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Abstract: We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for
the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian
descent in the absence of other pregnancy-related complications. Whole peripheral venous blood
samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all
pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with
regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using
real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p,
miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was
observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated
microRNAs showed the highest accuracy for the early identification of pregnancies destinated to
develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate
(FPR). The predictive model for GDM based on aberrant microRNA expression profile was further
improved via the implementation of clinical characteristics (maternal age and BMI at early stages of
gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17%
of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for
severe GDM requiring administration of therapy involved using a combination of these three clinical
characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This
model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed
by diet only required the involvement of these three clinical characteristics and eight microRNA
biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p,
and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet
only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of
trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth
restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in
first-degree relatives were included in the GDM prediction model, the predictive power was further
increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM
managed by diet only). Cardiovascular disease-associated microRNAs represent promising early
biomarkers to be implemented into routine first-trimester screening programs with a very good
predictive potential for GDM.

Keywords: cardiovascular microRNAs; early pregnancy; gene expression; gestational diabetes
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1. Introduction

Gestational diabetes mellitus (GDM), glucose intolerance in pregnancy [1–3], increases
the risk of the onset of maternal pregnancy-related complications and neonatal morbidity.
It also has long-term implications for both mother and child in form of risk of developing
type 2 diabetes mellitus and cardiovascular diseases [1,4–6].

Several universal screening programs of GDM [1,2,7,8] have been implemented in
the routine care of pregnant women. The first screening phase based on the monitoring
of a fasting glucose is usually held at first visit during the first trimester of gestation and
rules out patients with pre-existing diabetes and detects the occurrence of early GDM. The
second screening phase is usually performed at 24–28 weeks of gestation in pregnancies
with normal early screening with the oral glucose tolerance test (OGTT) and identifies the
occurrence of GDM at the late second and early third pregnancy trimesters. If normal, the
OGTT may be repeated again at 32 weeks of gestation [7].

As of now, several promising early predictive models for GDM have been established.
The initial logistic regression model based on the inclusion of maternal characteristics

only (maternal age, weight, height, racial origin, family history of diabetes, use of ovulation
drugs, birth weight, and previous history of GDM) showed a high accuracy for prediction
of GDM at 11–13 weeks of gestation. It reached the following parameters: area under
the curve (AUC) 0.823, 95% confidence interval (95% CI) 0.820–0.826, 55.0% sensitivity at
a 10.0% false positive rate (FPR) [9]. A slightly older model for the prediction of GDM
based on some of the above mentioned factors combined with serum concentrations of
adiponectin and sex hormone binding globulin reached similar predictive results (AUC
0.842, 95% CI: 0.817–0.867, 58.6% at a 10.0% FPR) [10].

Similar data were reported by another research group which used a multivariate
regression model for the early prediction of GDM. This model was also based on maternal
clinical parameters such as age, body mass index (BMI), South/East Asian ethnicity, parity,
family history of diabetes, and previous history of GDM (AUC 0.880, 95% CI: 0.850–0.920,
70.2% detection rate at a 10.0% FPR) [11]. Similarly, the same research group later intro-
duced an improved first-trimester risk multivariate prediction model for GDM. This novel
model incorporated family history of diabetes, previous history of GDM, South/East Asian
ethnicity, parity, BMI, pregnancy-associated plasma protein A (PAPP-A), triglycerides, and
lipocalin-2, and achieved a higher discrimination power (AUC 0.910, 95% CI: 0.890–0.960,
76.8% at a 10.0% FPR) [12].

Furthermore, reduced plasma levels of irisin in the first trimester of gestation were im-
plemented into another model based on known risk factors (maternal age, BMI, gestational
age at sampling, smoking, ethnicity, pre-existing hypertension or cardiovascular disease,
family history of diabetes, physical activity, family history of diabetes, and blood levels
of cholesterol, high-density lipoprotein cholesterol, triglycerides, insulin, fasting plasma
glucose, and C-reactive protein). This improved the discrimination rate of predicting GDM
in a Chinese population (AUC 0.809, 95% CI: 0.763–0.854) [13]. Another independent
large-scale study performed in a Chinese population during the first trimester of pregnancy
explored a total of 73 variables and also reached a high discriminative power for GDM
(AUC 0.800) [14].

An additional non-invasive predictive model consisting of mean arterial blood pres-
sure in the first trimester, age, ethnicity and previous history of GDM demonstrated rela-
tively high predictive ability for a Singaporean population (AUC 0.820, 95% CI: 0.710–0.930),
where UK NICE guidelines had poor GDM predictive outcome (AUC 0.600, 95% CI:
0.510–0.700) [15].

Additionally, metabolomics analyses performed on a Japanese population revealed
novel promising metabolic biomarkers (serum glutamine, urine ethanolamine, and urine
1,3-diphosphoglycerate). Each biomarker individually demonstrated a high discrimination
power for prediction of GDM during the first or early second trimesters of gestation (AUC
over 0.800) [16].
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First-trimester screening for GDM for an Israeli population reached very high dis-
criminative power in both non-obese women (AUC 0.940, 95% CI: 0.850–0.990, 83.0% at a
10.0% FPR) and obese women (AUC 0.950, 95% CI: 0.880–0.990, 89% at a 10.0% FPR). These
screening models were based on the combination of soluble cluster of differentiation 163
(sCD163), tumour necrosis factor alpha (TNFα), placental protein 13 (PP13), and PAPP-A
or on the combination of BMI, insulin, sCD163, and TNFα [17].

The latest model was based on maternal clinical characteristics (age and pre-pregnancy
BMI); maternal coagulation function (prothrombin time, international standardized ratio,
activated partial thromboplastin time, fibrinogen, and thrombin time); and glycolipid
metabolism indicators (fasting blood glucose, total cholesterol, triglycerides, low density
lipoprotein cholesterol, small and dense low density lipoprotein cholesterol, apolipoprotein
B, and apolipoprotein E). This model was applied to a Chinese population in the first
trimester of gestation and reached a high clinical value for the prediction of GDM (AUC
0.892, 95% CI: 0.86–0.93) [18].

Previously, the potential usage of coagulation function examination variables such as
prothrombin time and activated partial thromboplastin time as novel biomarkers for the
prediction of GDM for a Chinese population at 19 weeks of gestation was demonstrated [19].

Similar results were reported for a Chinese population, when a mid-pregnancy risk
prediction model for GDM was applied (AUC 0.911, 95% CI: 0.893–0.930). This model
was based on maternal status in the combination with ultrasound and serological findings
(age, pre-pregnancy BMI, family history of diabetes, polycystic ovary syndrome, previous
history of GDM, high systolic pressure, glycosylated haemoglobin levels, triglyceride levels,
total cholesterol levels, low density lipoprotein cholesterol levels, C-reactive protein levels,
increased subcutaneous fat thickness, and visceral fat thickness) [20].

Similarly, a combined multivariate prediction model performed between 10 and
16 weeks of gestation in an Irish population also achieved a very high level of discrimination
for the prediction of GDM (AUC 0.860, 95% CI: 0.774–0.945). This model was based on
family history of diabetes, previous perinatal death, overall insulin resistant condition,
ultrasound measurements of subcutaneous and visceral abdominal adipose tissue, 8-point
skinfold thickness, mid-upper-arm circumference, and weight [21].

Interestingly, the latest study of Eidgahi et al. [22] presented a simplified GDM predic-
tive model with a very good efficiency (AUC 0.83, 95% CI: 0.76–0.90) in an Irani population.
This model was based on the mean values of basic indicators (haemoglobin, haematocrit,
red blood cell count, and fasting blood glucose) obtained from repeated measures during
the first and early second trimesters of gestation. They suggested that this GDM predictive
model might be used mainly in poor and low-income countries.

Other models for the early prediction of GDM have not been as effective as the
predictive models introduced above [23–40].

We focused on the exploration of gene expression profiles of selected cardiovascular
disease-associated microRNAs in the whole peripheral venous blood of women during the
early stages of gestation. The aim of the study was to assess the predictive potential for
GDM in the absence of other pregnancy-related complications.

Previously, by searching the Medline database we identified a large number of microR-
NAs playing a role in pathogenesis of diabetes mellitus and cardiovascular/cerebrovascular
diseases. Finally, we selected a shortlist of 29 microRNAs for the study which have been
repeatedly demonstrated by numerous scientific teams to be involved in development and
homeostasis of the cardiovascular system, angiogenesis, and adipogenesis. In addition,
these microRNAs were reported to be associated with pathological conditions and diseases
(vascular endothelial dysfunction and inflammation, hypoxia, hypertension and regulation
of hypertension-related genes, obesity, dyslipidaemia, atherosclerosis and atherosclerotic
plaque formation, insulin resistance, diabetes mellitus and diabetes-related complications,
metabolic syndrome, cardiovascular diseases involving the blood vessels and/or the heart,
chronic kidney disease, ischemia/reperfusion injury, cardiac regeneration, and cachexia)
(Table 1) [41–225].
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Table 1. The role of studied microRNAs in the pathogenesis of diabetes mellitus and cardiovascular/cerebrovascular diseases.

miRBase ID Gene Location on Chromosome Role in the Pathogenesis of Diabetes Mellitus and Cardiovascular/Cerebrovascular Diseases

hsa-miR-1-3p 20q13.3 [41]
18q11.2

Acute myocardial infarction, heart ischemia, post-myocardial infarction complications, thoracic aortic aneurysm [43], diabetes
mellitus [44,45], and vascular endothelial dysfunction [46]

hsa-miR-16-5p 13q14.2 Myocardial infarction [47,48], heart failure [49], acute coronary syndrome, cerebral ischaemic events [50], gestational diabetes
mellitus [51–53], and diabetes mellitus [54–56]

hsa-miR-17-5p 13q31.3 [57,58]
Cardiac development [59], ischemia/reperfusion-induced cardiac injury [60], kidney ischemia-reperfusion injury [61], diffuse myocardial
fibrosis in hypertrophic cardiomyopathy [62], acute ischemic stroke [63], coronary artery disease [64], adipogenic differentiation [65],
gestational diabetes mellitus [51,52], and diabetes mellitus [56,66]

hsa-miR-20a-5p 13q31.3 [67] Pulmonary hypertension [68], gestational diabetes mellitus [51,52,69], diabetic retinopathy [70], and diabetes with abdominal aortic aneurysm [71]

hsa-miR-20b-5p Xq26.2 [67] Hypertension-induced heart failure [72], insulin resistance [73], T2DM [74,75], and diabetic retinopathy [76]

hsa-miR-21-5p 17q23.2 [77]
Homeostasis of the cardiovascular system [78], cardiac fibrosis and heart failure [79,80], thoracic aortic aneurysm [43], ascending aortic
aneurysm [81], regulation of hypertension-related genes [82], myocardial infarction [83], insulin resistance [73], T2DM [84], T2DM with
major cardiovascular events [85], T1DM [86–88], and diabetic nephropathy [89]

hsa-miR-23a-3p 19p13.12 Heart failure [90], coronary artery disease [91], cerebral ischemia-reperfusion [92], vascular endothelial dysfunction [46], small and large
abdominal aortic aneurysm [93], obesity and insulin resistance [94]

hsa-miR-24-3p 19p13.12
Asymptomatic carotid stenosis [95], familial hypercholesterolemia and coronary artery disease [96], angina pectoris [97], ischemic dilated
cardiomyopathy [98], small and large abdominal aortic aneurysm [93], myocardial ischemia/reperfusion [99,100], and diabetes
mellitus [45,56,60,62]

hsa-miR-26a-5p 3p22.2 [101]
12q14.1

Heart failure, cardiac hypertrophy, myocardial infarction [83,103,104], ischemia/reperfusion injury [105], pulmonary arterial
hypertension [106], T1DM [107], and diabetic nephropathy [89]

hsa-miR-29a-3p 7q32.3
Ischemia/reperfusion-induced cardiac injury [108], cardiac cachexia, heart failure [109], atrial fibrillation [110], diffuse myocardial
fibrosis in hypertrophic cardiomyopathy [62], coronary artery disease [111], pulmonary arterial hypertension [106], gestational diabetes
mellitus [112], and diabetes mellitus [44,55,113,114]

hsa-miR-92a-3p 13q31.3
Xq26.2

Mitral chordae tendineae rupture [115], children with rheumatic carditis [116], myocardial infarction [117], heart failure [118], coronary
artery disease [119], and renal injury-associated atherosclerosis [120]

hsa-miR-100-5p 11q24.1 Failing human heart, idiopathic dilated cardiomyopathy, ischemic cardiomyopathy [98], regulation of hypertension-related genes [82],
and T1DM [86]

hsa-miR-103a-3p 5q34 [121]
20p13

Hypertension, hypoxia-induced pulmonary hypertension [123], myocardial ischemia/reperfusion injury, acute myocardial
infarction [124], ischemic dilated cardiomyopathy [99], obesity, and regulation of insulin sensitivity [125], T1DM [126]

hsa-miR-125b-5p 11q24.1 [126]
21q21.1

Acute ischemic stroke, acute myocardial infarction [128,129], ischemic dilated cardiomyopathy [98], ascending aortic aneurysm [81],
gestational diabetes mellitus [130], T1DM [131,132], and T2DM [133]
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Table 1. Cont.

miRBase ID Gene Location on Chromosome Role in the Pathogenesis of Diabetes Mellitus and Cardiovascular/Cerebrovascular Diseases

hsa-miR-126-3p 9q34.3 [134] Acute myocardial infarction [104], thoracic aortic aneurysm [43], T2DM [85,135], T2DM with major cardiovascular events [85], and
gestational diabetes mellitus [136]

hsa-miR-130b-3p 22q11.21 Hypertriglyceridemia [137,138], intracranial aneurysms [139], hyperacute cerebral infarction [140], T2DM [84,141,142], and gestational
diabetes mellitus [136]

hsa-miR-133a-3p 18q11.2 [143]
20q13.33

Heart failure, myocardial fibrosis in hypertrophic cardiomyopathy [62,145], arrhythmogenesis in the hypertrophic and failing
hearts [146,147], coronary artery calcification [148], thoracic aortic aneurysm [43], ascending aortic aneurysm [81], and diabetes mellitus
[41,45]

hsa-miR-143-3p 5q33 Intracranial aneurysms [149], coronary heart disease [150], myocardial infarction [151], myocardial hypertrophy [152], dilated
cardiomyopathy [153], pulmonary arterial hypertension [154], acute ischemic stroke [127], and ascending aortic aneurysm [81],

hsa-miR-145-5p 5q33 Hypertension [155,156], dilated cardiomyopathy [157], myocardial infarction [158], stroke [159], acute cerebral
ischemic/reperfusion [160], T2DM [56,161], T1DM [84], diabetic retinopathy [162], and gestational diabetes mellitus [163]

hsa-miR-146a-5p 5q33.3 [164,165]
Angiogenesis [166], hypoxia, ischemia/reperfusion-induced cardiac injury [167], myocardial infarction [48], coronary atherosclerosis,
coronary heart disease in patients with subclinical hypothyroidism [168], thoracic aortic aneurysm [43], acute ischemic stroke, acute
cerebral ischemia [169], T2DM [56,84], T1DM [107], and diabetic nephropathy [89]

hsa-miR-155-5p 21q21.3
Thoracic aortic aneurysm [43], type 1 diabetes [125], gestational diabetes mellitus [53], adolescent obesity [170], diet-induced obesity and
obesity resistance [171], atherosclerosis [172], hyperlipidemia-associated endotoxemia [173], coronary plaque rupture [174], children with
cyanotic heart disease [175], chronic kidney disease and nocturnal hypertension [176], and atrial fibrillation [177]

hsa-miR-181a-5p 1q32.1 [178]
9q33.3

Regulation of hypertension-related genes, atherosclerosis [178], metabolic syndrome, coronary artery disease [179], non-alcoholic fatty
liver disease [180], ischaemic stroke, transient ischaemic attack, acute myocardial infarction [181,182], obesity and insulin
resistance [94,178,179], T1DM [84,183], and T2DM [178,182]

hsa-miR-195-5p 17p13.1 [184] Cardiac hypertrophy, heart failure [185,186], abdominal aortic aneurysms [187], aortic stenosis [188], T2DM [161], and gestational
diabetes mellitus [189]

hsa-miR-199a-5p 1q24.3
19p13.2

T1DM, T2DM, gestational diabetes mellitus [190], diabetic retinopathy [191], cerebral ischemic injury [192], heart failure [193],
hypertension [194,195], congenital heart disease [196], pulmonary artery hypertension [197], unstable angina [198], hypoxia in
myocardium [196], and acute kidney injury [199]

hsa-miR-210-3p 11p15.5 Cardiac hypertrophy [200], acute kidney injury [201], myocardial infarction [202], and atherosclerosis [203]

hsa-miR-221-3p Xp11.3 Asymptomatic carotid stenosis [95], cardiac amyloidosis [204], heart failure [205], atherosclerosis [206,207], aortic stenosis [208], acute
myocardial infarction [209], acute ischemic stroke [210], focal cerebral ischemia [211], pulmonary artery hypertension [212], and obesity [213]

hsa-miR-342-3p 14q32.2 Cardiac amyloidosis [204], obesity [214], T1DM [84,190,215], T2DM [190,190,216,217] and endothelial dysfunction [218]

hsa-miR-499a-5p 20q11.22 Myocardial infarction [48,219], hypoxia [220], cardiac regeneration [221], and vascular endothelial dysfunction [46]

hsa-miR-574-3p 4p14 Myocardial infarction [222], coronary artery disease [138], cardiac amyloidosis [204], stroke [223], and T2DM [142,224]
T1DM: Diabetes mellitus type 1; T2DM: Diabetes mellitus type 2.
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The epigenetic profiling of microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p,
miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-
100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p,
miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p,
miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) was the subject of our interest
(Table 1).

Up to now, no reports on microRNA gene profiling of the whole peripheral venous
blood in early stages of gestation are at disposal in pregnancies with subsequent onset
of GDM.

To our knowledge, only several studies have reported promising data on the early diag-
nosis of GDM during the first trimester of gestation via screening of circulating cardiovascu-
lar disease-associated microRNAs in maternal plasma or serum samples [112,130,226–228].

2. Results
2.1. Clinical Characteristics of GDM and Control Pregnancies

The clinical characteristics of GDM and control pregnancies are summarized in Table 2.
From the clinical characteristics of patients, it is obvious that maternal age (mainly

advanced maternal age, ≥35 years), BMI (higher BMI values, BMI ≥ 30 kg/m2) at early
stages of gestation, the necessity to undergo an infertility treatment by assisted reproductive
technology, history of miscarriage, the presence of trombophilic gene mutations, positive
first-trimester screening for preeclampsia and/or FGR by FMF algorithm, and family
history of diabetes mellitus in first-degree relatives represent independent significant risk
factors for the subsequent onset of GDM.
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Table 2. Clinical characteristics of the cases and controls.

Normal Term
Pregnancies
(n = 80)

GDM Overall
(n = 121)

GDM Managed by
Diet Only
(n = 101)

GDM Managed by
Diet and Therapy
(n = 20)

p-Value 1 p-Value 2 p-Value 3

Maternal characteristics

Autoimmune diseases
(SLE/APS/RA) 0 (0%) 1 (0.83%) 1 (RA, 1.0%) 0 (0%)

0.672
OR: 2.004
95% CI: 0.081–49.814

0.593
OR: 2.403
95% CI: 0.096–59.786

0.497
OR: 3.927
95% CI: 0.076–203.916

Other autoimmune diseases 0 (0%) 1 (0.83%) 1 (vasculitis; 1.0%) 0 (0%)
0.672
OR: 2.004
95% CI: 0.081–49.814

0.593
OR: 2.403
95% CI: 0.096–59.786

0.497
OR: 3.927
95% CI: 0.076–203.916

Any kind of autoimmune
disease (SLE/APS/RA/other) 0 (0%) 2 (1.65%) 2 (1.98%) 0 (0%)

0.435
OR: 3.368
95% CI: 0.160–71.088

0.369
OR: 4.045
95% CI: 0.191–85.468

0.497
OR: 3.927
95% CI: 0.076–203.916

Trombophilic gene mutations 0 (0%) 11 (9.09%) 9 (8.91%) 2 (10.0%)
0.052
OR: 16.756
95% CI: 0.973–288.513

0.055
OR: 16.535
95% CI: 0.947–288.589

0.050
OR: 21.757
95% CI: 1.002–472.533

Family history of diabetes

First-degree relative with DM 10 (12.50%) 30 (24.79%) 26 (25.74%) 4 (20.0%)
0.036
OR: 2.308
95% CI: 1.057–5.037

0.030
OR: 2.427
95% CI: 1.092–5.394

0.392
OR: 1.750
95% CI: 0.486–6.297

Second-degree relative with DM 21 (26.25%) 44 (36.36%) 36 (35.64%) 8 (40.0%)
0.135
OR: 1.605
95% CI: 0.863–2.986

0.178
OR: 1.556
95% CI: 0.818–2.961

0.230
OR: 1.873
95% CI: 0.673–5.215

Parity

Nulliparous—no previous
pregnancy 40 (50.0%) 54 (44.63%) 46 (45.54%) 8 (40.0%)

0.455
OR: 0.806
95% CI: 0.458–1.419

0.551
OR: 0.836
95% CI: 0.465–1.505

0.425
OR: 0.667
95% CI: 0.246–1.805

Parous—no prior GDM 39 (48.75%) 61 (50.41%) 50 (49.50%) 11 (55.0%) 0.817
OR: 1.069
95% CI: 0.608–1.880

0.919
OR: 1.031
95% CI: 0.573–1.853

0.618
OR: 1.285
95% CI: 0.480–3.437Parous—prior GDM 1 (1.25%) 6 (4.96%) 5 (4.95%) 1 (5.0%)

History of macrosomia
(FBW > 4000 g) 4 (5.0%) 2 (1.65%) 1 (0.99%) 1 (5.0%)

0.194
OR: 0.319
95% CI: 0.057–1.786

0.141
OR: 0.190
95% CI: 0.021–1.735

1.0
OR: 1.000
95% CI: 0.106–9.471
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Table 2. Cont.

Normal Term
Pregnancies
(n = 80)

GDM Overall
(n = 121)

GDM Managed by
Diet Only
(n = 101)

GDM Managed by
Diet and Therapy
(n = 20)

p-Value 1 p-Value 2 p-Value 3

History of miscarriage
spontaneous loss of a
pregnancy before 22 weeks
of gestation

16 (20.0%) 42 (34.71%) 36 (35.64%) 6 (30.0%)
0.026
OR: 2.127
95% CI: 1.095–4.129

0.022
OR: 2.215
95% CI: 1.119–4.384

0.338
OR: 1.714
95% CI: 0.569–5.161

History of perinatal death
the death of a baby between
22 weeks of gestation (or
weighing 500 g) and 7 days
after birth

0 (0%) 4 (3.31%) 3 (2.97%) 1 (5.0%)

0.224
OR: 6.166
95% CI:
0.327–116.113

0.251
OR: 5.721
95% CI:
0.291–112.387

0.128
OR: 12.385
95% CI:
0.486–315.805

ART (IVF/ICSI/other) 2 (2.5%) 20 (16.53%) 15 (14.85%) 5 (25.0%)
0.007
OR: 7.723
95% CI: 1.752–34.038

0.013
OR: 6.802
95% CI: 1.507–30.698

0.004
OR: 13.000
95% CI: 2.304–73.362

Smoking during pregnancy 2 (2.5%) 6 (4.96%) 4 (3.96%) 2 (10.0%)
0.392
OR: 2.035
95% CI: 0.108–10.343

0.589
OR: 1.608
95% CI: 0.287–9.012

0.156
OR: 4.333
95% CI: 0.572–32.859

Pregnancy details (First
trimester of gestation)

Maternal age (years) 32 (25–42) 33 (21–42) 33 (21–42) 32 (25–42) 0.635 0.572 0.950

Advanced maternal age
(≥35 years old at early
stages of gestation)

18 (22.50%) 49 (40.49%) 42 (41.58%) 7 (35.0%)
0.009
OR: 2.618
95% CI: 1.238–4.437

0.007
OR: 2.675
95% CI: 1.271–4.731

0.252
OR: 1.144
95% CI: 0.644–5.343

BMI (kg/m2) 21.28 (17.16–29.76) 24.24 (17.37–40.76) 23.89 (17.37–40.76) 26.55 (19.33–39.79) <0.001 <0.001 <0.001

BMI ≥ 30 kg/m2 0 (0%) 25 (20.66%) 17 (16.83%) 8 (40%)

0.009
OR: 42.544
95% CI:
2.550–709.837

0.015
OR: 33.343
95% CI:
1.972–563.719

0.002
OR: 109.480
95% CI:
5.941–2017.344
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Table 2. Cont.

Normal Term
Pregnancies
(n = 80)

GDM Overall
(n = 121)

GDM Managed by
Diet Only
(n = 101)

GDM Managed by
Diet and Therapy
(n = 20)

p-Value 1 p-Value 2 p-Value 3

Gestational age at sampling
(weeks) 10.29 (9.57–13.71) 10.29 (9.43–13.57) 10.29 (9.43–13.57) 10.21 (9.43–12.71) 0.737 0.548 0.521

MAP (mmHg) 88.75 (67.67–103.83) 92.0 (72.83–127.58) 91.96 (72.83–127.58) 92.58 (82.85–101.92) 0.051 0.083 0.022

MAP (MoM) 1.05 (0.84–1.25) 1.05 (0.90–1.44) 1.05 (0.90–1.44) 1.07 (0.97–1.13) 0.656 0.574 0.361

Mean UtA-PI 1.39 (0.56–2.43) 1.35 (0.42–2.30) 1.35 (0.42–2.30) 1.25 (0.74–1.84) 0.591 0.831 0.495

Mean UtA-PI (MoM) 0.90 (0.37–1.55) 0.88 (0.26–1.48) 0.89 (0.26–1.48) 0.85 (0.52–1.26) 0.539 0.710 0.402

PIGF serum levels (pg/mL) 27.1 (8.1–137.0) 26.7 (9.2–71.0) 26.8 (9.2–71.0) 25.5 (14.5–46.0) 0.420 0.377 0.375

PIGF serum levels (MoM) 1.04 (0.38–2.61) 1.09 (0.44–2.0) 1.06 (0.44–2.0) 1.15 (0.62–1.59) 0.934 0.690 0.065

PAPP-A serum levels (IU/L) 1.49 (0.48–15.69) 1.28 (0.22–11.45) 1.35 (0.22–11.45) 1.0 (0.26–6.83) 0.063 0.123 0.158

PAPP-A serum levels (MoM) 1.17 (0.37–3.18) 1.05 (1.19–3.67) 1.04 (0.28–3.02) 1.43 (0.19–3.67) 0.606 0.434 0.362

Free b-hCG serum levels
(µg/L) 60.21 (9.9–200.6) 50.25 (9.31–211.3) 53.82 (9.31–211.3) 32.62 (16.55–153.2) 0.043 0.123 0.037

Free b-hCG serum levels
(MoM) 1.02 (0.31–3.57) 0.98 (0.18–4.54) 1.0 (0.18–4.54) 0.97 (0.33–2.74) 0.317 0.437 0.446

Screen positive for PE
and/or FGR by FMF
algorithm

0 (0%) 11 (9.09%) 10 (9.90%) 1 (5.0%)

0.052
OR: 16.756
95% CI:
0.973–288.513

0.045
OR: 18.475
95% CI:
1.066–320.312

0.128
OR: 12.385
95% CI:
0.486–315.805

Aspirin intake during
pregnancy 0 (0%) 8 (6.61%) 7 (6.93%) 1 (5.0%)

0.089
OR: 12.057
95% CI:
0.686–211.908

0.083
OR: 12.778
95% CI:
0.717–227.208

0.128
OR: 12.385
95% CI:
0.486–315.806

Pregnancy details (At delivery)

BMI (kg/m2) 26.66 (21.71–34.82) 28.41 (20.11–49.31) 28.24 (20.11–49.31) 32.11 (23.23–44.98) 0.004 0.042 <0.001

SBP (mmHg) 122 (100–155) 120 (90–160) 121 (90–160) 120 (100–140) 0.823 0.950 0.330

DBP (mmHg) 76 (60–90) 79 (57–109) 79 (57–109) 79 (60–89) 0.898 0.945 0.816



Int. J. Mol. Sci. 2022, 23, 10635 10 of 44

Table 2. Cont.

Normal Term
Pregnancies
(n = 80)

GDM Overall
(n = 121)

GDM Managed by
Diet Only
(n = 101)

GDM Managed by
Diet and Therapy
(n = 20)

p-Value 1 p-Value 2 p-Value 3

Gestational age at
delivery (weeks) 40.07 (37.57–42.0) 39.14 (36.14–41.29) 39.14 (36.14–41.29) 38.93 (36.57–41.0) <0.001 <0.001 0.009

Delivery at gestational
age < 37 weeks 0 (0%) 6 (4.96%)

4 (3.96%)
1 CS for vasculitis-
associated adverse
obstetric history
3 CS for abnormal
CTG

2 (10.0%)
1 CS for vasculitis-
associated adverse
obstetric history
1 CS for abnormal
CTG

0.135
OR: 9.061
95% CI:
0.503–163.118

0.181
OR: 7.431
95% CI:
0.394–140.092

0.050
OR: 21.757
95% CI:
1.002–472.533

Polyhydramnios 1 (1.25%) 28 (23.14%) 21 (20.79%) 7 (35.0%)

0.002
OR: 23.785
95% CI:
3.164–178.781

0.003
OR: 20.738
95% CI:
2.723–157.908

<0.001
OR: 42.538
95% CI:
4.828–374.768

Fetal birth weight (grams) 3470 (2920–4240) 3370 (2430–4340) 3310 (2430–4340) 3625 (2950–4220) 0.043 0.003 0.046

LGA (FBW > 90th percentile) 2 (2.5%) 11 (9.09%) 7 (6.93%) 4 (20.0%)
0.082
OR: 3.900
95% CI: 0.841–18.089

0.192
OR: 2.904
95% CI: 0.586–14.384

0.012
OR: 9.750
95% CI: 1.643–57.851

Macrosomia (FBW > 4000g) 5 (6.25%) 10 (8.26%) 8 (7.92%) 2 (10.0%)
0.596
OR: 1.351
95% CI: 0.444–4.112

0.666
OR: 1.290
95% CI: 0.405–4.108

0.560
OR: 1.667
95% CI: 0.299–9.295

Fetal sex

Boy 40 (50.0%) 60 (49.59%) 49 (48.51%) 11 (55.0%) 0.954
OR: 0.984
95% CI: 0.559–1.730

0.843
OR: 0.942
95% CI: 0.524–1.695

0.689
OR: 1.222
95% CI: 0.457–3.269Girl 40 (50.0%) 61 (50.41%) 52 (51.49%) 9 (45.0%)

Induced delivery

8 (10.0%)
4 postterm
pregnancy
1 polyhydramnios
1 suspicious CTG
2 programmed
labour

39 (32.23%)

32 (31.68%)
29 term or postterm
GDM pregnancy
2 suspicious CTG
1 hepatopathy

7 (35.0%)
7 term or postterm
GDM pregnancy

<0.001
OR: 4.281
95% CI: 1.878–9.757

<0.001
OR: 4.174
95% CI: 1.798–9.689

0.008
OR: 4.846
95% CI: 1.498–15.674
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Table 2. Cont.

Normal Term
Pregnancies
(n = 80)

GDM Overall
(n = 121)

GDM Managed by
Diet Only
(n = 101)

GDM Managed by
Diet and Therapy
(n = 20)

p-Value 1 p-Value 2 p-Value 3

Mode of delivery

Vaginal 69 (86.25%) 66 (54.55%) 58 (57.43%) 8 (40.0%) <0.001
OR: 5.227
95% CI: 2.519–10.848

<0.001
OR: 4.651
95% CI: 2.199–9.832

<0.001
OR: 9.409
95% CI: 3.139–28.205CS 11 (13.75%) 55 (45.45%) 43 (42.57%) 12 (60.0%)

Apgar score < 7, 5 min 0 (0%) 0 (0%) 0 (0%) 0 (0%)
0.837
OR: 0.663
95% CI: 0.013–33.732

0.908
OR: 0.793
95% CI: 0.015–40.411

0.497
OR: 3.927
95% CI:
0.076–203.916

Apgar score < 7, 10 min 0 (0%) 0 (0%) 0 (0%) 0 (0%)
0.837
OR: 0.663
95% CI: 0.013–33.732

0.908
OR: 0.793
95% CI: 0.015–40.411

0.497
OR: 3.927
95% CI:
0.076–203.916

Umbilical blood pH 7.3 (7.29–7.38) 7.3 (7.12–7.39) 7.3 (7.29–7.30) 0.981 0.796

Continuous variables, compared using the Mann–Whitney or Kruskal–Wallis test, are presented as median (range). Categorical variables, presented as number (percent), were compared
using odds ratio test. p-value 1,2,3: the comparison among normal pregnancies and GDM pregnancies, the comparison among normal pregnancies and GDM pregnancies managed by
diet only or GDM pregnancies managed by diet and therapy, respectively. GDM, gestational diabetes mellitus; BMI, body mass index; SBP; systolic blood pressure; DBP, diastolic blood
pressure; SLE, systemic lupus erythematosus; APS, antiphospholipid syndrome; RA, rheumatoid arthritis; DM, diabetes mellitus; FBW, fetal birth weight; ART, assisted reproductive
technology; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; MAP, mean arterial pressure; UtA-PI, uterine artery pulsatility index; PIGF, placental growth factor; PAPP-A,
pregnancy-associated plasma protein-A; b-hCG, beta-subunit of human chorionic gonadotropin; PE, preeclampsia; FGR, fetal growth restriction; FMF, Fetal Medicine Foundation; LGA,
large for gestational age; CS, caesarean section.
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2.2. Dysregulation of Cardiovascular Disease-Associated MicroRNAs in Early Stages of Gestation
in Pregnancies Destinated to Develop GDM

Initially, microRNA gene expression in peripheral blood leukocytes was compared
in the early stages of gestation (within 10 to 13 weeks) between pregnancies destinated
to develop GDM and term pregnancies with normal course of gestation (Figure 1). After-
wards, early microRNA gene expression was compared between pregnancies destinated to
develop GDM and normal term pregnancies with respect to the treatment strategies (GDM
pregnancies managed by diet only and GDM pregnancies requiring a combination of diet
and administration of appropriate therapy).

Figure 1. MicroRNA gene expression profile in early stages of gestation in pregnancies destinated to
develop GDM and term pregnancies with normal course of gestation. MicroRNA gene expression
data (2−∆∆Ct) are visualised using the heatmap. In this setting, each row represents a sample (GDM1–
GDM121, NP1–NP80) and each column represents a microRNA gene. The colour and intensity
of the boxes are used to represent changes of gene expression (2−∆∆Ct). Green colour indicates
upregulation, and red colour indicates downregulation. GDM; gestational diabetes mellitus, NP;
normal pregnancies.
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Only the data that reached statistical significance after the application of Benjamini–
Hochberg correction are discussed below (Supplementary Figures S1 and S2). To interpret
the experimental data, new cutoff point p-values were set up. Significant results following
the Benjamini–Hochberg correction are marked by asterisks for the appropriate significance
levels (* for α = 0.05, ** for α = 0.01, and *** for α = 0.001). The data that were statistically
non-significant after the application of Benjamini–Hochberg correction (Tables 2 and 3) are
also displayed (Supplementary Figures S3 and S4), but not discussed further.

Upregulation of miR-1-3p (p = 0.0028 **), miR-20a-5p (p < 0.001 ***), miR-20b-5p
(p < 0.001 ***), miR-23a-3p (p = 0.0065 *), miR-100-5p (p < 0.001 ***), miR-125b-5p (p = 0.0034 **),
miR-126-3p (p = 0.0137 *), miR-181a-5p (p = 0.0065 *), miR-195-5p (p < 0.001 ***), miR-499a-
5p (p < 0.001 ***), and miR-574-3p (p < 0.001 ***) was detected during the first trimester of
gestation in pregnancies destinated to develop GDM (Supplementary Figure S1, Table 3).

MiR-20a-5p (21.49%), miR-20b-5p (18.18%), miR-23a-3p (15.70%), miR-100-5p (20.66%),
miR-125b-5p (14.88%), miR-126-3p (14.05%), miR-195-5p (19.83%) miR-499a-5p (14.88%),
and miR-574-3p (23.14%) showed moderate sensitivities at a 10.0% FPR to distinguish be-
tween normal pregnancies and pregnancies destinated to develop GDM. In contrast, miR-1-
3p (12.40%) and miR-181a-5p (10.74%) showed a low sensitivity to differentiate normal preg-
nancies and pregnancies with subsequent onset of GDM at a 10.0% FPR (Supplementary
Figure S1). This means that the sensitivity in case of miR-1-3p and miR-181a-5p was similar
to the false positive rate (10.0%) at which the expression data were assessed.

Table 3. MicroRNA expression profiles in peripheral blood leukocytes in early stages of gestation in
pregnancies destinated to develop GDM and normal term pregnancies.

Mann-Whitney Test Results
GDM Overall (n = 121) vs. Normal Term Pregnancies (n = 80)

Median (IQR) Mean (SD) p-Value

miR-1-3p 0.135 (0.071–0.254) vs. 0.075 (0.033–0.198) 0.259 (0.525) vs. 0.176 (0.303) p= 0.0028 **

miR-16-5p 1.216 (0.968–1.725) vs. 1.411 (0.890–1.980) 1.495 (0.981) vs. 1.646 (1.129) p = 0.5781

miR-17-5p 1.527 (1.181–2.311) vs. 1.384 (0.971–1.923) 1.973 (1.473) vs. 1.748 (1.312) p = 0.0538

miR-20a-5p 2.215 (1.493–3.398) vs. 1.576 (0.991–2.413) 3.037 (3.068) vs. 1.909 (1.370) p < 0.001 ***

miR-20b-5p 2.662 (1.812–3.959) vs. 1.976 (1.111–2.675) 3.706 (3.878) vs. 2.377 (2.291) p < 0.001 ***

miR-21-5p 0.344 (0.231–0.460) vs. 0.320 (0.167–0.538) 0.433 (0.420) vs. 0.394 (0.219) p = 0.2418

miR-23a-3p 0.239 (0.168–0.436) vs. 0.185 (0.103–0.376) 0.367 (0.337) vs. 0.296 (0.329) p = 0.0065 *

miR-24-3p 0.292 (0.228–0.372) vs. 0.326 (0.196–0.468) 0.331 (0.197) vs. 0.384 (0.284) p = 0.5730

miR-26a-5p 0.699 (0.500–0.926) vs. 0.633 (0.410–1.066) 0.837 (0.670) vs. 0.776 (0.521) p = 0.3022

miR-29a-3p 0.405 (0.282–0.575) vs. 0.372 (0.221–0.545) 0.510 (0.396) vs. 0.407 (0.245) p = 0.0840

miR-92a-3p 2.179 (1.604–3.084) vs. 2.327 (1.188–3.743) 2.702 (2.226) vs. 2.807 (2.132) p = 0.9812

miR-100-5p 0.0023 (0.0013–0.0036) vs. 0.0013 (0.0006–0.0027) 0.0030 (0.0039) vs. 0.0018 (0.0016) p < 0.001 ***

miR-103a-3p 1.565 (0.963–2.541) vs. 1.203 (0.815–2.425) 2.121 (2.252) vs. 1.770 (1.466) p = 0.1547

miR-125b-5p 0.0041 (0.0025–0.0057) vs. 0.0030 (0.0016–0.0054) 0.0049 (0.0046) vs. 0.0036 (0.0027) p = 0.0034 **

miR-126-3p 0.328 (0.231–0.509) vs. 0.272 (0.140–0.432) 0.462 (0.551) vs. 0.336 (0.270) p = 0.0137 *

miR-130b-3p 0.745 (0.476–1.409) vs. 0.702 (0.407–1.157) 1.075 (0.960) vs. 1.163 (2.425) p = 0.2105

miR-133a-3p 0.109 (0.061–0.220) vs. 0.110 (0.550–0.233) 0.193 (0.265) vs. 0.232 (0.483) p = 0.8750

miR-143-3p 0.048 (0.030–0.880) vs. 0.038 (0.016–0.089) 0.073 (0.086) vs. 0.058 (0.057) p = 0.0260

miR-145-5p 0.176 (0.125–0.236) vs. 0.161 (0.980–0.243) 0.209 (0.153) vs. 0.195 (0.143) p = 0.2025

miR-146a-5p 1.224 (0.821–1.843) vs. 1.225 (0.578–1.765) 1.658 (1.541) vs. 1.388 (1.096) p = 0.1415

miR-155-5p 0.619 (0.434–0.778) vs. 0.607 (0.361–1.614) 0.703 (0.523) vs 1.247 (1.439) p = 0.2987
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Table 3. Cont.

Mann-Whitney Test Results
GDM Overall (n = 121) vs. Normal Term Pregnancies (n = 80)

Median (IQR) Mean (SD) p-Value

miR-181a-5p 0.250 (0.175–0.379) vs 0.181 (0.141–0.330) 0.330 (0.318) vs 0.246 (0.184) p = 0.0065 *

miR-195-5p 0.267 (0.168–0.487) vs 0.106 (0.048–0.271) 0.470 (0.690) vs 0.227 (0.364) p < 0.001 ***

miR-199a-5p 0.080 (0.037–0.159) vs 0.058 (0.023–0.111) 0.136 (0.223) vs 0.096 (0.131) p = 0.0288

miR-210-3p 0.102 (0.074–0.154) vs 0.138 (0.075–0.224) 0.134 (0.105) vs 0.186 (0.180) p = 0.0952

miR-221-3p 0.644 (0.448–0.969) vs 0.548 (0.293–0.906) 0.815 (0.736) vs 0.693 (0.561) p = 0.0947

miR-342-3p 3.069 (2.122–4.110) vs 2.542 (1.551–4.206) 3.605 (2.724) vs 3.307 (2.383) p = 0.1947

miR-499a-5p 0.460 (0.231–0.780) vs 0.269 (0.089–0.587) 0.758 (1.070) vs 0.477 (0.566) p < 0.001 ***

miR-574-3p 0.275 (0.180–0.395) vs 0.181 (0.117–0.292) 0.354 (0.332) vs 0.222 (0.156) p < 0.001 ***

MicroRNA gene expression is compared between groups using the Mann–Whitney test. Statistically significant
results are marked in bold. Median (interquartile range, IQR) and mean (standard deviation, SD) fold values of
relative gene expression of samples (2−∆∆Ct) are presented. Statistical significant data after Benjamini–Hochberg
correction are marked by * for α = 0.05, ** for α = 0.01, and *** for α = 0.001.

2.3. First-Trimester Combined MicroRNA Screening Is Able to Differentiate between Pregnancies
Destinated to Develop GDM and Term Pregnancies with Normal Course of Gestation

Despite the low sensitivities of miR-1-3p (12.40%) and miR-181a-5p (10.74%), the
combined screening of all 11 dysregulated microRNA biomarkers (miR-1-3p, miR-20a-5p,
miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p,
miR-499a-5p, and miR-574-3p) showed the highest accuracy for the early identification of
pregnancies destinated to develop GDM (AUC 0.742, p < 0.001, 63.64% sensitivity, 78.75%
specificity, cut off >0.5850). This combined screening identified, in the early stages of
gestation, 47.93% of pregnancies destinated to develop GDM at a 10.0% FPR (Figure 2).

Figure 2. ROC analysis—the combination of microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-
5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and
miR-574-3p). A total of 47.93% pregnancies destinated to develop GDM had an aberrant microRNA
expression profile in the whole peripheral venous blood during the first trimester of gestation at a
10.0% FPR. This represents 58 out of 121 pregnancies correctly predicted to develop GDM and 8 out
of 80 normal pregnancies predicted false positively to develop GDM.
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2.4. The Very Good Accuracy of First-Trimester Combined Screening (MicroRNA Biomarkers and
Selected Clinical Characteristics) to Differentiate between Pregnancies Destinated to Develop GDM
and Term Pregnancies with Normal Course of Gestation

The effective screening based on the combination of minimal number of basic clinical
characteristics (maternal age and BMI at early stages of gestation and an infertility treatment
by assisted reproductive technology) and 11 dysregulated microRNA biomarkers (miR-1-3p,
miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p,
miR-195-5p, miR-499a-5p, and miR-574-3p) showed relatively high accuracy for the early
identification of pregnancies destinated to develop GDM (AUC 0.835, p < 0.001, 67.50%
sensitivity, 92.50% specificity, cut off >0.6929). This combined screening identified, in the
early stages of gestation, 69.17% of pregnancies destinated to develop GDM at a 10.0% FPR
(Figure 3).

Figure 3. ROC analysis—the combination of 3 basic clinical characteristics (maternal age and BMI
values at early stages of gestation and an infertility treatment by assisted reproductive technology)
and 11 dysregulated microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-
100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). At
a 10.0% FPR, 69.17% of pregnancies destinated to develop GDM were identified during the first
trimester of gestation. This represents 84 out of 121 pregnancies correctly predicted to develop GDM
and 8 out of 80 normal pregnancies predicted false positively to develop GDM.

The screening based on the combination of seven clinical characteristics (maternal
age and BMI at early stages of gestation, an infertility treatment by assisted reproductive
technology, history of miscarriage, the presence of trombophilic gene mutations, positive
first-trimester screening for preeclampsia and/or FGR by FMF algorithm, and family history
of diabetes mellitus in first-degree relatives) and 11 dysregulated microRNA biomarkers
(miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p,
miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) showed the highest possible
accuracy for the early identification of pregnancies destinated to develop GDM (AUC 0.869,
p < 0.001, 72.50% sensitivity, 90.0% specificity, cut off >0.6572). This combined screening
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identified, in the early stages of gestation, 72.50% of pregnancies destinated to develop
GDM at a 10.0% FPR (Figure 4).

Figure 4. ROC analysis—the combination of 7 clinical characteristics (maternal age and BMI at early
stages of gestation, an infertility treatment by assisted reproductive technology, history of miscarriage,
the presence of trombophilic gene mutations, positive first-trimester screening for PE and/or FGR by
FMF algorithm, and family history of diabetes mellitus in first-degree relatives) and 11 dysregulated
microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p,
miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). At a 10.0% FPR, 72.50% of
pregnancies destinated to develop GDM were identified during the first trimester of gestation. This
represents 88 out of 121 pregnancies correctly predicted to develop GDM and 8 out of 80 normal
pregnancies predicted false positively to develop GDM.

2.5. Dysregulation of Cardiovascular Disease-Associated MicroRNAs in Pregnancies Destinated to
Develop GDM with Respect to the Treatment Strategies (Diet Only and a Combination of Diet and
Administration of Appropriate Therapy)

Concurrently, upregulation of miR-20a-5p (p = 0.0015 **, p = 0.0098 *), miR-20b-5p
(p < 0.001 ***, p = 0.0054 **), and miR-195-5p (p < 0.001 ***, p < 0.001 ***) was observed
in both groups of pregnancies destinated to develop GDM, irrespective of the treatment
strategies (diet only or a combination of diet and therapy).

In addition, upregulation of miR-1-3p (p = 0.0045 *), miR-100-5p (p = 0.0010 **), miR-
125b-5p (p = 0.0109 *), miR-499-5p (p = 0.0043 *), and miR-574-3p (p < 0.001 ***) was observed
in only the group of pregnancies destinated to develop GDM, which was managed well by
diet only (Supplementary Figure S2, Table 4).

Sensitivities at a 10.0% FPR were reported for miR-20a-5p (21.78%, 20.0%), miR-20b-5p
(15.84%, 30.0%), and miR-195-5p (18.81%, 25.0%) in pregnancies destinated to develop
GDM requiring management by diet only or a combination of diet and administration of
appropriate therapy.

Sensitivities at a 10.0% FPR were reported for miR-1-3p (13.86%), miR-100-5p (19.80%),
miR-125b-5p (14.85%), miR-499a-5p (15.84%), and miR-574-3p (21.78%) in pregnancies
destinated to develop GDM requiring diet only (Supplementary Figure S2).
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Table 4. MicroRNA expression profiles in peripheral blood leukocytes in early stages of gestation
in pregnancies destinated to develop GDM with respect to the treatment strategies and normal
term pregnancies.

Kruskal–Wallis Test Results
GDM Managed by Diet Only (n = 101) vs. Normal Term Pregnancies (n = 80)
GDM Managed by Diet and Therapy (n = 20) vs. Normal Term Pregnancies (n = 80)

Median (IQR) Mean (SD) p-Value

miR-1-3p 0.141 (0.075–0.274) vs. 0.075 (0.033–0.198)
0.099 (0.071–0.175) vs. 0.075 (0.033–0.198)

0.278 (0.568) vs. 0.176 (0.303)
0.162 (0.190) vs. 0.176 (0.303)

p = 0.0045 *
p = 1.000

miR-16-5p 1.216 (0.981–1. 785) vs. 1.411 (0.890–1.980)
1.268 (0.923–2.007) vs. 1.411 (0.890–1.980)

1.469 (0.976) vs. 1.646 (1.129)
1.626 (1.019) vs. 1.646 (1.129)

p = 1.000
p = 1.000

miR-17-5p 1.480 (1.166–2.267) vs. 1.384 (0.971–1.923)
1.893 (1.346–2.362) vs. 1.384 (0.971–1.923)

1.950 (1.553) vs. 1.748 (1.312)
2.085 (0.996) vs. 1.748 (1.312)

p = 0.3822
p = 0.1019

miR-20a-5p 2.144 (1.486–3.398) vs. 1.576 (0.991–2.413)
2.598 (1.787–3.384) vs. 1.576 (0.991–2.413)

3.019 (3.220) vs. 1.909 (1.370)
3.130 (2.204) vs. 1.909 (1.370)

p = 0.0015 **
p = 0.0098 *

miR-20b-5p 2.577 (1.784–3.719) vs. 1.976 (1.111–2.675)
3.072 (2.085–5.484) vs. 1.976 (1.111–2.675)

3.678 (4.112) vs. 2.377 (2.291)
3.850 (2.439) vs. 2.377 (2.291)

p < 0.001 ***
p = 0.0054 **

miR-21-5p 0.339 (0.222–0.460) vs. 0.320 (0.167–0.538)
0.352 (0.260–0.464) vs. 0.320 (0.167–0.538)

0.426 (0.436) vs. 0.394 (0.219)
0.472 (0.332) vs. 0.394 (0.219)

p = 1.000
p = 0.4483

miR-23a-3p 0.229 (0.160–0.444) vs. 0.185 (0.103–0.376)
0.299 (0.219–0.344) vs. 0.185 (0.103–0.376)

0.364 (0.346) vs. 0.296 (0.329)
0.383 (0.293) vs. 0.296 (0.329)

p = 0.0627
p = 0.0371

miR-24-3p 0.292 (0.222–0.370) vs. 0.326 (0.196–0.468)
0.301 (0.241–0.377) vs. 0.326 (0.196–0.468)

0.330 (0.206) vs. 0.384 (0.284)
0.339 (0.147) vs. 0.384 (0.284)

p = 1.000
p = 1.000

miR-26a-5p 0.729 (0.497–0.938) vs. 0.633 (0.410–1.066)
0.658 (0.560–0.917) vs. 0.633 (0.410–1.066)

0.841 (0.705) vs. 0.776 (0.521)
0.815 (0.462) vs. 0.776 (0.521)

p = 0.9599
p = 1.000

miR-29a-3p 0.404 (0.276–0.571) vs. 0.372 (0.221–0.545)
0.435 (0.358–0.666) vs. 0.372 (0.221–0.545)

0.486 (0.377) vs. 0.407 (0.245)
0.630 (0.471) vs. 0.407 (0.245)

p = 0.5656
p = 0.1198

miR-92a-3p 2.171 (1.604–3.036) vs. 2.327 (1.188–3.743)
2.258 (1.603–3.681) vs. 2.327 (1.188–3.743)

2.647 (2.217) vs. 2.807 (2.132)
2.979 (2.3086) vs. 2.807 (2.132)

p = 1.000
p = 1.000

miR-100-5p 0.0024 (0.0013–0.0036) vs. 0.0013 (0.0006–0.0027)
0.0014 (0.0012–0.0037) vs. 0.0013 (0.0006–0.0027)

0.0031 (0.0041) vs. 0.0018 (0.0016)
0.0028 (0.0025) vs. 0.0018 (0.0016)

p = 0.0010 **
p = 0.2898

miR-103a-3p 1.531 (0.949–2.533) vs. 1.203 (0.815–2.425)
1.618 (1.234–2.554) vs. 1.203 (0.815–2.425)

2.085 (2.294) vs. 1.770 (1.466)
2.304 (2.075) vs. 1.770 (1.466)

p = 0.7368
p = 0.4354

miR-125b-5p 0.0041 (0.0026–0.0057) vs. 0.0030 (0.0016–0.0054)
0.0038 (0.0021–0.0055) vs. 0.0030 (0.0016–0.0054)

0.0050 (0.0048) vs. 0.0036 (0.0027)
0.0045 (0.0029) vs. 0.0036 (0.0027)

p = 0.0109 *
p = 0.4855

miR-126-3p 0.332 (0.219–0.500) vs. 0.272 (0.140–0.432)
0.324 (0.280–0.546) vs. 0.272 (0.140–0.432)

0.470 (0.595) vs. 0.336 (0.270)
0.418 (0.228) vs. 0.336 (0.270)

p = 0.0842
p = 0.1516

miR-130b-3p 0.707 (0.453–1.315) vs. 0.702 (0.407–1.157)
1.087 (0.577–1.481) vs. 0.702 (0.407–1.157)

1.051 (0.995) vs. 1.163 (2.425)
1.194 (0.769) vs. 1.163 (2.425)

p = 1.000
p = 0.1983

miR-133a-3p 0.118 (0.066–0.228) vs. 0.110 (0.550–0.233)
0.071 (0.055–0.105) vs. 0.110 (0.550–0.233)

0.209 (0.283) vs. 0.232 (0.483)
0.113 (0.109) vs. 0.232 (0.483)

p = 1.000
p = 0.4015

miR-143-3p 0.048 (0.029–0.087) vs. 0.038 (0.016–0.089)
0.049 (0.033–0.090) vs. 0.038 (0.016–0.089)

0.072 (0.088) vs. 0.058 (0.057)
0.078 (0.077) vs. 0.058 (0.057)

p = 0.1327
p = 0.2766

miR-145-5p 0.176 (0.122–0.235) vs. 0.161 (0.980–0.243)
0.171 (0.131–0.242) vs. 0.161 (0.980–0.243)

0.210 (0.162) vs. 0.195 (0.143)
0.200 (0.100) vs. 0.195 (0.143)

p = 0.6997
p = 1.000

miR-146a-5p 1.116 (0.800–1.798) vs. 1.225 (0.578–1.765)
1.451 (1.167–2.129) vs. 1.225 (0.578–1.765)

1.634 (1.621) vs. 1.388 (1.096)
1.780 (1.068) vs. 1.388 (1.096)

p = 0.8676
p = 0.1619

miR-155-5p 0.624 (0.432–0.820) vs. 0.607 (0.361–1.614)
0.566 (0.448–0.695) vs. 0.607 (0.361–1.614)

0.701 (0.516) vs. 1.247 (1.439)
0.710 (0.573) vs. 1.247 (1.439)

p = 1.000
p = 1.000
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Table 4. Cont.

Kruskal–Wallis Test Results
GDM Managed by Diet Only (n = 101) vs. Normal Term Pregnancies (n = 80)
GDM Managed by Diet and Therapy (n = 20) vs. Normal Term Pregnancies (n = 80)

Median (IQR) Mean (SD) p-Value

miR-181a-5p 0.246 (0.175–0.375) vs. 0.181 (0.141–0.330)
0.260 (0.190–0.393) vs. 0.181 (0.141–0.330)

0.331 (0.336) vs. 0.246 (0.184)
0.326 (0.208) vs. 0.246 (0.184)

p = 0.0399
p = 0.1367

miR-195-5p 0.269 (0.154–0.487) vs. 0.106 (0.048–0.271)
0.246 (0.210–0.522) vs. 0.106 (0.048–0.271)

0.460 (0.707) vs. 0.227 (0.364)
0.520 (0.609) vs. 0.227 (0.364)

p < 0.001 ***
p < 0.001 ***

miR-199a-5p 0.073 (0.033–0.139) vs. 0.058 (0.023–0.111)
0.088 (0.052–0.163) vs. 0.058 (0.023–0.111)

0.134 (0.233) vs. 0.096 (0.131)
0.148 (0.165) vs. 0.096 (0.131)

p = 0.1575
p = 0.1701

miR-210-3p 0.102 (0.074–0.154) vs. 0.138 (0.075–0.224)
0.099 (0.075–0.155) vs. 0.138 (0.075–0.224)

0.134 (0.109) vs. 0.186 (0.180)
0.131 (0.080) vs. 0.186 (0.180)

p = 0.2982
p = 1.000

miR-221-3p 0.644 (0.448–0.948) vs. 0.548 (0.293–0.906)
0.616 (0.459–1.032) vs. 0.548 (0.293–0.906)

0.819 (0.776) vs. 0.693 (0.561)
0.796 (0.503) vs. 0.693 (0.561)

p = 0.3698
p = 0.7241

miR-342-3p 3.093 (2.070–3.955) vs. 2.542 (1.551–4.206)
2.884 (2.159–4.844) vs. 2.542 (1.551–4.206)

3.555 (2.756) vs. 3.307 (2.383)
3.858 (2.610) vs. 3.307 (2.383)

p = 0.6912
p = 1.000

miR-499a-5p 0.459 (0.218–0.881) vs. 0.269 (0.089–0.587)
0.472 (0.285–0.611) vs. 0.269 (0.089–0.587)

0.771 (1.104) vs. 0.477 (0.566)
0.692 (0.902) vs. 0.477 (0.566)

p = 0.0043 *
p = 0.1765

miR-574-3p 0.275 (0.182–0.392) vs. 0.181 (0.117–0.292)
0.279 (0.178–0.485) vs. 0.181 (0.117–0.292)

0.350 (0.339) vs. 0.222 (0.156)
0.375 (0.301) vs. 0.222 (0.156)

p < 0.001 ***
p = 0.0356

MicroRNA gene expression is compared between individual groups using Kruskal–Wallis test. Statistically
significant results are marked in bold. Median (interquartile range, IQR) and mean (standard deviation, SD)
values of relative fold gene expression of samples (2−∆∆Ct) are presented. Statistical significant data after
Benjamini–Hochberg correction are marked by * for α = 0.05, ** for α = 0.01, and *** for α = 0.001.

2.6. First-Trimester Combined MicroRNA Screening Is Able to Differentiate between Pregnancies
Destinated to Develop GDM Requiring a Combination of Diet and Administration of Appropriate
Therapy and Term Pregnancies with Normal Course of Gestation

The combined screening of three microRNA biomarkers (miR-20a-5p, miR-20b-5p and
miR-195-5p) in early stages of gestation was able to detect aberrant microRNA expression
profile in 30.0% pregnancies destinated to develop GDM requiring a combination of diet
and administration of appropriate therapy at a 10.0% FPR (AUC 0.731, p < 0.001, 65.0%
sensitivity, 73.75% specificity, cut off >0.1987) (Figure 5).

2.7. The Very High Accuracy of First-Trimester Combined Screening (MicroRNA Biomarkers and
Selected Clinical Characteristics) to Differentiate between Pregnancies Destinated to Develop GDM
Requiring a Combination of Diet and Administration of Appropriate Therapy and Term
Pregnancies with Normal Course of Gestation

The effective screening based on the combination of minimal number of basic clinical
characteristics (maternal age and BMI at early stages of gestation, and an infertility treat-
ment by assisted reproductive technology) and three dysregulated microRNA biomarkers
(miR-20a-5p, miR-20b-5p, and miR-195-5p) showed very high accuracy for the early identi-
fication of pregnancies destinated to develop GDM requiring a combination of diet and
administration of appropriate therapy (AUC 0.949, p < 0.001, 89.47% sensitivity, 86.25%
specificity, cut off >0.1912). The screening identified 78.95% of cases at a 10.0% FPR in the
early stages of gestation (Figure 6).
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Figure 5. ROC analysis—the combination of microRNA biomarkers (miR-20a-5p, miR-20b-5p and
miR-195-5p). A total of 30.0% pregnancies destinated to develop GDM requiring a combination of
diet and administration of appropriate therapy had aberrant microRNA expression profile in the
whole peripheral venous blood during the first trimester of gestation at a 10.0% FPR. This represents
6 out of 20 pregnancies correctly predicted to develop GDM and 8 out of 80 normal pregnancies
predicted false positively to develop GDM.

Figure 6. ROC analysis—the combination of 3 basic clinical characteristics (maternal age and BMI
values at early stages of gestation and an infertility treatment by assisted reproductive technology) and
3 dysregulated microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). At a 10.0% FPR,
78.95% pregnancies destinated to develop GDM requiring a combination of diet and administration
of appropriate therapy were identified during the first trimester of gestation. This represents 16 out
of 20 pregnancies correctly predicted to develop GDM and 8 out of 80 normal pregnancies predicted
false positively to develop GDM.
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The screening based on the combination of seven clinical characteristics (maternal
age and BMI at early stages of gestation, an infertility treatment by assisted reproductive
technology, history of miscarriage, the presence of trombophilic gene mutations, positive
first-trimester screening for preeclampsia and/or FGR by FMF algorithm, family history of
diabetes mellitus in first-degree relatives) and three dysregulated microRNA biomarkers
(miR-20a-5p, miR-20b-5p, and miR-195-5p) showed the highest possible accuracy for the
early identification of pregnancies destinated to develop GDM requiring a combination of
diet and administration of appropriate therapy (AUC 0.957, p < 0.001, 89.47% sensitivity,
90.0% specificity, cutoff >0.2116). This screen identified 89.47% of cases in the early stages
of gestation at a 10.0% FPR (Figure 7).

Figure 7. ROC analysis—the combination of 7 clinical characteristics (maternal age and BMI at
early stages of gestation, an infertility treatment by assisted reproductive technology, history of
miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for PE
and/or FGR by FMF algorithm, and a family history of diabetes mellitus in first-degree relatives) and
3 dysregulated microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). At a 10.0% FPR,
89.47% pregnancies destinated to develop GDM requiring a combination of diet and administration
of appropriate therapy were identified during the first trimester of gestation. This represents 18 out
of 20 pregnancies correctly predicted to develop GDM and 8 out of 80 normal pregnancies predicted
false positively to develop GDM.

2.8. First-Trimester Combined MicroRNA Screening Is Able to Differentiate between Pregnancies
Destinated to Develop GDM Managed by Diet Only and Normal Term Pregnancies

The combined screening of eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-
20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was able to
detect, in the early stages of gestation, an aberrant microRNA expression profile in 34.65%
of pregnancies destinated to develop GDM managed by diet only at a 10.0% FPR (AUC
0.691, p < 0.001, 72.28% sensitivity, 60.0% specificity, cut off >0.4980) (Figure 8).
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Figure 8. ROC analysis—the combination of microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-
20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). A total of 34.65%
pregnancies destinated to develop GDM on diet only had an aberrant microRNA expression profile
in the whole peripheral venous blood during the first trimester of gestation at a 10.0% FPR. This
represents 35 out of 101 pregnancies correctly predicted to develop GDM and 8 out of 80 normal
pregnancies predicted false positively to develop GDM.

2.9. The Very Good Accuracy of First-Trimester Combined Screening (MicroRNA Biomarkers and
Selected Clinical Characteristics) to Differentiate between Pregnancies Destinated to Develop GDM
Managed by Diet Only and Term Pregnancies with Normal Course of Gestation

The effective screening based on the combination of a minimal number of basic clinical
characteristics (maternal age and BMI at early stages of gestation and an infertility treatment
by assisted reproductive technology) and eight dysregulated microRNA biomarkers (miR-
1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p miR-195-5p, miR-499a-5p, and
miR-574-3p) showed relatively good accuracy for the early identification of pregnancies
destinated to develop GDM managed by diet only (AUC 0.784, p < 0.001, 61.39 sensitivity,
87.50% specificity, cut off >0.6425). This screening identified 50.50% of cases during the
early stages of gestation at a 10.0% FPR (Figure 9).

The screening based on the combination of seven clinical characteristics (maternal
age and BMI at early stages of gestation, an infertility treatment by assisted reproductive
technology, history of miscarriage, the presence of trombophilic gene mutations, positive
first-trimester screening for preeclampsia and/or FGR by FMF algorithm, and family history
of diabetes mellitus in first-degree relatives) and eight dysregulated microRNA biomarkers
(miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-
5p, and miR-574-3p) showed the highest possible accuracy for the early identification of
pregnancies destinated to develop GDM managed by diet only (AUC 0.835, p < 0.001,
77.23% sensitivity, 78.75% specificity, cut off >0.5137. This combined screening identified, in
the early stages of gestation, 56.44% of pregnancies destinated to develop GDM managed
by diet only at a 10.0% FPR (Figure 10).
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Figure 9. ROC analysis—the combination of 3 basic clinical characteristics (maternal age and BMI
values at early stages of gestation and an infertility treatment by assisted reproductive technology)
and 8 dysregulated microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-
125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). At a 10.0% FPR, 50.50% pregnancies destinated
to develop GDM managed by diet only were identified during the first trimester of gestation. This
represents 51 out of 101 pregnancies correctly predicted to develop GDM and 8 out of 80 normal
pregnancies predicted false positively to develop GDM.

2.10. Information on MicroRNA-Gene-Biological Pathways Interactions

The KEGG pathway enrichment analysis of 11 microRNAs dysregulated in early stages
of gestation in pregnancies destinated to develop GDM revealed a total of 62 pathways,
where at least 18 (29.03%) pathways were cancer related. The cancer-related pathways
with the highest −ln(p-values) were proteoglycans in cancer (hsa05205; 34.738), viral
carcinogenesis (hsa05203; 18.144), renal cell carcinoma (hsa05211; 12.364), glioma (hsa05214;
11.400), and pathways in cancer (hsa05200; 11.269).

Other cancer-related pathways showed slightly lower −ln(p-values): transcriptional
misregulation in cancer (hsa05202; 9.818), chronic myeloid leukaemia (hsa05220; 9.818),
non-small cell lung cancer (hsa05223; 9.492), central carbon metabolism in cancer (hsa05230;
9.047), endometrial cancer (hsa05213; 8.698), colorectal cancer (hsa05210; 8.296), thyroid
cancer (hsa05216; 7.630), bladder cancer (hsa05219; 7.099), pancreatic cancer (hsa05212;
6.996), acute myeloid leukaemia (hsa05221; 6.648), small cell lung cancer (hsa05222; 5.661),
melanoma (hsa05218; 5.424), and choline metabolism in cancer (hsa05231; 4.536) (Figure 11).

The other pathways with the highest −ln(p-values) have been shown to play a role in
physiological processes and besides the pathogenesis of cancer. These are Hippo signalling
pathway (hsa04390; 16.800), adherens junction (hsa04520; 14.198), signalling pathways
regulating pluripotency of stem cells (hsa04550; 12.276), p53 signalling pathway (hsa04115;
12.276), and protein processing in endoplasmatic reticulum (hsa04141; 10.769) (Figure 12).
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Figure 10. ROC analysis—the combination of 7 clinical characteristics (maternal age and BMI at early
stages of gestation, an infertility treatment by assisted reproductive technology, history of miscarriage,
the presence of trombophilic gene mutations, positive first-trimester screening for PE and/or FGR by
FMF algorithm, and family history of diabetes mellitus in first-degree relatives) and 8 dysregulated
microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p,
miR-499a-5p, and miR-574-3p). At a 10.0% FPR, 56.44% of pregnancies destinated to develop GDM
managed by diet only were identified during the first trimester of gestation. This represents 57 out of
101 pregnancies correctly predicted to develop GDM and 8 out of 80 normal pregnancies predicted
false positively to develop GDM.

Figure 11. The KEGG pathway enrichment analysis of 11 microRNAs dysregulated in early preg-
nancies destinated to develop GDM. The analysis revealed a total of 62 pathways, where at least
18 (29.03%) pathways were cancer related. The results were expressed as –ln of the p-value
(−ln(p-value)).
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Figure 12. The KEGG pathway enrichment analysis of 11 microRNAs dysregulated in early preg-
nancies destinated to develop GDM. The analysis revealed a total of 62 various pathways, where a
majority of pathways have been shown to play a role in physiological processes and besides to the
pathogenesis of cancer. The results were expressed as –ln of the p-value (−ln(p-value)).

The microRNA/KEGG pathway heatmap and hierarchical clustering demonstrated
the level of involvement of particular microRNAs in various biological pathways (Figure 13).
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Figure 13. The microRNA/KEGG pathway heatmap and hierarchical clustering in early pregnancies
destinated to develop GDM. The heatmap represents the level of involvement of particular microR-
NAs in various biological pathways. The results were expressed as log of the p-value (log(p-value)).

3. Discussion

Gene expression of 29 preselected cardiovascular disease-associated microRNAs was
compared between pregnancies destinated to develop GDM and normal term pregnancies
in the whole peripheral venous blood during the first trimester of gestation. The study
was held within the framework of routine screening to assess the risk for a wide array of
major fetal chromosomal and non-chromosomal defects as well as other pregnancy-related
complications such as PE and/or FGR.

Upregulation of 11 cardiovascular disease-associated microRNAs (miR-1-3p, miR-20a-
5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-
5p, miR-499a-5p, and miR-574-3p) was detected during the early stages of gestation in the
entire group of pregnancies destinated to develop GDM.

To our knowledge, several studies have reported promising data on the early diagnosis
of GDM during the first trimester of gestation via screening of circulating microRNAs in
maternal plasma/serum or peripheral blood samples. Our study produced similar findings
to Yoffe et al. [226], Lamadrid-Romero et al. [130], and Legare et al. [227].

Yoffe et al. validated two upregulated microRNAs (miR-23a and miR-223) as potential
plasma biomarkers for early prediction of GDM (after the ninth gestational week and before
completion of the 12th week of gestation) in women diagnosed with GDM via a 75 g OGTT
performed at 22–24 weeks of gestation [226].

The study of Lamadrid-Romero et al. [130] reported higher miR-125b-5p expression
levels in first-trimester serum samples in GDM pregnancies when compared with the
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control group. On the other hand, the study of Zhang et al. [229] reported downregulation
of miR-125b in circulating plasma exosomes in patients with confirmed diagnosis of GDM
within 26–40 weeks of pregnancy. Nevertheless, microRNA expression profile may differ
between free circulating microRNAs and circulating exosomes; therefore, these findings
are not necessarily contradictory results.

Our data may also support the data presented by Tagoma et al. [190], who observed
upregulation of miR-100-5p and miR-195-5p in maternal plasma samples collected during
the late second and early third pregnancy trimesters in patients who had a positive glucose
tolerance test between 23 and 31 weeks of gestation, in which case miR-195-5p showed the
highest fold upregulation, similar to our first-trimester study. Our data and the data of
Tagoma et al. [190] are also consistent with the data of Wang et al. [230], who also observed
increased expression levels of miR-195-5p in serum samples of GDM patients at 25 weeks
of gestation.

Concerning miR-20a-5p, our first-trimester data may support the data of Zhu et al. [51]
and Cao et al. [52]. Zhu et al. [51] observed upregulation of miR-20a-5p in peripheral blood
samples of women at 16–19 weeks of pregnancy, whereas GDM was diagnosed via a 50 g
glucose challenge test at 24–28 weeks of pregnancy. Cao et al. [52] observed upregulation
of miR-20a-5p in plasma samples derived from patients at the time of diagnosis of GDM
determined at 24–28 gestational weeks via performance of 50 g glucose challenge test and
75 g OGTT test.

Nevertheless, our data are inconsistent with the results of other researchers concern-
ing miR-16-5p and miR-17-5p [51,52,228,231]. While in our study, first-trimester whole
peripheral blood levels did not differ between pregnancies destinated to develop GDM and
control groups, the expression levels of miR-16-5p and miR-17-5p have been reported to be
significantly increased in patients with a diagnosis of GDM confirmed at 24–28 gestational
weeks [52]. Similarly, Zhu et al. [51], Sorensen et al. [231], and Juchnicka et al. [228] pre-
sented similar findings to Cao et al. [52]. Zhu et al. [5] was able to observe upregulation of
miR-16-5p and miR-17-5p in peripheral blood samples of women with subsequent onset
of GDM at 16–19 weeks of pregnancy. Similarly, Sorensen et al. [231] observed elevated
serum levels of miR-16-5p even in the earlier stages of gestation (mean 15th gestational
week) in women destinated to develop GDM. Juchnicka et al. [228] showed upregulation
of miR-16-5p in first-trimester serum samples of normoglycemic women that developed
GDM within the 24–26 gestational weeks.

In addition, Zhao et al. [232] and Sorensen et al. [231] identified miR-29a and miR-29a-
3p as other potentially predictive circulating GDM biomarkers. Unfortunately, they did not
show any dysregulation when first-trimester expression levels were compared between
pregnancies destinated to develop GDM and the control group in our study.

Parallelly, our data concerning miR-155-5p are inconsistent with the study of
Wander et al. [112], who observed a positive association between early–mid-pregnancy
plasma miR-155-5p levels and occurrence of GDM.

With regard to miR-1-3p, our study produced supportive findings to the study of
Kennedy et al. [233], in which they reported increased levels of miR-1-3p in serum extracellu-
lar vesicles in patients with confirmed GDM diagnoses within 26–28 gestational weeks that
subsequently delivered large-for-gestational-age new-borns (LGA) when compared with
appropriately grown-for-gestational-age new-borns (AGA). Nevertheless, our data concern-
ing miR-133a-3p and miR-145-5p are inconsistent with the study of Kennedy et al. [233].
While they observed reduced levels of miR-145-5p and increased levels of miR-133a-3p
in GDM pregnancies delivering LGA new-borns, we did not detect any changes in the
gene expression of miR-133a-3p and miR-145-5p during the early stages of gestation in
pregnancies destinated to develop GDM.

Similarly, our data concerning miR-143-3p and miR-221-3p did not confirm the data
of Legare et al. [227], that implemented these first-trimester dysregulated plasmatic mi-
croRNAs into the Lasso regression model for prediction of insulin sensitivity estimated
by the Matsuda index at the end of the second trimester of pregnancy. However, our data
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concerning miR-100-5p concurred with Legare et al. [227], who also observed increased
levels of miR-100-5p in plasma samples in the early stages of gestation in pregnancies that
subsequently developed GDM.

In addition, other studies have introduced a whole range of other circulating microR-
NAs which were not subject of interest in our study as biomarkers with predictive or
diagnostic potential for GDM. These are the following: let-7b-3p [227], miR-10b-5p [227],
miR-16-1-3p [227] miR-19a and miR-19b [234], miR-21-3p [53,112], miR-33a-5p [235],
miR-130a-3p [227], miR-132 [232], miR-134-5p [231], miR-141-3p [227], miR-142-3p [228],
miR-144 [229], miR-144-3p [228], miR-200a-3p [227], miR-205-5p [227], miR-215-5p [227],
miR-218-5p [227], miR-222 [232], miR-330-3p [236], miR-338-3p [227], miR-340 [237], miR-
375 [227], miR-429 [227], miR-483-5p [227], miR-499a-3p [233], miR-503 [238], miR-512-
3p [227], miR-515-5p [227], miR-516a-5p [227], miR-516b-5p [227], miR-517a-3p [227],
miR-517b-3p [227], miR-518e-3p [227], miR-518e-5p [227], miR-519a-5p [227], miR-519b-
5p [227], miR-519c-5p [227], miR-519d-5p [227], miR-520a-3p [227], miR-520d-3p [227],
miR-522-5p [227], miR-523-5p [227], miR-524-3p [227], miR-582-5p [227], miR-873-5p [227],
miR-877-5p [227], miR-1283 [227], miR-1323 [239], miR-2116-3p [227], miR-3183 [227], and
miR-4772-5p [227].

The current study revealed that aberrant gene expression of miR-1-3p, miR-20a-5p,
miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p,
miR-499a-5p, and miR-574-3p expression is present during the early stages of gestation in
pregnancies destinated to develop GDM.

During the first trimester of gestation, we have also recently observed an aberrant
expression profile of these cardiovascular disease-associated microRNAs in pregnancies
with chronic hypertension (miR-1-3p, miR-20a-5p, and miR-126-3p) and in normotensive
pregnancies with subsequent onset of PE (miR-20a-5p, miR-126-3p, miR-181a-5p, and
miR-574-3p), FGR (miR-20a-5p, miR-100-5p, miR-181a-5p, miR-195-5p, and miR-574-3p),
SGA (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-126-3p, miR-181a-5p, and miR-499a-5p),
and/or preterm delivery (miR-20b-5p) [240–242].

Parallelly, not long ago we observed the upregulation of 11 microRNAs (miR-1-3p,
miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-
5p, miR-195-5p, miR-499a-5p, and miR-574-3p) in the whole peripheral blood samples
of mothers with a history of GDM [243]. At the same time, the upregulation of multiple
other cardiovascular disease-associated microRNAs (miR-16-5p, miR-17-5p, miR-21-5p,
miR-24-3p, miR-26a-5p, miR-29a-3p, miR-103a-3p, miR-130b-3p, miR-133a-3p, miR-143-
3p, miR-145-5p, miR-146a-5p, miR-199a-5p, miR-221-3p, and miR-342-3p) was identified
postpartum in mothers with a history of GDM [243], which had not yet been present in the
early stages of gestation, and probably appeared later with the onset of GDM.

Existing data suggest that dysregulated microRNAs in early pregnancies destinated to
develop GDM play a role, not only in the pathogenesis of cardiovascular and cerebrovascu-
lar diseases, but also in the pathogenesis of cancer. Since women with a history of GDM
were reported to have a higher risk of developing both cardiovascular diseases [244–248]
and cancer [249–256], cardiovascular risk assessment [243] together with cancer screen-
ing [249] should be implemented into the routine preventive programmes of women with
a previous occurrence of GDM.

4. Materials and Methods
4.1. Patients Cohort

Within the framework of the retrospective case-control study held at the Institute for
the Care of Mother and Child, Prague, Czech Republic, within the period 11/2012–5/2018,
the whole peripheral venous blood samples were collected at 10–13 gestational weeks
from a total of 4187 singleton pregnancies of Caucasian descent. Finally, 3028 out of 4187
pregnancies had complete medical records from the first trimester of gestation until the
time of delivery. Out of these 3028 pregnancies, 121 women were consecutively confirmed
to only have GDM, where 101 GDM pregnancies were managed by diet only and 20 GDM
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pregnancies were managed by the combination of diet and therapy (15 patients required
insulin administration and metformin was prescribed for 5 patients). GDM was rarely
diagnosed during the first trimester of gestation—only in four patients. Otherwise, the onset
of GDM was confirmed in majority of patients (n = 117) within 24–28 gestational weeks.

Gestational diabetes mellitus was defined as any degree of glucose intolerance with
the first onset during gestation [2,3,257]. The International Association of Diabetes and
Pregnancy Study Groups’ (IADPSG) recommendations on the diagnosis and classification
of hyperglycaemia in pregnancy were followed, and universal early testing was performed
in all pregnancies [2]. The first screening phase, during the first trimester of gestation,
detected patients with overt diabetes (fasting plasma glucose level ≥ 7.0 mmol/L) and
patients with GDM (fasting plasma glucose level≥ 5.1 mmol/L–<7.0 mmol/L). The second
screening phase, 2 h 75 g OGTT at 24–28 weeks of gestation, was performed for all patients
not previously found to have overt diabetes or GDM and identified GDM if fasting plasma
glucose level was ≥5.1 mmol/L, 1 h plasma glucose was ≥10.0 mmol/L, or 2 h plasma
glucose was ≥8.5 mmol/L [2].

Patients newly diagnosed with diabetes mellitus, patients with the occurrence of
chronic hypertension, and those carrying growth-restricted or small-for-gestational-age fe-
tuses, or fetuses with anomalies or chromosomal abnormalities were intentionally excluded
from the study. Likewise, patients concurrently demonstrating other pregnancy-related
complications such as gestational hypertension, preeclampsia, HELLP syndrome, in utero
infections, spontaneous preterm birth, preterm prelabour rupture of membranes, fetal
demise in utero, or stillbirth were also excluded from the study.

The control group was selected with regard to the uniformity of gestational age at
sampling and storage times of biological samples, and included 80 women with normal
courses of gestation that delivered healthy infants after the completion of 37 weeks of
gestation with a weight above 2500 g.

No woman had a history of any cardiovascular disease (a positive anamnesis of
cardiac remodelling, cardiac hypertrophy, heart failure, or acute myocardial infarction). All
pregnant women had normal clinical findings (electrocardiography and echocardiography).

4.2. Processing of Samples

Homogenized leukocyte lysates were prepared from 200 µL maternal whole peripheral
venous blood samples immediately after collection using a QIAamp RNA Blood Mini Kit
(Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Firstly, lysis of
erythrocytes was performed using EL buffer. Then, the pelleted leukocytes were stored in a
mixture of RLT buffer and β-mercaptoethanol (β-ME) at −80 ◦C for several months until
further processing.

Subsequently, a mirVana microRNA Isolation kit (Ambion, Austin, TX, USA) was used
to isolate the RNA fraction highly enriched for small RNAs from whole peripheral blood
leukocyte lysates.

Concentration and quality of RNA was assessed using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop Technologies, Wilmington, DE, USA). The A(260/280) ab-
sorbance ratio of isolated RNA samples was 1.8–2.1, demonstrating that the RNA samples
were pure and could be used for further analysis. The concentration of the isolated RNA
ranged within 2.0–10.0 ng/µL.

Real-time RT-PCR analyses were performed regularly every six months to process the
collection of frozen samples derived from GDM and normal term pregnancies. The gene
expression levels of 29 cardiovascular disease-associated microRNAs (miR-1-3p, miR-16-5p,
miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-
29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p,
miR-133a-3p, miR-143-3p, miR-145-5p, miR-146-5p, miR-155-5p, miR-181a-5p, miR-195-5p,
miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) (Table 5)
was determined.
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Table 5. Characteristics of microRNAs involved in the study.

Assay Name ID NCBI Location Chromosome Sequence

hsa-miR-1 hsa-miR-1-3p Chr.20: 62554306–62554376 [+] 5′-UGGAAUGUAAAGAAGUAUGUAU-3′

hsa-miR-16 hsa-miR-16-5p Chr.13: 50048973–50049061 [−] 5′-UAGCAGCACGUAAAUAUUGGCG- 3′

hsa-miR-17 hsa-miR-17-5p Chr.13: 91350605–91350688 [+] 5′-CAAAGUGCUUACAGUGCAGGUAG-3′

hsa-miR-20a hsa-miR-20a-5p Chr.13: 91351065–91351135 [+] 5′-UAAAGUGCUUAUAGUGCAGGUAG-3′

hsa-miR-20b hsa-miR-20b-5p Chr.X: 134169809–134169877 [−] 5′-CAAAGUGCUCAUAGUGCAGGUAG-3′

hsa-miR-21 hsa-miR-21-5p Chr.17: 59841266–59841337 [+] 5′-UAGCUUAUCAGACUGAUGUUGA-3′

hsa-miR-23a hsa-miR-23a-3p Chr.19: 13836587–13836659 [−] 5′-AUCACAUUGCCAGGGAUUUCC-3′

hsa-miR-24 hsa-miR-24-3p Chr.9: 95086021–95086088 [+] 5′-UGGCUCAGUUCAGCAGGAACAG-3′

hsa-miR-26a hsa-miR-26a-5p Chr.3: 37969404–37969480 [+] 5′-UUCAAGUAAUCCAGGAUAGGCU-3′

hsa-miR-29a hsa-miR-29a-3p Chr.7: 130876747–130876810 [−] 5′-UAGCACCAUCUGAAAUCGGUUA-3′

hsa-miR-92a hsa-miR-92a-3p Chr.13: 91351314–91351391 [+] 5′-UAUUGCACUUGUCCCGGCCUGU-3′

hsa-miR-100 hsa-miR-100-5p Chr.11: 122152229–122152308 [−] 5′-AACCCGUAGAUCCGAACUUGUG-3′

hsa-miR-103 hsa-miR-103a-3p Chr.5: 168560896–168560973 [−] 5′-AGCAGCAUUGUACAGGGCUAUGA-3′

hsa-miR-125b hsa-miR-125b-5p Chr.11: 122099757–122099844 [−] 5′-UCCCUGAGACCCUAACUUGUGA-3′

hsa-miR-126 hsa-miR-126-3p Chr.9: 136670602–136670686 [+] 5′-UCGUACCGUGAGUAAUAAUGCG-3′

hsa-miR-130b hsa-miR-130b-3p Chr.22: 21653304–21653385 [+] 5′-CAGUGCAAUGAUGAAAGGGCAU-3′

hsa-miR-133a hsa-miR-133a-3p Chr.18: 21825698–21825785 [−] 5′-UUUGGUCCCCUUCAACCAGCUG-3′

hsa-miR-143 hsa-miR-143-3p Chr.5: 149428918–149429023 [+] 5′-UGAGAUGAAGCACUGUAGCUC-3′

hsa-miR-145 hsa-miR-145-5p Chr.5: 149430646–149430733 [+] 5′-GUCCAGUUUUCCCAGGAAUCCCU-3′

hsa-miR-146a hsa-miR-146a-5p Chr.5: 160485352–160485450 [+] 5′-UGAGAACUGAAUUCCAUGGGUU-3′

hsa-miR-155 hsa-miR-155-5p Chr.21: 25573980–25574044 [+] 5′-UUAAUGCUAAUCGUGAUAGGGGU-3′

hsa-miR-181a hsa-miR-181a-5p Chr.1: 198859044–198859153 [−] 5′-AACAUUCAACGCUGUCGGUGAGU-3′

hsa-miR-195 hsa-miR-195-5p Chr.17: 7017615–7017701 [−] 5′-UAGCAGCACAGAAAUAUUGGC-3′

hsa-miR-199a hsa-miR-199a-5p Chr.19: 10817426–10817496 [−] 5′-CCCAGUGUUCAGACUACCUGUUC-3′

hsa-miR-210 hsa-miR-210-3p Chr.11: 568089–568198 [−] 5′-CUGUGCGUGUGACAGCGGCUGA-3′

hsa-miR-221 hsa-miR-221-3p Chr.X: 45746157–45746266 [−] 5′-AGCUACAUUGUCUGCUGGGUUUC-3′

hsa-miR-342-3p hsa-miR-342-3p Chr.14: 100109655–100109753 [+] 5′-UCUCACACAGAAAUCGCACCCGU-3′

mmu-miR-499 hsa-miR-499a-5p Chr.20: 34990376–34990497 [+] 5′-UUAAGACUUGCAGUGAUGUUU-3′

hsa-miR-574-3p hsa-miR-574-3p Chr.4: 38868032–38868127 [+] 5′-CACGCUCAUGCACACACCCACA-3′

RNU58A 664243 Chr.18: 49491283–49491347 [−] 5′-CTGCAGTGATGACTTTCTTGGGACACCTTTGGA
TTTACCGTGAAAATTAATAAATTCTGAGCAGC-3′

RNU38B 568914 Chr.1: 44778390–44778458 [+] 5′-CCAGTTCTGCTACTGACAGTAAGTGAAGATAA
AGTGTGTCTGAGGAGA-3′

mRNAs of the appropriate microRNAs were reverse transcribed into cDNA using a
TaqMan MicroRNA assays containing miRNA-specific stem loop primers and a TaqMan
MicroRNA Reverse Transcription Kit (Applied Biosystems, Branchburg, NJ, USA). The total
reaction volumes were 10 µL. Furthermore, 3 µL of cDNA was mixed with the components
of TaqMan MicroRNA assays (specific primers and the TaqMan MGB probes) and the
components of the TaqMan Universal PCR Master Mix (Applied Biosystems, Branchburg,
NJ, USA). The total reaction volumes were 15 µL. Reverse transcription and real-time
qPCR were performed on a 7500 Real-Time PCR System using the TaqMan PCR conditions
described in the TaqMan guidelines. The reverse transcription thermal cycling parameters
were the following: 30 min at 16 ◦C, 30 min at 42 ◦C, 5 min at 85 ◦C, and then held at 4 ◦C.
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The real-time qPCR thermal cycling parameters were the following: 2 min at 50 ◦C, 10 min
at 95 ◦C, then 50 cycles at 95 ◦C for 15 s, and 60 ◦C for 1 min.

Assessment of microRNA gene expression was performed using the comparative
Ct method [258]. The geometric mean of the Ct values of selected endogenous controls
(RNU58A and RNU38B) was used as a normalization factor [259] to normalize microRNA
gene expression. Selection and validation of endogenous controls for microRNA expression
studies in whole peripheral blood samples affected by pregnancy-related complications
has already been described in one of our previous studies [260]. In brief, the expression
of 20 candidate endogenous controls (HY3, RNU6B, RNU19, RNU24, RNU38B, RNU43,
RNU44, RNU48, RNU49, RNU58A, RNU58B, RNU66, RPL21, U6 snRNA, U18, U47, U54,
U75, Z30, and cel-miR-39) was investigated using NormFinder (NormFinder v.5, Aarhus
University Hospital, Aarhus, Denmark) [261]. RNU58A and RNU38B were identified as the
most stable small nucleolar RNAs (ncRNA) and equally expressed in patients with normal
and abnormal courses of gestation. Therefore, these ncRNA were selected as the most
suitable endogenous controls for the normalization of microRNA qPCR expression studies
performed on whole peripheral blood samples affected by pregnancy-related complications.

4.3. Statistical Analysis

Initially, power analysis was used to determine the sample size required to detect an
effect of a given size with a given degree of confidence (G * Power Version 3.1.9.6, Franz
Faul, University of Kiel, Kiel, Germany). A total of 51 cases and 51 controls were required
to achieve a power of 0.805 and a total of 70 cases and 70 controls were required to achieve
a power of 0.902.

With respect to non-normal data distribution, unpaired nonparametric tests were used
for subsequent statistical analyses. Initially, microRNA gene expression was compared
between GDM and normal term pregnancies using the Mann–Whitney test. Subsequently,
microRNA gene expression was compared between particular groups with respect to the
treatment strategies using the Kruskal–Wallis one-way analysis of variance. Afterwards, a
post-hoc test for comparison between groups and the Benjamini–Hochberg correction were
applied [262] (Tables 6 and 7).

Table 6. Benjamini–Hochberg correction: comparison of microRNA gene expression between GDM
and normal term pregnancies.

K i Alpha = 0.05 Alpha = 0.01 Alpha = 0.001

2 0.05 0.01 0.001

1 0.025 0.005 0.001

Table 7. Benjamini–Hochberg correction for multiple comparisons: comparison of microRNA gene
expression between GDM and normal term pregnancies with respect to the treatment strategies
(GDM pregnancies managed by diet only vs. GDM pregnancies managed by diet and therapy vs.
normal term pregnancies).

K i Alpha = 0.05 Alpha = 0.01 Alpha = 0.001

3 0.05 0.01 0.001

1 0.017 0.003 0.000

2 0.033 0.007 0.001

3 0.050 0.010 0.001

Boxplots display the median, the 75th and 25th percentiles (the upper and lower limits
of the boxes), the maximum and minimum values that are no more than 1.5 times the span
of the interquartile range (the upper and lower whiskers), outliers (circles), and extremes
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(asterisks). Statistica software (version 9.0; StatSoft, Inc., Tulsa, OK, USA) was used to
produce the boxplots.

Receivers operating characteristic (ROC) curve analyses state the areas under the
curves (AUC), p-values, the best cutoff point-related sensitivities, specificities, positive
and negative likelihood ratios (LR+, LR−) together with the 95% CI (confidence interval).
Furthermore, estimated specificities at fixed sensitivities and estimated sensitivities at
fixed specificities are stated (MedCalc Software bvba, Ostend, Belgium). Sensitivities at
a 90.0% specificity corresponding to a 10.0% false positive rate (FPR) were selected for
data presentation. To select the optimal microRNA combinations, logistic regression with
subsequent ROC curve analyses were applied (MedCalc Software bvba, Ostend, Belgium).

4.4. Information on MicroRNA-Gene-Biological Pathways Interactions

The DIANA miRPath v.3 database (DIANA TOOLS-mirPath v.3 (uth.gr)) and genes
union mode were used as an a priori analysis method to perform KEGG pathway enrich-
ment analysis to investigate the regulatory mechanisms of the microRNAs dysregulated
in the early stages of gestation in the whole peripheral blood of mothers destinated to
develop GDM. The results of this enrichment analysis were expressed as –ln of the p-value
(−ln(p-value)). Preferentially, the database of experimentally verified microRNA targets
(Tarbase v7.0) was used. In case that Tarbase v7.0 database did not provide a sufficient list
of experimentally verified microRNA targets, the target prediction algorithm (microT-CDS
v5.0) was used as an alternative.

In addition, the pathways/categories union mode, an a posteriori analysis method,
was applied with the aim to identify merged p-values for each pathway significantly
enriched with the gene targets of microRNAs dysregulated in early pregnancies destinated
to develop GDM. Furthermore, the targeted pathway clusters/heatmap mode was applied
to obtain the microRNA/KEGG pathway heatmap with hierarchical clustering.

5. Conclusions

Overall, we observed aberrant expression profiles of 11 microRNAs in the whole
peripheral venous blood during the first trimester of gestation in pregnancies destinated
to develop GDM. We confirmed the observations of other researchers that miR-23a-3p,
miR-100-5p, and miR-125b-5p may serve as microRNA biomarkers with early predictive
potential for GDM. In addition, novel microRNA biomarkers (miR-1-3p, miR-20a-5p,
miR-20b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) were
identified, with the potential to predict GDM during the early stages of gestation.

Combined screening of all 11 dysregulated microRNA biomarkers (miR-1-3p, miR-
20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p,
miR-195-5p, miR-499a-5p, and miR-574-3p) showed the highest accuracy for the early
identification of pregnancies destinated to develop GDM irrespective of the severity of the
disease. This screening identified, in the early stages of gestation, 47.93% of pregnancies
destinated to develop GDM at a 10.0% FPR.

The predictive model for GDM based on microRNA aberrant expression profile was
further improved via the implementation of a minimal number of basic clinical character-
istics (maternal age and BMI at early stages of gestation and an infertility treatment by
assisted reproductive technology). Following this, 69.17% of pregnancies destinated to
develop GDM were identified during the early stages of gestation at a 10.0% FPR.

The simplified prediction model for severe GDM (requiring management of diet
and administration of appropriate therapy) using the combination of three basic clinical
characteristics and three dysregulated microRNA biomarkers (miR-20a-5p, miR-20b-5p,
and miR-195-5p) was able to identify 78.95% of cases at a 10.0% FPR during the early stages
of gestation.

Parallelly, the simplified prediction model for GDM with a milder course (managed
well by diet only) was more complex and required the involvement of three basic clinical
characteristics and eight dysregulated microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-
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20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). Following
this, the model was able to identify 50.50% of cases at a 10.0% FPR during the early stages
of gestation.

The implementation of additional clinical variables into the final GDM predictive
model is feasible; however, it depends on the availability of the clinical data, which differs
between various health care providers.

The screening based on the combination of seven clinical characteristics (maternal
age and BMI at early stages of gestation, an infertility treatment by assisted reproductive
technology, history of miscarriage, the presence of trombophilic gene mutations, positive
first-trimester screening for preeclampsia and/or FGR by FMF algorithm, and family
history of diabetes mellitus in first-degree relatives) and microRNA biomarkers showed the
highest possible accuracy for the early identification of pregnancies destinated to develop
GDM either regardless or with regard to the severity of the disease. The screening was able
to identify, in the early stages of gestation, 72.50% of GDM cases in total—89.47% of GDM
cases requiring management by diet and administration of appropriate therapy and 56.44%
GDM cases managed well by diet only—at a 10.0% FPR. Nevertheless, we prefer to leave
the first-trimester GDM screening simplified as much as possible.

The implementation of a novel first-trimester GDM predictive model based on the
combination of basic maternal clinical characteristics and aberrant microRNA expression
profile into routine screening programmes may significantly improve the care of preg-
nancies at risk of the development of GDM. In pregnancies identified to be destinated to
develop GDM, effective dietary counselling may be already provided during the early
stages of gestation, and a healthy-eating plan naturally rich in nutrients and low in fat and
calories may be developed to control blood glucose, manage weight, and control heart
disease risk factors, such as a high blood pressure and high blood fats. This preventive
measure may contribute to lowering the incidence of GDM overall and may also contribute
to a reduction in the number of severe GDM cases that require the administration of an
appropriate therapy. This may also contribute to a decrease in the occurrence of other
pregnancy-related complications such as gestational hypertension, preeclampsia, and fetal
growth restriction.

Since women with a history of GDM have an increased risk of developing diabetes
(predominantly type 2 diabetes) and cardiovascular diseases later in life, the implemen-
tation of effective early screening programme for GDM alongside subsequent preventive
measures into early prenatal care may contribute to a subsequent decrease in the occurrence
of diabetes and cardiovascular diseases in young and middle-aged mothers. This would
also have a large impact on the offspring descending from GDM-affected pregnancies. Ac-
cumulating data suggest that exposure to hyperglycemia in utero, as occurs in gestational
diabetes mellitus, may expose the offspring to short-term and long-term adverse effects.

The cost of the implementation of the novel first-trimester GDM predictive model
based on the combination of basic maternal clinical characteristics and aberrant microRNA
expression profile into routine screening programmes is minimal when compared to the
costs related to prenatal, peripartal, postpartal, neonatal, postnatal, and lifelong healthcare.
In this manner, a significant reduction in healthcare cost can be achieved.

Large-scale follow-up studies need to be performed to verify diagnostic potential
of cardiovascular disease-associated microRNA biomarkers to predict the subsequent
occurrence of GDM.

Any changes to the epigenome, including the dysregulation of cardiovascular mi-
croRNAs induced during the early stages of gestation in pregnancies complicated by
GDM, may predispose mothers to later development of diabetes mellitus and cardiovas-
cular/cerebrovascular diseases. This hypothesis may also be supported by our previous
finding that epigenetic changes (upregulation of serious cardiovascular microRNAs) ap-
peared in a proportion of women with a history of GDM throughout postpartal life [243].
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