & Trueblood,
2018), the use of single-cell recording data as direct input
for the drift rates (Purcell et al., 2010), and decreases in the
amount of evidence required to trigger a decision over time
(i.e., collapsing thresholds; Ditterich, 2006; Drugowitsch,
Moreno-Bote, Churchland, Shadlen, & Pouget, 2012).
However, implementing these more complex EAMs
often comes at a practical cost, where the probability density
functions (PDFs) required to fit the models are either
unknown, or computationally burdensome to implement. In
contrast, the simple functional form of the LBA results in
an analytically solvable PDF, which has helped the LBA
become a useful tool for researchers in decision-making
(e.g., Evans, Rae, Bushmakin, Rubin, & Brown, 2017
Ho et al., 2014; Brown, Marley, Donkin, & Heathcote,
2008; Donkin, Averell, Brown, & Heathcote, 2009; Holmes,
Trueblood, & Heathcote, 2016; Evans, Steyvers, & Brown,
2018). Applications of models that contain unknown or
intractable PDFs have relied on methods that involve mass
simulation. Initially, these methods involved either “hand-
tuning” of parameter values (Thura, Beauregard-Racine,
Fradet, & Cisek, 2012), small grid-based searches (Tsetsos,
Usher, & Chater, 2010), or minimization routines (Hawkins,
Wagenmakers, Ratcliff, & Brown, 2015; Evans et al.,
2017), with the best-fitting parameters being determined
by the smallest discrepancy between the data and the
model predictions on some summary statistic (e.g., x2).
More recent implementations have involved the use of
pseudo-likelihood methods, such as probability density
approximation (PDA; Turner & Sederberg 2014; Holmes

2015), which involve fitting a density kernel to the
model predictions generated through simulation, allowing
a simulation-based PDF to be obtained for the model
(Turner, Schley, Muller, & Tsetsos, 2018). PDA provides
several benefits over the minimization methods, allowing
the models to be fit with likelihood-based methods of
estimation, such as Bayesian methods that allow for more
complete methods of selecting between competing models
(Evans, Howard, Heathcote, & Brown, 2017; Evans &
Brown, 2018; Gronau et al., 2017). However, pseudo-
likelihood methods also require mass simulation, with a
large number of simulated trials being required to ensure an
accurate estimate of the PDF. Unfortunately, this can result
in more complex EAMs being practically impossible to fit,
due to the large amount of time taken up by mass simulation.

Here, 1 present a framework for efficiently fitting
complex EAMs, which uses a new, efficient method of
simulating these models. My method, which I call LUT-
iCDF, uses the well-known concept within computer
science of “look-up tables” (LUTs) to provide a fast
approximation of the inverse cumulative density function
(iCDF) method of random number generation (RNG) for
the normal distribution, which will be explained in more
detail in the next section “The LUT-iCDF method”. My
framework includes C code for simulating /2 different
variants and sub-variants of EAMs, R wrappers that make
the C code easy to use, and a basic implementation of PDA
in R to allow these models to be fit in maximum likelihood
or Bayesian frameworks (though the C code and R wrappers
can be used within any simulation-based fitting framework,
such as x?). My method of RNG is also generalizable to any
model where RNG from the normal distribution is a large
time cost for the simulations (e.g., any stochastic differential
equation). Within this article, I provide a full description and
testing of my LUT-iCDF method of RNG from the normal
distribution, a tutorial on how to implement the included
code, and a brief description of the models included (with
references to where further details can be found). Overall,
the aim of this article is to make the implementation of
complex EAMs easier and faster, in an attempt to increase
their usage.

The LUT-iCDF method

In this section, I detail my proposed method for fast RNG
from the normal distribution. Specifically, I show the large
computational cost of RNG from the normal distribution.
From there, I explain my method and show the associated
speed increase in simulation time. Lastly, I discuss some
theoretical limitations of my method, but show that in
practical applications my method leads to identical results
as the standard RNG function in R.

@ Springer

2392

Behav Res (2019) 51:2390-2404

Table 1 Displays the mean (standard deviation) computation time over 100 independent runs to simulate each of the models in my framework

(rows) for 10,000 trials of 200 time-steps each

Model R code R code LUT C code C code LUT

DIFF 0.383 (0.066) 0.317 (0.069) 0.165 (0.008) 0.027 (0.002)
DIFF P 0.391 (0.068) 0.324 (0.067) 0.163 (0.007) 0.027 (0.002)
DIFF TV 0.359 (0.063) 0.303 (0.069) 0.163 (0.006) 0.028 (0.002)
DIFF DB 0.41 (0.071) 0.333 (0.065) 0.164 (0.007) 0.028 (0.002)
LCA 0.855 (0.068) 0.768 (0.056) 0.344 (0.012) 0.058 (0.006)
LCAP 0.864 (0.091) 0.722 (0.042) 0.346 (0.012) 0.062 (0.006)
LCATV 0.92 (0.032) 0.807 (0.069) 0.345 (0.011) 0.06 (0.005)

LCA DB 0.835 (0.055) 0.741 (0.059) 0.352 (0.035) 0.061 (0.006)
UGM 0.42 (0.078) 0.358 (0.073) 0.18 (0.008) 0.043 (0.003)
UGM TV 0.387 (0.07) 0.324 (0.069) 0.179 (0.008) 0.043 (0.003)
LBA 0.041 (0.024) 0.043 (0.025) 0.002 (0.001) 0.001 (0.001)
LBAP 0.055 (0.027) 0.057 (0.031) 0.005 (0.001) 0.003 (0.001)

Columns display the names of the models, and different methods of simulation: R code using the “rnorm” function, R code using the LUT-iCDF
method, C code using the “norm_rand()” function, and C code using the LUT-iCDF method. In all cases, the LUT-iCDF method was implemented
with a granularity of 0.0001. Within the table, “DIFF” refers to the diffusion model, “P” refers to a piecewise extension, “TV” refers to a time-
varying drift rate extension, and “DB” refers to a time-varying threshold extension. Note that all of these timing benchmarks are based on my
computer, and will differ between different hardware and software. However, these benchmarks serve as an example of the relative speed-up

gained using the LUT-iCDF method

The programming language C has been used to provide
faster performance in some previous applications of
complex EAMs (e.g., Hawkins, Wagenmakers, Ratcliff, &
Brown, 2015; Evans, Hawkins, Boehm, Wagenmakers, &
Brown, 2017; Voss & Voss, 2007). Specifically, C is a
programming language that underlies several mainstream
data analysis programming languages, such as R (R Core
Team, 2014) and MATLAB. In general, C implementations
can be faster than those of mainstream data analysis
programming languages, but also harder to create. However,
the simulation process for most EAMs can be performed
within a short amount of code using basic mathematical
functions, making them fairly simple to implement in C
with large potential increases in computation speed. An
example of these speed increases for each of the models
in my framework can be seen in Table 1. In all cases,
implementing the model in C (column 4) is at least twice as
fast as implementing the model in R (column 2).

However, one commonly overlooked aspect that can
have a large impact on simulation speed is the method of
RNG. Importantly, for all EAMs that contain stochastic,
within-trial noise (i.e., every EAM except the LBA), RNG
from the normal distribution needs to be performed on
every time-step of every simulated trial. Therefore, if the
method of RNG is inefficient, it will have detrimental
effects on the overall speed of the implementation. For
example, when simulating the diffusion model (Ratcliff,
1978)—one of the most commonly used EAMS—using
C’s “norm_rand()” function for the RNG of the stochastic

@ Springer

noise, simulating 10,000 trials that each contain 200 time-
steps takes an average of 165 ms (SD = 8 ms). However,
when only running the deterministic parts of the code (i.e.,
setting the stochastic noise to a fixed value), the simulation
takes an average of only 6 ms (SD = 1 ms), meaning
that the RNG through “norm_rand()” is taking up more
than 96% of the simulation time. Another RNG method
that is easy to implement is the inverse cumulative density
function (iCDF), which requires generating random uniform
numbers between 0 and 1 (i.e., U[0, 1]) and taking their
iCDF under the standard normal distribution. However, the
simulation! still takes an average of 122 ms (SD = 5 ms),
meaning that over 95% of the simulation time is still being
taken up by RNG.

To reduce this inefficiency, I propose using a look-
up table (LUT)—a concept from computer science—to
approximate the iCDF method of RNG, which I call
LUT-iCDF. LUTs are commonly used when specific
calculations are computationally costly relative to other
elements of the code, and these calculations have to
be performed repeatedly throughout the process. LUTs
map “before calculation” values to their respective “after
calculation” values, meaning that these computationally
taxing calculations only need to be performed once. A
classic example of the use of LUTs is the calculation of p

My code for the standard iCDF implementation was adapted from
that on John D. Cook’s website: https://www.johndcook.com/blog/
normal_cdf_inverse/

https://www.johndcook.com/blog/normal_cdf_inverse/
https://www.johndcook.com/blog/normal_cdf_inverse/

Behav Res (2019) 51:2390-2404

2393

values before advancements in computing made integrating
the tails of these distributions trivial, where the test statistic
and degrees of freedom were “looked-up” within a table
to find the respective p value. However, my LUT-iCDF
method is also able to remove the inefficiency of having to
search the LUT for the matching before calculation element
(i.e., the “looking-up” process) by converting the uniformly
distributed numbers (i.e., U[0, 1]) to uniformly distributed
integers that match the size of the table (i.e., U[l, NJ,
where N is the number of elements in the LUT). Provided
that the LUT corresponds to symmetric and equally spaced
elements from the U[0, 1], which I describe how to create
below, the randomly generated integers can be directly used
as randomly generated indexes of the LUT, and the LUT
element corresponding to the index is a random sample from
the standard normal distribution.

Implementation of the LUT-iCDF method requires four
simple steps, which can be seen as a flowchart in Fig. 1.
The process begins by generating a sequence of symmetrical
(i.e., centered on 0.5), equally spaced numbers between 0

Steps R code

Step 1: Pick a
granularity level, x

\ 4 $ $

Step 2: Generate a
sequence, y,
between 0 and 1,
non-inclusive, by
increments of x

\ 4 $ \ 4

Step 3: Calculate a
vector, z, of the
normal (Gaussian)
inverse cumulative
density of y

\ 4 \ 4 $

Step 4: Generate
random integers
between 1 and the
length of vector z, and
use the associated
index of z as a draw
from the normal
distribution

Example

x=0.01 x =0.01

y =0.01,0.02, ...,

y = seq(x,1-x,X) 098 099

z=-2.33,-2.05,

z = gnorm(y) ..., 2.05,2.33

Samples =
sample
(1:length(z),1)

Samples = 66

Densities = z[66]

=0.41
Densities =

z[Samples]

Fig.1 A flowchart of my proposed look-up table approximation to the
inverse cumulative density function method (LUT-iCDF) of random
number generation from the normal distribution. The columns, from
left to right, show the written steps, the associated R code, and an
example

and 1 (non-inclusive, as 0 and 1 reflect —oo and oo of the
standard normal, respectively), which creates an unbiased
approximation of a uniform distribution between 0 and 1.
An easy way to do this is to generate a sequence of numbers
with granularity (i.e., spacing) x, which start at 0 + x and
finish at 1 —x, as shown in Step 1 and Step 2 of Fig. 1. Next,
the iCDF is calculated for each number in the sequence, and
these iCDF values are stored in the LUT, which contains
lfx elements (Step 3). Lastly, random uniformly distributed
integers are generated that have a minimum value of 1 and
a maximum value of the total number of elements in the
LUT, and the integers form a random index of the LUT,
with the corresponding elements of the LUT being samples
from the standard normal distribution (Step 4). As shown
in Table 1, the implementation of the LUT-iCDF method
greatly increases simulation speed in both R (column 3)
and C (column 5) code, with the simulation of the diffusion
model for 10,000 trials of 200 time-steps only taking 27 ms
(SD =2 ms), meaning that RNG is taking up approximately
78% of the time, in contrast to the 95%+ of standard
methods.

Assessing the LUT-iCDF approximation accuracy

As mentioned above, the LUT-iCDF method involves some
level of approximation, and therefore, could potentially
lead to inaccuracies. Importantly, the accuracy of the
approximation to the normal distribution is dependent on the
granularity of the sequence that approximates the U[O0, 1],
meaning that a small granularity should be used to create
a large number of points in the LUT-iCDF approximation.
Specifically, granularities that are too large will result
in “truncations” of the approximated normal distribution,
where values from certain parts of the distribution are
never sampled, such as the tails. However, granularities that
are too small will result in the LUT becoming large, and
sufficiently large LUTs may cause increases in computation
time.

Figure 2 provides an assessment of the accuracy of differ-
ent LUT-iCDF granularities (different rows) in approximat-
ing the standard normal distribution (left column), and how
inaccuracies in the approximation of the standard normal
distribution influence the approximation of the diffusion
process (right column). For the smallest granularity (x =0.1;
top row) the LUT-iCDF produces a poor approximation of
the normal distribution, with the samples forming nine sep-
arate spikes at the nine different values in the LUT. The
poor approximation of the normal distribution is reflected
in the diffusion process, as the LUT-iCDF simulation pro-
duces responses that are more likely to be slower and correct
than when simulating using the actual normal distribution.
The second granularity (x = 0.01; second row) provides
an improvement, with the LUT-iCDF producing a good

@ Springer

Behav Res (2019) 51:2390-2404

2394
Normal

< S
S 3
\"
o | Q
~ o -
. :
O Fu | T

o
n 38 2
X 5 - £
o | n
°© 5 T T T rG

-3 -15 0 15
Numeric Value

w

-3 -15 0 1.5
Numeric Value

x =0.01
Density
01 02 03
>
CT = 13ms, KS = 0.01, p < 0.001

w

4
0.242

-3 -15 0 1.5 3
Numeric Value

x = 0.001
Density
01 02 03 O
| l l l l
CT =14ms, KS =0.001,p =

0.828

-3 -15 0 1.5
Numeric Value

x =0.0001
Density
01 02 03
l l l l
CT =13ms, KS=0.001,p =

w

Diffusion
< -KS=0.183 S=0.161
p < 0.001 p < 0.001
o
S -
g
22 2
% <
o | I
az =
o
v |
o
© T T T T T
-2 -1 0 1 2
Response Time
n
© {KS=003
p < 0.001
o |
o
[2]
29 5
2 3
o | I
S =
o
n
9
o |
© T T T T T
-2 -1 0 1 2
Response Time
< -KS=0.005 S=0.003
p = 0.006
o
2
[%2]
ERE s
z 8
o I
az - —
o
v
o
= J\
© T T T T T
-2 -1 0 1 2
Response Time
n
o 1KS=0.002 S =0.001
p = 0.749
o |
o
[92]
22 4 §
2 3
o | I
az -
o
n
1
o
S -

-2 -1 0 1 2
Response Time

Fig. 2 Displays a comparison between the “rnorm” function in R (red) and a C implementation of my LUT-iCDF method (black) for 1,000,000
samples from the normal distribution (left column) and 1,000,000 simulated trials of the diffusion model (right column), for different granularities
of the LUT-iCDF (rows). For the diffusion model simulations, response time distributions corresponding to responses for the second alternative
are plotted as negative values on the x-axis, to make the distributions for different responses more easily distinguished. In all plots, “CT” refers
to the computation time of taking the 1,000,000 samples, “KS” refers to the test statistic of the non-parametric Kolmogorov—Smirnov test for
equivalent distributions, and “p” refers to the p value for the Kolmogorov—Smirnov test

approximation of the normal distribution in most regions.
However, the approximation becomes poorer in the tails,
showing behavior similar to the previous granularity and
resulting in the Kolmogorov—Smirnov (KS) test suggesting
that the distributions differ from one another (KS = 0.01,
p < 0.001), which also continues to influence the diffusion

@ Springer

process (correct responses: KS = 0.025, p < 0.001; incor-
rect responses: KS = 0.03, p < 0.001). The third granularity
(x = 0.001; third row) provides a very close approxima-
tion to the normal distribution, with only the tails of the
LUT-iCDF approximated distribution (i.e., SD > 3) show-
ing any noticeable deviations from the normal distribution,

Behav Res (2019) 51:2390-2404

2395

and the KS test failing to suggest that there are any differ-
ences between the distributions (KS = 0.001, p = 0.242).
However, these minor deviations appear to still cause devia-
tions in the predictions of the diffusion process: although the
simulation of the diffusion process using the LUT-iCDF and
the actual normal distribution are difficult to visually distin-
guish between, the KS test continues to suggest that these
distributions differ from one another (correct responses: KS
= 0.003, p = 0.001; incorrect responses: KS = 0.005, p =
0.006).

For the largest granularity included (x = 0.0001; bottom
row) the LUT-iCDF appears to provide a near identical
approximation to the normal distribution, both visually
and in terms of the KS test (KS = 0.001, p = 0.828).
This accurate approximation also carries over to the
simulation of the diffusion process, with the distributions
for correct (KS = 0.001, p = 0.738) and incorrect (KS
= 0.002, p = 0.749) responses generated by the LUT-
iCDF approximation being near identical to using the actual
normal distribution, both visually and in terms of the KS
test. Based on this assessment, it appears that the LUT-
iCDF method a granularity of 0.0001 (i.e., 10~#) provides
an accurate approximation of the diffusion process, and
that RNG from a LUT of this size (i.e., 9999 elements) is
approximately as quick as generating with the smallest LUT
assessed (nine elements; both took approximately 13 ms to
generate 1,000,000 normally distributed samples). Although
the granularity could potentially be made even smaller
in an attempt ensure the accuracy of the approximation,
further decreases (i.e., x = 0.00001) began to result in
large increases in computation time (normal = 19 ms,
diffusion = 603 ms), which I discuss further in the next
sub-section on LUT augmentations. A further assessment
of the approximation accuracy of the LUT-iCDF method
with a granularity of 0.0001 can be seen in Fig. 3, which
compares the simulation of each of the models in my
framework (which will each be discussed in detail in
the “Models” section) with LUT-iCDF to those using the
actual normal distribution. In all cases, the LUT-iCDF
with 0.0001 granularity appears to provide a near identical
approximation, both visually and according to KS tests,
suggesting that this granularity generally appears to provide
an accurate approximation of the normal distribution and
the simulation of EAMSs. Therefore, I recommend the use
of the 0.0001 granularity (i.e., 9999 table elements), which
I implement in all of my included code; however, the
granularity can be easily changed within the code, which I
explain in the “Implementation” section.

Potential LUT augmentations

As discussed previously, my LUT-iCDF method is able to
remove the inefficiency of searching the LUT by using

uniformly distributed integers that match the size of the
table. This requires that the elements of the LUT correspond
to the iCDF of symmetric and equally spaced elements
from the U[0, 1], which I implement in all of my code.
However, there may be situations where using a non-
symmetric and/or non-equally spaced LUT may be more
efficient, as removing these constraints may allow the
LUT to be reduced in size. Here I briefly explore two
of these possibilities, and assess under what conditions
they would provide faster sampling from the normal
distribution.

One possibility to reduce the size of the LUT would
be to only use the elements corresponding to the positive
values of the normal distribution. As each half of the
LUT provides duplicate information in absolute magnitude
(e.g., the iCDF of 0.6 is 0.253, and the iCDF of 0.4 is -
0.253), the size of the LUT could be halved without any
loss of information. However, this would mean that the
random uniform integer would not directly correspond to an
index of the LUT, meaning that a few extra lines of code,
including an “if” statement, which can be computationally
expensive, need to be added. A comparison of computation
time for the standard LUT-iCDF (column 2) and the halved
version (column 3) for different granularities can be seen
in Table 2. Interestingly, when the LUT is small, the extra
lines of code required for the halved version cause it to
sample more slowly than the standard LUT-iCDF method.
However, as the granularity is decreased, this discrepancy
also decreases, until the halved version becomes faster than
the standard LUT-iCDF (x = 10~7). Therefore, the halved
LUT may provide a more efficient LUT in situations where
a fine-grained approximation is required.

Another possibility to reduce the size of the LUT
would be to create a standard LUT, which requires
directly mapping to before-calculation values to their closest
matching after-calculation value. This would allow the
LUT to be both non-symmetric and have variable spacing
between elements, which could allow parts of the table that
provide little information (e.g., where elements have near
identical values) to be removed. However, this would also
require the implementation of a search algorithm to find the
after-calculation value that provides the closest match to the
before-calculation value, which could result in additional
computational overheads. A comparison of computation
time for the standard LUT-iCDF (column 2) and the directly
mapping version (column 4) for different granularities can
be seen in Table 2. Interestingly, the added computational
time required to search the LUT is much greater than the
other parts of the process, meaning that the size of the LUT
would need to be greatly reduced (e.g., 9,999,999 elements
to 99 elements) to make the direct mapping version faster
than the LUT-iCDF (or, alternatively, a much more efficient
search algorithm would need to be used).

@ Springer

2396

Behav Res

(2019) 51:2390-2404

Response Time

LCA

Response Time

UGM

-2 -1 0 1 2
Response Time

o & {KS=0.002 KS=0.001 o KS=0002 KS=0.001
. o | p=026 p = 0.969 o |p=0737 p =0.707
ai ” [» S »
z° 5§ 2w £ 2w] 5
2 S £- o =< Q
5o o|r|) S o T 5o -
[l - o= [} [a i 1}
5 [=
0 0 | © 9 ©
o o o
o o ,J\ o _/\
T T T T T T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Response Time Response Time Response Time
o -KS=0.002 S=0.001 & {KS=0.002 KS=0.001 o KS=0002 KS=0.001
o | p=0s9t o |P=0343 p = 0.964 L |P=0959 p =0.699
S ” [» a7 »
z0 5 2w 5z 5
2 IS £~ 5 £~ 2
5o o|r|) 5o m § o -
a;z- i [a g [} [a i 1}
5 = =
9 0 | © 9 ©
o o o
o | o | o | _/\
T T T T T T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Response Time Response Time Response Time
& -KS=0.002 S=0.001 < {KS=0003 KS=0.001 & KS=0002 KS=0.001
p = 0.521 =0.767 p=0.152 p =0.994 p = 0.808 =0.642
o o o
a7 ” o @ a7
29 § 2o 5 pw £
£ o T Ee ® 2 "
I
o= [a T n o=
5 5 &
o _| v] o _|
o o o
o | o ,J\ o ,,_J\
© T T T T T © T T T T © T T T T T
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Response Time Response Time Response Time
o -KS=0.002 S=0.002 o HKS=0.002 KS=0.002 o -KS=0.001 KS=0.002
° p =0.644 =0.339 ° p =0.307 p =0.296 ° p=0.576 p=0.263
[” [V » [
>0 § >n th >0 g
g 3 BT 8 &- 8
o M o) - o i
[iy [iy LR =
5 5 &
v 4 v 0
o o o
o | o ,,/\ o |
e ° S T T T \

Fig.3 Displays a comparison between the “rnorm” function in R (red) and a C implementation of my LUT-iCDF method with granularity 0.0001
(black) for 1,000,000 simulated trials of each of the models in my framework (different panels). Response time distributions corresponding to
responses for the second alternative are plotted as negative values on the x-axis, to make the distributions for different responses more easily
distinguished. In all plots, “CT” refers to the computation time of taking the 1,000,000 samples, “KS” refers to the test statistic of the non-
parametric Kolmogorov—Smirnov test for equivalent distributions, “p” refers to the p value for the Kolmogorov—Smirnov test, “DIFF” refers to
the diffusion model, “P” refers to a piecewise extension, “TV” refers to a time-varying drift rate extension, and “DB” refers to a time-varying

threshold extension

Implementation

In this section, I provide a tutorial on how to implement
the code within my framework. Specifically, I explain how
to use and call the C code within R. After that, I detail
the R simulation wrappers that I have included to call the

@ Springer

C code, which should provide users with an easier method
of implementation than directly calling the C code. I also
provide a brief worked example on how to use the code
through simulating the LBA. Lastly, I discuss the PDA code
that I have included, and the likelihood function code that
combines the simulations and PDA method to produce a

Behav Res (2019) 51:2390-2404

2397

Table 2 Displays a comparison in computation time for generating
1,000,000 samples from the normal distribution between the LUT-
iCDF method, the version with a halved LUT (“Halved”), and the
version that requires directly mapping to before calculation values to
their closest matching after calculation value (“Direct mapping”) for
different granularities (rows)

Granularity LUT-iCDF Halved Direct mapping
0.1 0.013 0.022 0.028

0.01 0.013 0.021 0.065

0.001 0.014 0.021 0.425

0.0001 0.013 0.022 3.955

103 0.019 0.023 40.026

10=¢ 0.035 0.041

1077 0.072 0.058

Note that the final two rows were not calculated for the “Direct
mapping” version, due to the large computation time

pseudo-likelihood approximation for the model. Based on
this tutorial, interested readers should be able to implement
my simulation code (and my PDA code, where required)
into their current fitting methods, giving them the ability to
efficiently fit any of these complex EAMs.

Compiling and loading the C code

Here, I explain how to implement the C code within R.
Tables 3 and 4 provide most of the key details on the C code

included in my framework. Table 3 provides the different
variables that are passed into the C code and the different
models that require them, and Table 4 displays which code
files are associated with which models. Importantly, when
a variable is labeled as an integer, it must be passed to the
C code as an integer (i.e., “as.integer(VARIABLE)”), and
when it is labeled as a double, it must be passed to the C
code as a double. Failing to make each variable the correct
type will result in the C code either crashing R, or returning
incorrect results. An example of how to call the C code
for each model can be seen within the R simulation code
wrappers.

A few things need to be set up before using the C code.
Firstly, the code must be compiled, which is a relatively
easy process in R. Specifically, the C code can be compiled
by typing “system(‘R CMD SHLIB codeName.c’)” into the
R console while in the same working directory as the C
code, which will create a compiled file. The extension of
the compiled file will differ based on the compiler and
operating system. For Mac OS and Linux, the C code is
usually compiled into a “.so” file, and for Windows a “.d1l”
file. All of the code within my framework assumes that the
compiled file has a “.so” extension, but this can be easily
changed for users where the code is compiled into another
type of file. Once the code is compiled, the compiled file
needs to be loaded into the R environment, which can be
done with “dyn.load(‘codeName.so’)”. Examples of these
steps can be seen within any of the “simulate” R files that
call the C code for simulation.

Table 3 Displays the input variables for the C code in my framework. The input variable “parameters” refers to the multitude of variables that are

the unique to each model

Variable name Variable type Description

nRespAlt integer The number of response alternatives. Only for models
with separate accumulation rates

n double The number of trials to be simulated

resp double A vector of length “n” that is entered as 0’s and returned as a
number corresponding to the response alternative chosen

rt double A vector of length “n” that is entered as 0’s and returned as
the response time in seconds

h double The time-step used. Only for models with within-trial noise

maxiter double The maximum number of steps run performing terminating the
with within-trial noise

swapTime double The time at which the change of evidence occurs within the
model. Only for piecewise models

rangeLow integer The lowest possible index of the look-up table (always 0)

rangeHigh integer The highest possible index of the look-up table (number
of elements of the table minus 1)

randomTable double A vector that contains the iCDF LUT

“parameters” double Multiple variables, which are unique to each model. All

parameters need to be entered as type “double”

@ Springer

2398

Behav Res (2019) 51:2390-2404

Table 4 Displays the different models included within my framework (rows), and the relevant C code file, R code wrapper file, and PDA code (in

R) file

Model C code R wrapper PDA code
LBA Iba.c simulate-lba.R PDA.R
LBA piecewise plba.c simulate-plba.R PDA p.R
Diffusion DIFF.c simulate-DIFF.R PDA.R
Diffusion piecewise pDIFF.c simulate-pDIFF.R PDA p.R
Diffusion time-varying drift rate DIFF-tv.c simulate-DIFF-tv.R PDA_tv.R
Diffusion time-varying thresholds DIFF-db.c simulate-DIFF-db.R PDA_db.R
LCA Ica.c simulate-Ica.R PDA.R
LCA piecewise plca.c simulate-plca.R PDA_p.R
LCA time-varying drift rate Ica-tv.c simulate-lca-tv.R PDA_tv.R
LCA time-varying thresholds Ica-db.c simulate-lca-db.R PDA_db.R
UGM ugm.c simulate-ugm.R PDAR
UGM time-varying drift rate ugm-tv.c simulate-ugm-tv.R PDA_tv.R

Using the R wrappers to call the C code

Next, I detail the R wrappers that I have included for
simulating the models and how to use them. Table 5
provides the variables that are passed into the main function
in the R wrapper for each model, and Table 4 provides the
file that contain the R wrapper for simulating each model.
An example of how to call the R wrappers for each model
can be seen within the example PDA pseudo-likelihood
functions that I have included.

The elements that are passed into these R wrappers
can be placed into three general categories: simulation
requirements, stochastic differential equation requirements,
and LUT requirements. The simulation requirements are
the basic variables required to run the simulation, which

for all models include the variable “N”, and the vector
“params”. Importantly, the “params” vector needs to be a
vector of named parameter values, with the names being
specific to the model being implemented. The stochastic
differential equation requirement are for all models within
this class (i.e., every model except from the LBA and
pLBA), and are the “maxCounter” and “stepSize” variables.
By convention, the time-step is defined in seconds, meaning
that a time-step of 1 ms should be entered as 0.001. Lastly,
the LUT requirements are those needed for the LUT-iCDF
method, and are the vector “use.table” and the variable
“n.table.options”.

It is also important to note that there are some key
differences between the R wrappers of the different broad
classes of models. In addition to the input variables

Table 5 Displays the input variables for the R wrapper code in my framework, and which classes of models the input variables are applicable for

Variable name Variable type Description

N double The number of trials to be simulated

params double A vector of named parameters for the model to be simulated

v double A vector (or in the case of the LCA, a matrix) of the drift rate for each
time step of the simulation. Only for time-varying drift rate models

aU double A vector of the upper threshold for each time step of the simulation.
Only for time-varying threshold models

al double A vector of the lower threshold for each time step of the simulation.
Only for time-varying threshold models

stepSize double The time-step used

swapTime double The time at which the change of evidence occurs within the model.
Only for piecewise models

maxCounter double The maximum number of steps run performing terminating the
simulated trial

n.table.options integer The number of elements in the LUT

use.table double A vector that contains the iCDF LUT

@ Springer

Behav Res (2019) 51:2390-2404

2399

discussed above, the piecewise and time-varying models
each require additional input variables. The piecewise
models require the variable “swapTime”, which is the
time (in seconds) when the model switches to the “after
evidence change” drift rates. Piecewise models also require
the “params” vector to contain drift rates for both before
and after the change in. The time-varying drift-rate models
no longer include the drift rate parameter(s) in the “params”
vector, which are instead contained in the input vector “v”,
which is “maxCounter” in length and contains the drift
rate for each time-step. For the LCA, “v” is instead a
matrix, where the rows are the drift rates for each time-
step and the columns are the different response alternatives.
The time-varying threshold models no longer include the
threshold parameter(s) in the “params” vector, which are
instead contained in the input vectors “aU” and “al.”, which
are “maxCounter” in length and contain the upper and
lower thresholds for each step, respectively. For the LCA,
the time-varying threshold is instead a matrix called “a”,
where the rows are the thresholds for each time-step and the
columns are the different response alternatives.

In general, the contents of the main function in each
R wrapper is relatively simple and mostly involves re-
arranging variables into an appropriate format for the C
code. However, one important part that users may be
unfamiliar with is calling the C code. This involves using
a variable called “tmp” (though the name of the variable is
unimportant), and calling a function called “.C”. The inputs
to this function are the names of the function in the C code
being called, and the different input parameters required for
the C code function. After calling the “.C” function, “tmp”
becomes a list with each element being an input variable,
though the vectors for the response time and responses (i.e.,
‘tmp$rt’ and ‘tmp$resp’) will now be from the simulation,
rather than the original vector of zeros.

The LUT for the LUT-iCDF method is created at the top
of each R wrapper, before the main function that runs the
simulation. The first line provides a value for the variable
“use.interval” , which is the granularity of the LUT. This can
be easily made larger or smaller as the user desires, though
the results in “Assessing the LUT-iCDF approximation
accuracy” should be considered before making any changes.
The next line creates a sequence from 0 + x to 1 — x in
increments of x, where x is granularity, and obtains the
iCDF of the standard normal distribution for each of these
values, which are placed in the LUT vector “use.table”. The
last line obtains the size of the LUT and places it into the
variable “n.table.options”.

Worked example: simulating the LBA

Here, I provide a brief worked example of how to use the
R wrappers and C code described above to simulate from

the linear ballistic accumulator (LBA; Brown & Heathcote
2008). I also show how simulating from my framework
differs from the recent R package rtdists (n All code for
this worked example can be found within the “Worked-
example” folder, which includes two previously discussed
files (“lba.c” and “‘simulate-l1ba.R”) that are called by the
example code, “Iba-example.R”.

The example code (“lba-example.R”) begins by clearing
the workspace on line 2. Lines 4 and 5 (currently
commented out, as they are only need to be performed
once) compile the C code and install the rrdists package,
respectively. Lines 7-9 load in the necessary functions from
the R wrapper and the rtdists package. Line 12 creates
the “params” vector, which consists of named values that
correspond to the LBA parameters, and can easily be
changed by the user. Lines 15-18 calculate the analytic
PDF for the LBA using the rtdists package, where line 15
creates an interval of points to obtain the density for, and
lines 17 and 18 obtain the PDF for response alternatives
1 and 2, respectively. Line 21 uses the rtdists package to
simulate 50,000 trials from the LBA, and lines 23 and 24
obtain a kernel density estimate for these simulated trials—
for response alternatives 1 and 2, respectively—to compare
to the analytic PDF.

Line 27 uses the “simulate.lba” function from my
framework to simulate 50,000 trials from the LBA, and
lines 29 and 30 obtain a kernel density estimate for
these simulated trials—for response alternatives 1 and 2,
respectively—to compare to the rtdists simulations and
analytic PDF. As can be gathered from this relatively
brief explanation, implementing my framework is relatively
easy, and can be done within a few lines of code. Lines
34 onwards plot the densities from the rtdists analytic
PDF, the rtdists simulation, and the simulation from my
framework, which allows users to quickly assess how well
the simulations are approximating the exact analytic density,
and how well the simulations from my framework are
approximating regular simulations. More precise details on
the accuracy of my LUT-iCDF method can be found in
“Assessing the LUT-iCDF approximation accuracy”.

Obtaining a pseudo-likelihood function with PDA

As discussed in the introduction, some recent applications
of complex EAMs with intractable PDFs have involved
pseudo-likelihood methods, such as probability density
approximation (PDA; Turner & Sederberg 2014; Holmes
2015). PDA involves simulating a large number of trials
from the model and fitting a density kernel to these
model predictions, which creates an approximate PDF
for the model. Importantly, PDA allows models with
intractable PDFs to be applied using state-of-the-art
methods, such as Bayesian parameter estimation. A more

@ Springer

2400

Behav Res (2019) 51:2390-2404

detailed explanation of PDA can be found in Turner and
Sederberg (2014) or Holmes (2015).

To help make these state-of-the-art methods more
accessible for models within my framework, I have
included R code that implements the full PDA process,
where data and parameters are input and an approximated
PDF is output. The relevant PDA file for each type of
model can be found in Table 4. In each PDA file, the
function “log.dens.like” performs the PDA process and is
relatively simple: most input variables have been discussed
previously, and the output is a single number, which
is the log-likelihood of the data given the parameters.
Specifically, there are four new input variables: “data”,
“conds”, “bandwidth”, and “simulateFunction”. The first,
“data”, is a list of three elements: “Cond”, a vector of
the condition that each trial was from, “Resp”, a vector of
the response alternative that was chosen for each trial, and
“Time”, a vector of the response time for each trial. The
second, “conds”, is a vector of the conditions used within
the experiment. The third, “bandwidth”, is the bandwidth
of the density kernel to be used in the PDA smoothing
(Holmes 2015 recommends using Silverman’s ‘rule of
thumb’; Silverman 1986). The fourth, “simulateFunction”,
is the simulation function for the model, which is the name
of the main function in the R wrapper (e.g., for the regular
diffusion model, this would be “simulate-DIFF”). The code
within the “log.dens.like” function mostly involves re-
structuring the inputs to be in the correct format for the PDA
code, and looping over conditions, which the parameter
values might vary between. For models with time-varying
components, these components must be specified within the
“log.dens.like” function.

The “log.dens.like” function calls another function in
the file, ‘“Log.likelihood.fun”, which is the PDA part
of the process. The inputs for the ‘“Log.likelihood.fun”
function have each been explained previously, and the
output of the function is a list. The first element of the
list is itself a list, with each element of this inner list
containing the approximated densities for the response
times corresponding to one of the response alternatives. The
second element of the main list is the number of trials that
had not reached a threshold at the maximum number of
time-steps (i.e., “maxCounter”; only relevant for stochastic
differential equations), which can be used to penalize
models and parameter sets that produce several non-
terminating trials. Within the “Log.likelihood.fun” function,
the first line simulates trials with the input parameter values
and model simulation function. From here, the code loops
over response alternatives, and performs the PDA process
to obtain a PDF approximation for each response time in
the data that had a response in favor of that alternative. In
complex terms, this involves performing a convolution with
a Gaussian filter to get an estimate of the PDF, and then

@ Springer

using linear interpolation to obtain the density for each data
point. In simple terms, this involves using R’s “density”
function to obtain a PDF estimate, and then simply finding
the discrete point of this function that most closely matches
each data point with R’s “approx” function.

Models

Finally, I outline all of the variants and sub-variants
of EAMs that I provide simulation code for. Generally
speaking, my framework covers all of the currently well-
known EAMs, as well as extensions of them to time-
varying drift-rate or decision thresholds. All simulation
code uses the LUT-iCDF method for RNG from the normal
distribution.

The linear ballistic accumulator (LBA)

The LBA is one of the simplest and most commonly applied
models of rapid decision-making, which proposes a process
of independent, noiseless evidence accumulation for each
alternative (Fig. 4, panel a). The sources of variability
within the model are in the form of a truncated normal drift
rate distribution (though see Terry et al. (2015) for other
potential distributions) with mean v and standard deviation
s (with s fixed to 1 for scaling purposes, see Donkin,
Brown, and Heatcote, 2009), and a uniform starting point
distribution starting at 0 and ending at A, where A is always
less than the threshold value b. The mean drift rate also
differs between the alternatives, with the drift rate of the
response accumulator that “matches” the stimuli (v.) being
estimated separately from that one that “mismatches” (v,).
In addition, the model assumes some time is dedicated to
perceptual encoding and motor processes, which is labeled
“non-decision time” (tp). Overall, this gives the LBA 5
general parameters: v, s, A, b, and .

Piecewise

Recent research within rapid decision-making has begun
to investigate paradigms with evidence that systematically
changes across a trial (e.g., (Holmes et al., 2016; Evans
et al., 2017)), which fall outside of the scope of standard
EAMs. (Holmes et al., 2016) proposed a “piecewise linear
approximation” to account for paradigms with one or more
systematic changes in evidence, in the form of the piecewise
LBA (pLBA; Fig. 4, panel a). Specifically, the pLBA
proposed by (Holmes et al., 2016) contains a standard
LBA process up until the evidence systematically changes.
After the change, the evidence is assumed to continue
to accumulate unchanged for some additional amount of
time, reflecting some potential delay in the uptake of new

Behav Res (2019) 51:2390-2404

2401

ter

Fig. 4 a An example of the accumulation process of the LBA. Black lines indicate the accumulation in the standard LBA for two different
alternatives (solid line and dashed line). The red line displays a change in evidence in the stimuli, and the blue lines display how the accumulation
for the alternatives in a piecewise extension diverge from those in the regular LBA. b An example of the accumulation process of the diffusion
model. The flat grey lines display the standard fixed thresholds, and the linearly decreasing flat lines display a collapsing threshold with a linear

collapse

information process (t4e1qy). After the delay, the drift rates
for each alternative immediately change to reflect the new
state of evidence. The pLBA adds three potential parameters
to the standard LBA: a #,4,,y parameter, and the new mean
drifts rates for the matching and mismatching accumulators
after the evidence change.

The diffusion model

The diffusion model (Ratcliff, 1978) is the most commonly
applied model of rapid decision-making, which proposes
a process of dependent evidence accumulation where
evidence for one alternative counts as evidence against
the other alternative (Fig. 4, panel b). The accumulation
process is also subject to moment-to-moment noise, being
the Wiener process with o fixed to 0.1 (by convention) to
solve a scaling issue. The simplest form of the diffusion
model only contains four free parameters: the drift rate
(v), the threshold (a), the starting point (z, which in the
diffusion directly reflects response bias), and the non-
decision time (zer). There have also been three extensions

that add between-trial variability to three of the standard
parameters: the drift rate, through a normal distribution
with standard deviation s, (Ratcliff, 1978), the starting
point, through a uniform distribution with width s, (Ratcliff
& Rouder, 1998), and the non-decision time, through a
uniform distribution with width s;., (Ratcliff & Tuerlinckx,
2002). The addition of all three of these parameters is known
as the “full” diffusion model, which gives the model seven
general parameters: v, a, z, ter, sy, Sz, and Syep.

Piecewise

The piecewise diffusion model (pDDM; Holmes & True-
blood 2018), like the pLBA, attempts to account for
paradigms with systematically changing evidence via a sim-
ple piecewise linear approximation to a change in drift rate.
As with the pLBA, the accumulation in the pDDM is iden-
tical to the regular diffusion until the evidence changes.
After the change and some estimated delay (i.e., fgeiay),
the drift rate immediately changes to reflect the new evi-
dence, which is another estimated free parameter, resulting

@ Springer

2402

Behav Res (2019) 51:2390-2404

in an additional two free parameters in the model beyond
the diffusion.

Time-varying drift rate

The previously discussed “piecewise” models provide a
simple way of accounting for paradigms where evidence
systematically varies across a trial. However, another option
is to implement a stochastic differential equation with
a time-varying drift rate, where instead of the drift rate
being constant throughout the trial, it has the ability to
differ on every time-step of the process. Time-varying
models are usually constrained by the drift rate either
being some transformation of the current evidence (Evans
et al., 2017), or being determined by some time-varying
function (Servant, Montagnini, & Burle, 2014). Time-
varying models have also been previously used in situations
where the evidence remains constant throughout a trial, but
there is some input to directly guide how the drift rate should
change over the trial, such as neural activity (Purcell et al.,
2010).

Time-varying boundaries

One of the key assumptions of the diffusion model has
been that the decision thresholds remain fixed over the
course of a trial, where the same amount of evidence is
required to trigger a decision regardless of the time spent on
the decision. However, recent research has suggested that
decision-making may involve time-varying thresholds, and
more specifically collapsing thresholds, which decrease as
decision time increases (Fig. 4, panel b; (Cisek, Puskas,
& El-Murr, 2009; Ditterich, 2006; Drugowitsch, Moreno-
Bote, Churchland, Shadlen, & Pouget, 2012; Churchland
et al., 2011; Thura et al., 2012), though also see Hawkins,
Forstmann, Wagenmakers, Ratcliff, & Brown, 2015). Time-
varying thresholds are usually defined according to some
function over time, such as the three-parameter Weibull
function used by Hawkins et al. (2015) for collapsing
thresholds. However, there is no consensus on a single
dynamic threshold that should be applied, other than that
it should decrease the threshold over time. However, where
possible, it is best to use a theoretically motivated function,
and the choice of the function should be defined before
analysis to limit the model’s flexibility.

The leaky-competing accumulator (LCA)

The LCA (Usher & McClelland, 2001) is one of the most
complex EAMs, which was designed to be reflective of under-
lying neural architecture and proposes a process that
contains several dependencies and non-linearities. Specif-
ically, the LCA uses the general accumulator framework

@ Springer

(e.g., the LBA in Fig. 4, panel a) with several added compo-
nents, such as inhibition and excitation between alternatives
that are estimated as a single parameter of the balance
between these two processes (8; positive values indicate
stronger inhibition). The LCA also contains a leakage com-
ponent A, where evidence gradually leaks away as the time
from its accumulation increases, and moment-to-moment
noise through the Wiener process (with o fixed to 0.1, by
convention, to solve a scaling issue). Overall, this gives
the LCA six general parameters: three in common with the
LBA (v, b, ty), and three unique parameters (8, A, o). It
should also be noted that recent research has found many
of the LCA parameters to show poor recovery in specific
experimental paradigms, meaning that inferences made
directly on the estimated parameter values may be spurious
(Mileti¢, Turner, Forstmann, & van Maanen, 2017).

Piecewise

Although a piecewise LCA has not previously been
implemented, I have included code to do so in the same
manner as the pLBA.

Time-varying drift rate

As discussed for the diffusion model, time-varying drift
rates provide another simple method of modeling changes
in evidence. Time-varying drift rates have also been used
in another situation for the LCA: paradigms where the
evidence remains constant within the task, but a second
source of data is used as input to drive the drift rate.
Specifically, Purcell et al. (2010) used filtered single-cell
recordings of monkeys from each time-step within a trial
to drive the drift rate for the LCA, meaning that the
drift rate was a time-varying process purely determined
by neural input. However, the implementation of this
model has only been performed by the original researchers,
and only through basic methods (i.e., Xz), due to the
computationally taxing nature of simulating this model.
Using this framework, researchers familiar with EAMs can
implement and test these interesting, neurally driven models
using more advanced methods, provided that the neural data
is made openly available for others to analyze, as previous
researchers have done (e.g., Roitman and Shadlen 2002).

Time-varying boundaries

Like the time-varying boundaries for the diffusion model, I
provide code in my framework to implement an LCA with
collapsing boundaries. Interestingly, few have considered
the implications of how collapsing thresholds may interact
with the additional LCA components of leakage and lateral
inhibition.

Behav Res (2019) 51:2390-2404

2403

The Urgency-Gating Model (UGM)

The UGM is a recent proposal within the rapid decision-
making literature, which proposes that evidence is barely
accumulated, and decisions are mostly on based upon novel
input (Cisek et al., 2009; Thura et al., 2012). Specifically,
the UGM takes the same basic form as the “simple”
diffusion model (Fig. 4, panel b). However, in order to
ensure that only novel evidence is considered, the UGM
contains a low-pass filter with a time-constant (t) of under
250 ms, resulting in rapid evidence leakage. In order to
prevent decisions from taking too long, the evidence on
each time-step is multiplied by an urgency signal (1) that
increases with increasing time, which can be estimated as
a free parameter or scale linearly with time. More specific
details of this UGM implementation can be seen in Hawkins
et al. (2015) and Evans et al. (2017).

Time-varying drift rate

As discussed for the diffusion model, time-varying drift
rates provide another simple method of modelling changes
in evidence. This model was also used in Evans et al. (2017).

Conclusions

This article aimed to provide a method, framework,
and tutorial for fitting complex evidence accumulation
models that do not have an analytic likelihood function.
Specifically, within this article I proposed a method, LUT-
iCDF, for efficiently simulating decision-making models,
or any type of random number generation from the normal
distribution. LUT-iCDF involves using a look-up table
to approximate the inverse cumulative density function
method of random number generation, greatly cutting down
the time taken to simulate these models, as random number
generation from the normal distribution standardly can take
up over 95% of the total simulation time. Importantly,
I showed that LUT-iCDF with a large number of table
elements closely approximates standard methods of random
number generation from the normal distribution. In order
to allow others to easily and efficiently implement LUT-
iCDF for complex EAMs, I provided a framework that
includes C and C and R code for /2 different variants
of EAMs. Lastly, this article provided a detailed tutorial
and worked example on how to implement the framework,
which should allow researchers who are familiar with fitting
simpler EAMs to extend their research to involve complex
EAMs.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http:/
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

Amit, D. J., & Tsodyks, M. (1991). Quantitative study of attractor
neural network retrieving at low spike rates: I. substrate—spikes,
rates and neuronal gain. Network: Computation in Neural Systems,
2(3), 259-273.

Brown, S. D., & Heathcote, A. (2008). The simplest complete model
of choice response time: Linear ballistic accumulation. Cognitive
Psychology, 57(3), 153-178.

Brown, S. D., Marley, A. A. J., Donkin, C., & Heathcote, A. (2008).
An integrated model of choices and response times in absolute
identification. Psychological Review, 115(2), 396.

Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A
neural basis for visual search in inferior temporal cortex. Nature,
363(6427), 345.

Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X. J., Pouget,
A., & Shadlen, M. N. (2011). Variance as a signature of
neural computations during decision making. Neuron, 69, 818—
831.

Cisek, P.,, Puskas, G. A., & El-Murr, S. (2009). Decisions in
changing conditions: The urgency-gating model. The Journal of
Neuroscience, 29(37), 11560-11571.

Ditterich, J. (2006). Evidence for time-variant decision making.
European Journal of Neuroscience, 24(12), 3628-3641.

Donkin, C., Averell, L., Brown, S., & Heathcote, A. (2009). Getting
more from accuracy and response time data: Methods for fitting
the linear ballistic accumulator. Behavior Research Methods,
41(4), 1095-1110.

Donkin, C., Brown, S. D., & Heathcote, A. (2009). The over
constraint of response time models: Rethinking the scaling
problem. Psychonomic Bulletin & Review, 16(6), 1129-1135.

Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N.,
& Pouget, A. (2012). The cost of accumulating evidence in
perceptual decision making. The Journal of Neuroscience, 32(11),
3612-3628.

Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E. J., Derrfuss, J.,
Imperati, D., & Brown, S. (2011). The speed-accuracy tradeoff in
the elderly brain: A structural model-based approach. The Journal
of Neuroscience, 31(47), 17242—-17249.

Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U.,
Marsman, M., & Steingroever, H. (2017). A tutorial on bridge
sampling. Journal of Mathematical Psychology, 81, 80-97.

Evans, N. J., & Brown, S. D. (2017). People adopt optimal policies in
simple decision-making, after practice and guidance. Psychonomic
Bulletin & Review, 24(2), 597-606.

Evans, N. J., Howard, Z. L., Heathcote, A., & Brown, S. D. (2017).
Model flexibility analysis does not measure the persuasiveness of
a fit. Psychological Review, 124(3), 339.

Evans, N. J.,, Hawkins, G. E., Boehm, U., Wagenmakers, E. J.,
& Brown, S. D. (2017). The computations that support simple
decision-making: A comparison between the diffusion and
urgency-gating models. Scientific Reports, 7(1), 16433.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2404

Behav Res (2019) 51:2390-2404

Evans, N. J., Rae, B., Bushmakin, M., Rubin, M., & Brown, S. D.
(2017). Need for closure is associated with urgency in perceptual
decision-making. Memory & Cognition, 45(7), 1193-1205.

Evans, N. J., & Brown, S. D. (2018). Bayes factors for the
linear ballistic accumulator model of decision-making. Behavior
Research Methods, 50(2), 589—-603.

Evans, N. J.,, Bennett, A. J., & Brown, S. D. (2018). Optimal or not;
depends on the task. Psychonomic Bulletin & Review, 1-8.

Evans, N. J., Steyvers, M., & Brown, S. D. (2018). Modeling the
covariance structure of complex datasets using cognitive models:
An application to individual differences and the heritability of
cognitive ability. Cognitive Science, 42(6), 1925-1944.

Evans, N. J., Brown, S. D., Mewhort, D. J., & Heathcote, A. (2018).
Refining the law of practice. Psychological Review, 125(4), 592.

Hawkins, G. E., Marley, A., Heathcote, A., Flynn, T. N., Louviere,
J. J., & Brown, S. D. (2014). Integrating cognitive process and
descriptive models of attitudes and preferences. Cognitive Science,
38(4), 701-735.

Hawkins, G. E., Forstmann, B. U., Wagenmakers, E. J., Ratcliff, R.,
& Brown, S. D. (2015). Revisiting the evidence for collapsing
boundaries and urgency signals in perceptual decision-making.
The Journal of Neuroscience, 35(6), 2476-2484.

Hawkins, G. E., Wagenmakers, E. J., Ratcliff, R., & Brown, S. D.
(2015). Discriminating evidence accumulation from urgency
signals in speeded decision making. Journal of Neurophysiology,
114(1), 40-47.

Ho, T. C.,, Yang, G., Wu, J., Cassey, P, Brown, S. D., Hoang,
N., & et al. (2014). Functional connectivity of negative
emotional processing in adolescent depression. Journal of
Affective Disorders, 155, 65-74.

Holmes, W. R. (2015). A practical guide to the probability density
approximation (PDA) with improved implementation and error
characterization. Journal of Mathematical Psychology, 68, 13-24.

Holmes, W. R., & Trueblood, J. S. (2018). Bayesian analysis of the
piecewise diffusion decision model. Behavior Research Methods,
50(2), 730-743.

Holmes, W. R., Trueblood, J. S., & Heathcote, A. (2016). A new
framework for modeling decisions about changing information:
The piecewise linear ballistic accumulator model. Cognitive
Psychology, 85, 1-29.

Matzke, D., Dolan, C. V., Logan, G. D., Brown, S. D, &
Wagenmakers, E. J. (2013). Bayesian parametric estimation of
stop-signal reaction time distributions. Journal of Experimental
Psychology: General, 142(4), 1047.

Miletié, S., Turner, B. M., Forstmann, B. U., & van Maanen, L. (2017).
Parameter recovery for the leaky competing accumulator model.
Journal of Mathematical Psychology, 76, 25-50.

Purcell, B. A., Heitz, R. P, Cohen, J. Y., Schall, J. D., Logan, G.D., &
Palmeri, T.J. (2010). Neurally constrained modeling of perceptual
decision making. Psychological Review, 117(4), 1113.

R Core Team (2014). R: A language and environment for statistical
computing. Vienna, Austria: http://www.R-project.org/.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological
Review, 85(2), 59.

@ Springer

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for
two-choice decisions. Psychological Science, 9(5), 347-356.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the
diffusion model: Approaches to dealing with contaminant reaction
times and parameter variability. Psychonomic Bulletin & Review,
9(3), 438-481.

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the
lateral intraparietal area during a combined visual discrimination
reaction time task. The Journal of Neuroscience, 22(21), 9475—
9489.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general
framework for parallel distributed processing. Parallel distributed
processing: Explorations in the microstructure of cognition, 1,
45-76.

Servant, M., Montagnini, A., & Burle, B. (2014). Conflict tasks and
the diffusion framework: Insight in model constraints based on
psychological laws. Cognitive Psychology, 72, 162—195.

Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes
and cortical organization. Current Opinion in Neurobiology, 4(4),
569-579.

Silverman, B. W. (1986). Density estimation for statistics and data
analysis (Vol. 26). Boca Raton: CRC Press.

Softky, W. R., & Koch, C. (1993). The highly irregular firing of
cortical cells is inconsistent with temporal integration of random
EPSPs. Journal of Neuroscience, 13(1), 334-350.

Starns, J. J., & Ratcliff, R. (2012). Age-related differences in diffusion
model boundary optimality with both trial-limited and time-
limited tasks. Psychonomic Bulletin & Review, 19(1), 139-145.

Stone, M. (1960). Models for choice-reaction time. Psychometrika,
25, 251-260.

Terry, A., Marley, A., Barnwal, A., Wagenmakers, E. J., Heathcote,
A., & Brown, S. D. (2015). Generalising the drift rate distribution
for linear ballistic accumulators. Journal of Mathematical
Psychology, 68, 49-58.

Thura, D., Beauregard-Racine, J., Fradet, C. W., & Cisek, P. (2012).
Decision making by urgency gating: Theory and experimental
support. Journal of Neurophysiology, 108(11), 2912-2930.

Tsetsos, K., Usher, M., & Chater, N. (2010). Preference reversal in
multi attribute choice. Psychological Review, 117(4), 1275.

Turner, B. M., & Sederberg, P. B. (2014). A generalized, likelihood-
free method for posterior estimation. Psychonomic Bulletin &
Review, 21(2), 227-250.

Turner, B. M., Schley, D. R., Muller, C., & Tsetsos, K. (2018). Com-
peting models of multi-attribute, multi-alternative preferential
choice. Psychological Review, 125(3), 329-362.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual
choice: The leaky, competing accumulator model. Psychological
Review, 108(3), 550.

Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient
diffusion model analysis. Behavior Research Methods, 39(4),
767-775.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.R-project.org/

	A method, framework, and tutorial for efficiently simulating models of decision-making
	Abstract
	Introduction
	The LUT-iCDF method
	Assessing the LUT-iCDF approximation accuracy
	Potential LUT augmentations

	Implementation
	Compiling and loading the C code
	Using the R wrappers to call the C code
	Worked example: simulating the LBA
	Obtaining a pseudo-likelihood function with PDA

	Models
	The linear ballistic accumulator (LBA)
	Piecewise

	The diffusion model
	Piecewise
	Time-varying drift rate
	Time-varying boundaries

	The leaky-competing accumulator (LCA)
	Piecewise
	Time-varying drift rate
	Time-varying boundaries

	The Urgency-Gating Model (UGM)
	Time-varying drift rate

	Conclusions
	Open Access
	References
	Publisher's note

