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Abstract. Metal ion requirements for the proliferation 
of Saccharomyces cerevisiae were investigated. We used 
bis-( o-aminophenoxy )-ethane-N,N,N ',N '-tetraacetic 
acid (BAPTA),  a relatively acid tolerant chelator, to re- 
duce the free metal ion concentrations in culture media. 
Chelatable metal ions were added back individually 
and in combination. In addition to a requirement for 
~10  pM external free Zn 2+ we found an interchange- 
able requirement  for either 66 nM free Ca 2÷ or only 130 
pM free Mn 2+. Cells depleted of Mn 2+ and Ca 2÷ ar- 
rested as viable cells with 2 N nuclei and tended to have 
very small minibuds. In the absence of added Mn 2÷, ro- 
bust growth required --~60 IxM total internal Ca 2÷. In 
the presence of added Mn 2+, robust growth continued 

even when internal Ca 2+ was <3 % this level. Chelator- 
free experiments showed that MnCI2 strongly and 
CaC12 weakly restored high-temperature growth of 
cdcl ts strains which similarly arrest as viable cells with 
2 N nuclear contents and small buds. Its much greater 
effectiveness compared with Ca 2+ suggests that Mn 2+ is 
likely to be a physiologic mediator  of bud and nuclear 
development in yeast. This stands in marked contrast to 
a claim that Ca 2+ is uniquely required for cell-cycle pro- 
gression in yeast. We discuss the possibility that Mn 2+ 
may function as an intracellular signal transducer and 
how this possibility relates to previous claims of Ca 2+'s 
roles in yeast metabolism. 

ESPITE biochemical and genetic evidence for metal 
ion use in Saccharomyces cerevisiae (Goscin and 
Fridovich, 1972; Bragg, 1974; Busse, 1984; Baum 

et al., 1986; Eisen et al., 1988; Anraku et al., 1991), a rigor- 
ous survey of nutritional metal ion requirements of yeast 
has never been undertaken. The recipe of yeast synthetic 
medium (SD) 1 in common use today was formulated over 
40 years ago as a general medium for a diverse array of 
fungi (Wickersham, 1951). The ingredients of this medium 
include, besides those of Mg 2÷ and monovalents, salts of 
Ca 2+, Mn 2+, Cu 2+, Zn 2+, and Fe 3+. These five metal ions 
ranked essential, because they were dietary requirements 
of mammals and were present in trace amounts in yeast 
ash. Withholding from the medium the supplements of all 
five of these essential metal ions, including Ca 2+, does not 
stop growth, though. Such a culture presumably thrives on 
residual metal ions contaminating the medium. Even the 
addition of as much as 10 mM of the metal-ion chelator 
EGTA to synthetic medium containing only contaminat- 
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1. Abbreviations used in this paper: BAPTA, bis-(o-aminophenoxy)- 
ethane-N,N,N ',N'-tetraacetic acid; CFU, colony-forming units; EPR, elec- 
tron paramagnetic resonance; MES, 2-[N-Morpholino]ethanesulfonic 
acid; SD, yeast synthetic medium; YEPD, yeast extract/peptone/dextrose 
medium. 

ing (<1 txM) Ca 2-- did not prevent growth (Kovac, 1985; 
Iida et al., 1990a). 

Iida et al. (1990a) blocked yeast growth in a Ca2+-free 
synthetic medium with 10 mM EG TA  only after a further 
addition of 10 laM A23187, an ionophore, which presum- 
ably was required to deplete internal pools of metal ions. 
CaC12, but not MgCIe, restored growth in the presence of 
EGTA and A23187. However, chlorides of Mn 2÷, Cu e÷, 
Zn 2÷, Fe z÷, as well as other metals also rescued, often at 
lower free concentrations. It was concluded that these 
metal ions rescued by lowering the free [chelator] by 10% 
(Iida et al., 1990a). However, as pointed out by Youatt 
(1993), lowering free [chelator] >10% with 100 mM Mg 2÷ 
in these experiments did not rescue. In EGTA and 
A23187, cells were first held up at G1 phase (1N and un- 
budded), but became 2 N and randomly budded several 
hours later. More recently, Youatt and McKinnon (1993) 
found that EGTA alone could block suboptimal yeast 
growth in a synthetic medium, buffered to pH 7.0, de- 
signed for Allomyces macrogynus. They did not report the 
arrest phenotypes but found that MnCI2, but not CaCI> re- 
stored yeast growth in such a medium. 

References to Ca 2+ being necessary for budding yeast 
proliferation are common (Anraku et al., 1991; Creutz et 
al., 1991; Ohya et al., 1991; Bertl et al., 1992; Belde et al., 
1993; Payne and Fitzgerald-Hays, 1993; Riedel et al., 1993; 
Dunn et al., 1994; Iida et al., 1994). Whether Ca 2+ or other 
metal ions are indeed essential for cell-cycle progression 
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needs to be more rigorously established. We reasoned that 
one should avoid the complication of ionophores and 
should not culture this acidophillic organism at a pH above 
7 where it grows poorly. EGTA' s  Ca 2+ affinity weakens 
dramatically below pH 7, decreasing 100-fold from pH 7 to 
pH 6. Yeast are quite acidogenic, containing plasma mem- 
brane H ÷ pumps (Serrano et al., 1986) which may further 
exacerbate EGTA's  ineffectiveness in the critical region 
near the cell surface. We have therefore used a related, 
relatively acid tolerant chelator, bis-(o-aminophenoxy)- 
ethane-N,N,N',N'-tetraacetic acid (BAPTA) (Tsien, 1980). 
Whereas BAPTA and E G T A  possess equivalent Ca 2+ af- 
finity at pH 7.1, BAPTA's  Ca 2÷ affinity is 37-fold higher 
than that of E G T A  at pH 6.1. 

We undertook a series of experiments using BAPTA 
and no ionophore. BAPTA was always present in excess 
and the free [BAPTA] was held constant. This design kept 
all the background trace free metal ions constant, and 
therefore simplifies interpretation of metal ion supple- 
mentation experiments. Contrary to a previous claim (Iida 
et al., 1990a), we found free Mn 2+ to be far more effective 
than free Ca 2+ in supporting cell-cycle progression. 

Materials and Methods 

Strains and Culture Media 

The common haploid laboratory strain X2180-1A (MATa, SUC2, real, 
reel, gal2, CUP1) was used in all chelation experiments. Strains 2-12A 
( MA Ta, ade l -, ura3-, leu2-, trp l , his3-, cdc l-  P s) and 373-14C ( MA Ta, 
adel -, ura3-, leu2-, trpl-,  his3 , cdcl-6 is) were used in the CDC1 experi- 
ments (gifts of Dr. Stephen Garrett, Duke University Medical Center, 
Durham, NC). All solutions and media were made with doubly distilled 
water and stored in extensively rinsed plastic ware. 

YEPD6.5 medium was YEPD (Sherman, 1991) buffered to pH 6.5 with 
50 mM potassium 2-[N-morpholino]ethanesulfonic acid (MES). The metal 
ion contents of YEPD6.5 medium are given in Table I. We found that 
YEPD cultures had an initial pH between 5 and 6 and became increas- 
ingly acidic as cells proliferated. Yeast grew at the same rate in YEPD6.5 
medium as in YEPD, but the pH remained at 6.5 throughout logarithmic 
growth. The pH of YEPD6.5 medium decreased to ~6.2 as cells ap- 
proached stationary phase. Only log-phase cells were used. 

Medium A was derived from the standard defined synthetic medium 
SD (Wickersham, 1951). SD contains 4 mM MgCI2, 700 ~M CaC12, 3 ~M 
MnCI2, 2 IxM ZnCI2, 0.3 txM CuSO4, and 1.2 ~zM FeCI3. All but MgCI2 
were omitted in medium A. In addition, Ca 2-- pantothenate was replaced 
with the Na ÷ salt here. Medium A was buffered to pH 6.5 with 50 mM po- 
tassium MES. See Table I for metal analyses of media used. In liquid cul- 
tures, cells grew in medium A at nearly the same rate as in SD, but en- 
tered stationary phase at about half the cell density. 

Culture Conditions and Cell Counts 

Cells were cultured in fresh plastic ware at 28°C on a rotator. They were 
first cultured for 16-24 h to a density of ~<107 cells/ml in BAPTA-free 
YEPD6.5 medium or medium A. Such cells were then used as inocula for 

Table  I. Tota l  M e t a l  Con ten t s  o f  E x p e r i m e n t a l  So lu t ions  

Calcium Copper I ron  Manganese Zinc Magnesium 

u~Vt 

YEPD 6.5 medium 560 <0.3 12 0.3 20 240 
Medium A 0.6 <0.3 < 1 <0.3 <3 4,000 
10 mM CaC12 - -  nm < 1 <0.3 nm nm 
10 mM FeC13 1.5 nm - -  30 nm nm 
10 mM MnC12 0.12 nm < 1 - -  nm nm 

Listed are total metal contents in two growth media and three metal ion stocks. <, 
limits of detection in the case of undetectability, n.m., not measured. 

growth tests in variously modified YEPD6.5 media or media A. Unless 
otherwise stated, cultures were inoculated <~104 cells/ml to prevent exces- 
sive metal ion carryover. 

Cells were counted with an electronic particle counter (Particle Data 
Inc., Elmhurst, IL). Diluted samples were briefly sonicated before count- 
ing using a probe sonicator (Branson Ultrasonics Corp., Danbury, CT) to 
disperse unabscised cells. Cultures containing dextran-conjugated 
BAPTA were grown in small volumes because of its high cost and counted 
using a hemocytometer. Viable cells were determined as colony-forming 
units (CFU) on YEPD plates, counted after 3 d incubation at 28°C. Per- 
cent viability is the [CFU]/[particle] divided by 0.75. This is because 
[CFU] was only 75% of [particle] in control cultures. The discrepancy is 
likely due to unabscised cells in the plating aliquots which were not soni- 
cated to avoid damage. Cell clumping was not obvious in any of the cul- 
tures. 

Chemicals and Their Analyses 

Chemicals of the highest purity available were used in cases where signifi- 
cant metal ion contamination was likely to be introduced. Ultrapure 
MnC12, ZnCI2, CuCI2, MgCI2, CaClz, potassium phosphate, and ammo- 
nium sulfate were from Aldrich Chemical Co. (Milwaukee, WI); FeCI 3 
from Fluka ACT (Buchs, Switzerland); potassium salt of BAPTA or dex- 
tran-conjugated BAPTA (10 kD average molecular mass) from Molecular 
Probes (Eugene, OR). 

Total calcium, copper, iron, manganese, and zinc in culture media or 
stock solutions were determined using an inductively coupled plasma 
spectrophotometer (ICP 2.5; Leeman Laboratories, Inc., Lowen, MA). To 
measure manganese in the FeCI 3 stock, an atomic absorption spectropho- 
tometer (3030; Perkin-Elmer Corp., Norwalk, CT) was used. Absorption 
at two wavelengths both indicated a 1/300-fold contamination of manga- 
nese in the FeCI3 stock. Both instruments were calibrated with dilute 
aqueous solutions of each metal salt. In samples where a metal could not 
be detected, the lowest detectable level of that metal was spiked into the 
sample for verification. 

Determination of the K d of MnBAPTA 2- 

The K0 of MnBAPTA 2 was unknown and had to be determined. Free 
Mn 2+ in BAPTA solutions was measured by electron paramagnetic reso- 
nance (EPR) spectroscopy using an EPR spectroscope (3C; Varian Ana- 
lytical Instruments, Sunnyvale, CA) (Cohn and Townsend, 1954). All 
measurements were done at 20°C in 0.1 M KCI, 10 mM KOAc, pH 4.00, 
buffer. This low pH was used to lower the Mn z÷ affinity of BAPTA to 
produce measurable free Mn 2÷. (The detection limit was >1 I~M.) EPR 
spectra were taken of 0-100 IxM MnC12 standard solutions with the follow- 
ing parameters: microwave power (50 mW), modulation amplitude (10 
G), modulation frequency (100 kHz) (Fig. 1 A). A calibration curve corre- 
lating free [Mn z+] and peak heights (second derivative of microwave ab- 
sorbance) that are directly proportional to free [Mn 2+] was generated 
(data not shown). Accurately pH-buffered solutions containing either 750 
/xM BAPTA or 750 IxM BAPTA with 720 ~M MnCI 2 were mixed to cre- 
ate solutions of varying free [Mn2--], all at exactly pH 4.00. EPR peak 
heights of these solutions were measured (Fig. 1 B) to determine free 
[Mn 2+] from the calibration curve generated above. Scatchard analysis of 
free vs. BAPTA-bound Mn 2+ indicated that the affinity of Mn 2+ for 
BAPTA 4- at pH 4.00 was 92 x 103 M -1 (Fig. 1 C). Using the formula from 
Portzehl et al. (1964)of KMn/K'Mn = 1 + [H+]Km + [H+]2KHIKm, where 
KM, is the absolute and K'M, the apparent affinity of Mn 2+ for B A P T A  at 
the given pH, and KH1 is the first and Km the second H + Kd'S (Tsien, 1980), 
the absolute affinity of MnBAPTA 2- (20°C, 0.1 N) was calculated to be 
6.3 × 108 M -1 (pKd 8.8). The third and fourth H + associations with 
BAPTA, and metal ion binding to other than the BAPTA 4- form, are in- 
significant here (Tsien, 1980). 

Calculation of Free Ion Concentrations 
Free cations in BAPTA-containing solutions were calculated using the 
program Maxchelator written by Chris Patton of the Stanford University 
Hopkins Marine Station. Calculations used the known Kd's of CaBAPTA 2-, 
MgBAPTA 2 , HBAPTA 3-, and H2BAPTA z- (Tsien, 1980), the g d of 
MnBAPTA 2- determined above, and cation and proton affinity constants 
of phosphate (Perrin, 1979) and sulfate (Martell and Smith, 1974). The 
Kd'S of ZnBAPTA 2-, CuBAPTA 2-, Fe(II)BAPTA e-, and Fe(III)BAPTA- 
were approximated by assuming that the ratios of the Ka's of M-chelator/ 
Ca-chelator would be similar between BAPTA and related chelators for 
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which the affinities for these metal ions are known (Martell and Smith, 
1974; Grynkiewicz et al., 1985; Metcalfe et al., 1985). As an example, since 
EGTA, 5F-BAPTA and Fura-2 all have similar ratios of KdZnChelator/ 
KdcaChelator of ~V100, the Kdz, of BAPTA was estimated to be IA00 of its 
Kdca, or 1 nM (Table II). Since the affinities of these cations for BAPTA 
have not been directly measured, all estimates of the free concentrations 
of Cu 2÷, Fe n+, and Zn 2+ should be considered only order-of-magnitude 
approximations and are stated as such. 

Table II lists the absolute Kd'S, measured or extrapolated, that were 
used to generate apparent dissociation constants. Apparent Kd'S ac- 
counted for the presence of protons (see above) and the ionic strength of 
the media (0.2 N contributed primarily by sulfate, phosphate, MES, and 
ammonium and adjusted for protonation at pH 6.5). The binding of Ca 2+, 
Cu 2+, Fe "+, Mg 2+, Mn 2+, Zn 2÷, and H ÷ to BAPTA, phosphate, and sulfate 
were simultaneously accounted for in all calculations. Calculations ignore 
the potential presence of secreted cation-binding metabolites or cell-sur- 
face ion binding since the critical free concentration determination experi- 
ments were all done with low cellular inocula. 

Measurement of  Internal Ca 2+ and M n  2+ 

Medium A spiked with 45CAC12 (NEX013; New England Nuclear, Boston, 
MA) (1-10 mCi/ml diluted into 1.2-10 p,M 4°CaC12) was used to grow 
45Ca/4°Ca-equilibrated inocula. These cultures were used to inoculate test 
media of similar 45Ca/4°Ca ratios. For test media containing <1 txM free 
Ca 2+ (those experiments left of dashed line in Fig. 8), free [Ca 2+] was held 
by buffering with 2.2-3.2 mM BAPTA and 1.8 p,M-1 mM CaCl2. The 
[BAPTA] and [CaCl2] were chosen to keep free [BAPTA] at 1.9 mM 
while titrating the free [Ca 2÷] from 0.8 to 200 nM. ZnC12 and FeCl3 were 
also added at 100 ~M each. In 1.9 mM free BAPTA, addition of 100 IxM 
FeC13 was far from toxic (see Results). In cultures labeled "manganese" 
(see Fig. 8, open circle), 700 ~M MnC12 (and an additional 700 p,M 
BAPTA) was added to BAPTA-containing medium so that the free Mn 2÷ 
was 2 nM. (2 nM free Mn 2+ is more than sufficient to support growth with- 
out free Ca2+; see Results.) Test cultures were inoculated at 103-2 x 106 
cells/ml so that they would reach a density of ~2  × 107 cells/ml in 48 h as 
judged by control cultures. At 48 h, three 2-ml aliquots of cultures were in- 
dividually filtered under suction and the filters (HA25; Millipore Corp., 
Bedford, MA)were rinsed five times, each for 20-25 s with 5 ml each of 5 
mM unlabeled CaC12 and 0.3 M sorbitol to remove surface-associated 
Ca 2+. The radioactivity of the rinsed filters was measured using a liquid 
scintillation counter (Packard Instrument Co., Inc., Meriden, CT). Three 
1-ml samples of the same cultures were microcentrifuged in tared tubes 
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Figure 1. D e t e r m i n a t i o n  of  
M n 2 + - B A P T A  4- aff ini ty con-  
s tant .  (A)  E P R  spec t ra  o f  0, 5, 
10, 20, 50, and  100 I~M MnC12 
( labeled 0 -100  respect ively)  in 
100 m M  KC1, 10 m M  K O A c ,  
p H  4.00 buffers .  T h e  he igh t s  of  
the  peaks  ( second  der iva t ive  of  
m ic rowave  abso rbance )  are  di- 
rect ly p ropor t iona l  to the  f ree  
M n  2+ concen t ra t ion .  (B) E P R  
spec t ra  of  s imilar ly p H  buff-  
e red  so lu t ions  con ta in ing  750 
ixM B A P T A  and  f rom 720 txM 
(largest peaks) t h r o u g h  216 
IxM (smallest peaks) MnCI2. 
Ca l ib ra t ion  of  peak  he igh t s  to 
f ree  [Mn 2+] is de r ived  f ro m  A. 
(C) Sca tchard  plot  ca lcu la ted  
f r o m  free M n  2+ m e a s u r e d  in B 
and  r e m a i n i n g  B A P T A -  
b o u n d  M n  2+ indicates  an  ap- 
pa r en t  M n 2 + - B A P T A  4- affin- 
ity cons t an t  o f  92 × 103 M -1 at 
p H  4.00 c o r r e s p o n d i n g  to an  
abso lu te  affinity of  63 × 107 
M -1 (pKd 8.8) (0.1 N, 20°C). 

and the pellets dried overnight at 37°C before weighing with an analytical 
balance. 

Cellular Mn 2÷ was assayed in a similar manner using 54MNC12 (NEZ040; 
New England Nuclear), MnC12/sorbitol rinses, and radioactivity was mea- 
sured with a dry scintillation counter (Packard Instrument Co., Inc.). 

Determination of  Nuclear Content and Bud Size 

To determine nuclear contents, cells were sonicated, fixed with ethanol, 
and stained with propidium iodide (Aldrich Chemical Co.) according to 

Table II. Dissociation Constants o f  Metal BAPTAs 

A Measured 

Complex pK d Reference 

MgBAPTA 2 1.77 a 
CaBAPTA 2- 6.96 a 
HBAPTA 3- 6.36 a 
H2BAPTA 2- 5.47 a 
MnBAPTA 2- 8.8 This work 

B Extrapolated 

Model Chelator 

Metal (M) Name (ref.) p(KdM/Kd Ca) Estimated pK d M-BAPTA 

Cu 2+ EGTA (b and c) 5.7~6.7 ~ 13 

Fe 2÷ EGTA (b) 0.94 ~ 8  
FURA-2 (d) 0.5-1 

Fe 3÷ EGTA (b) 9.6 ~17  

Zn 2+ EGTA (b) 1.7 ~ 9  
FURA-2 (d) 2 
5F-BAPTA (e) 2 

All constants are absolute dissociation constants at 0.1 N and 20-22°C. Apparent dis- 
sociation constants used in all calculations of free metal concentrations account for the 
presence of protons and an ionic strength of 0.2 N. In B, dissociation constants were 
extrapolated as described in Materials and Methods. References are a: Tsien, 1980; b: 
Martell and Smith, 1974; c: Perrin, 1979; d: Grynkiewicz et al., 1985; e: Metcalfe et 
al., 1985. 
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the method of Hutter and Eipel (1979). The fluorescence intensity of 104 
cells was determined using a flow cytometer (FACScan; Becton Dickinson 
and Co., Mountain View, CA) and data analyzed using LYSYS software. 

Relative bud diameters were determined by measuring the parent and 
bud diameters from slide projections of phase micrographs. For ellipsoidal 
cells, diameters midway between the long and short axes were used. 

Results 

BAPTA Arrests Growth in Rich Media 

Like other investigators (Kovac, 1985; Iida et al., 1990a), 
we failed to block yeast multiplication by adding EGTA 
alone to the standard rich medium YEPD (~pH 5.8). We 
found that EGTA did block growth when added to YEPD 
buffered at pH 7.0. However, cells displayed no consistent 
terminal phenotypes and the blockage could not reliably 
be removed by additions of metal salts. It should be noted 
that yeast cells acidified this medium in spite of the 100 
mM pH buffer. Since the efficacy of EGTA would be di- 
minished by this acidification and cells grew noticeably 
slower at pH 7.0, we instead studied the effect of the rela- 
tively acid-tolerant chelator BAPTA added to media at 
pH 6.5. 

Yeast grew normally in YEPD6.5 medium, which is the 
conventional rich medium YEPD (Sherman, 1991) buff- 
ered at pH 6.5 with 50 mM potassium MES. BAPTA addi- 
tion had little effect at 1 mM but arrested growth/>5 mM 
(Fig. 2 A). After BAPTA addition, growth proceeded at 
the normal rate for several generations but stopped 
abruptly within one doubling time (~2 h). This lag before 
growth arrest was inversely proportional to the [BAPTA] 
added, being about four doublings for 5 mM, and three 
doublings for 12 mM (Fig. 2 A, A and ~). 

The long delay to growth arrest indicated that either 
BAPTA must gradually enter cells or a cellular metal 
ion(s) must gradually be depleted. We tested the effective- 
ness of BAPTA conjugated to high molecular weight dex- 
tran, which should dramatically slow if not completely pre- 
vent entry. As shown in Fig. 3, dextran conjugation did not 
even weaken, let alone abolish the ability of BAPTA to 
block growth. Therefore, growth during the lag seems to 
rely on a reserve of internal metal ions in the inoculum. As 
this reserve is depleted by growth dilution and possibly 
also by efflux, external BAPTA hampers its replenishment 
and growth is eventually arrested. 

Since electronic particle counting did not distinguish live 
from dead cells, we also assessed viability by counting CFU. 
Treated cells were as viable as untreated controls when 
sampled at the beginning of the growth arrest (6 h for the 5 
mM, 4 h for the 12 mM BAPTA addition), though only 
~30% survived 2 h later (Fig. 2 B). Thus growth arrest ap- 
parently precedes and leads to death, a conclusion sup- 
ported by the arrest phenotypes (see below). 

BAPTA Arrest Is Cell-Cycle Specific 

We used a flow cytometer to assess the nuclear content of 
cells stained with the quantitative nucleic acid stain pro- 
pidium iodide. Cells with 2 N nuclei increased from 60% at 
the time of 12 mM BAPTA addition to 74% by 4 h, and to 
90% by 6 h (Fig. 4). Microscopic examination revealed 
very few cells with double or elongated nuclei after 6 h in 
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Figure 2. BAPTA blocks yeast proliferation in rich growth me- 
dia. Cells of S. cerevisiae strain X2180-1A were grown in 
BAPTA-free YEPD6.5 medium and reinoculated into flesh 
YEPD6.5 medium containing either no additions ([]) or 1 mM 
(©), 5 mM (A), or 12 mM (©) BAPTA. At the indicated times al- 
iquots were removed and assayed in triplicate either for (A) cel- 
lular density using an electronic particle counter or (B) cell via- 
bility as measured by colony-forming ability on YEPD plates. All 
measurements were done in triplicate and error bars represent 
standard deviation of the means, which are smaller than the sym- 
bols in A. 

12 mM BAPTA, indicating the nuclear arrest to be in G2 
or early M phase. There was a 38% decrease in the 1 N 
population between 0 and 4 h after BAPTA addition. 
Thus at least 38% of the cells manifested directly scorable 
nuclear-division arrest at a time they were nearly 100% vi- 
able (Fig. 2 B). Iida et al. (1990a) also observed a nuclear 
arrest with the combined application of EGTA and 
A23187. In that experiment though, cells were initially ar- 
rested in G1 followed by an increase in the fraction of 2 N 
cells 6-12 h after arrest and the viability of the cells was 
not assayed. In the present experiment, 2 N nuclei became 
manifest nearly concomitantly with the arrest of viable 
cells. 

Bud development is tightly coordinated with other as- 
pects of cell-cycle progression. A bud normally emerges 
shortly after the initiation of DNA synthesis and enlarges 
to about two-thirds the parent's diameter before postmi- 
totic abscission (Brewer et al., 1984). B A P T A  treatment 
resulted in a fourfold increase in the fraction of cells with 
minibuds of <20% the parent cell diameter (Fig. 5, filled 
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Figure 3. BAPTA does not need to enter cells to block growth. 
Cells were inoculated into 100-tzl cultures as in Fig. 2 either with 
((3) or without ([2) 20 mM BAPTA-dextran conjugate (10,000 
kD average molecular mass). 20 mM BAPTA-dextran corre- 
sponds to an unconjugated BAFFA concentration of ~11 mM 
since the Ca 2+ dissociation constant (Kd) of the BAPTA-dextran 
conjugate is 1.75 times that of unconjugated BAPTA. Cells were 
counted in triplicate using a hemocytometer because of the small 
culture volumes. Error bars represent standard deviation of the 
mean. D, no BAPTA; (3, BAPTA 10k. 

bars). This budding phenotype was not as tight as the nu- 
clear phenotype.  6 h after B A P T A  application, 14% of the 
population remained unbudded and 40% had substantially 
developed buds although even these buds tended to be 
smaller than those of the untreated cells (Fig. 5 C, open 
bars). For brevity's sake, we will nonetheless refer to this 
arrest as 2 N minibudded from here on. Since cells in G2 
or M phase (i.e., 2 N cells) normally have well-developed 
buds, B A P T A  apparently blocks two independent path- 
ways, the nuclear and the morphogenic pathways (Pringle 
and Hartwell, 1981), at different points in the cell cycle. 
Note that a substantial portion were already minibudded 
by 4 h, when all cells were still viable, confirming the pre- 
vious conclusion that cell-cycle arrest precedes cell death. 

Figure 5. BAPTA inhibits bud development. Phase micrographs 
were taken of cells from the 12-mM BAPTA culture described in 
Fig. 2 at 0, 4, and 6 h (A, B, and C, respectively). Bud diameters 
relative to the parent cell diameter were determined by measur- 
ing slide projections of these micrographs. BAPTA caused a dra- 
matic increase in the portion of cells with barely emerging 
minibuds which have diameters <20% of those of the parent cells 
(filled bars). 200 cells were measured for each time point. 

6 Hours 

1N 2N 

t 0 Hours 

Figure 4. BAPTA blocks nuclear division. At the indicated 
times, aliquots of cells from the 12-mM BAPTA culture de- 
scribed in Fig. 2 were fixed, stained with propidium iodide, and 
the fluorescence intensity of stained cells were measured using a 
flow cytometer. The left and right peaks represent cells contain- 
ing 1 N and 2 N nuclear contents, respectively. 10,000 stained 
cells were assayed for each time point. 

Arrest o f  Bud and Nuclear Development Is Due to 
Depletion o f  Free Mn 2+ and Ca 2+ 

Ca 2+, Mn 2+, Zn 2+, Cu 2+, and Fe n+ are present in YEPD6.5 
medium (Table I) and B A P T A  chelates all of  these metal 
ions. To test whether or which ion's depletion causes the 
B A P T A  arrest, we added back metal chlorides one at a 
time. To prevent the added metal ion from replacing and 
releasing other ions bound to B A P T A ,  we adjusted total 
[BAPTA] to keep the free [BAPTA]  constant among ex- 
periments. When added at 4 raM, chlorides of either Mn 2+ 
or Ca 2+, but not Zn 2+, Cu E+, Fe 3+, restored growth in 
YEPD6.5 medium containing 11.4 mM free B A P T A  (16 
mM total B A P T A )  (Fig. 6). The combination of  FeC13 and 
B A P T A  at these concentrations immediately stopped 
growth, indicating a toxicity (discussed below), Thus cell- 
cycle arrest by B A P T A  in Y E P D  is apparently due to che- 
lation of both free Mn 2÷ and Ca 2÷, and the two ions ap- 
pear to function interchangeably. 

Chlorides of Sr 2÷, Ba 2÷, Sn 2÷, Hg 2÷, Ni 2+, Cd 2÷, Fe 2+, 
La 3÷, Lu 3+, Er  3÷, Tb 3+, or Nd 3+ were similar tested indi- 
vidually. Only SrC12 relieved the B A P T A  arrest (data not 
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Figure 6. Mn 2+ or Ca 2+ individually restore growth in BAPTA 
containing rich media. Cells were inoculated as in Fig. 2 into 
YEPD6.5 medium containing either no additions (V), 12 mM 
BAPTA (©), or 16 mM BAPTA plus 4 mM CaCI2 ( l ) ,  MnCI2 
( A ) ,  C u C I  2 ([~) ,  FeC13 (D), o r  Z n C I  2 (~>). All measurements were 
done in triplicate and the error bars represent the standard devia- 
tion of the mean. 

shown). Sr 2+ is chemically very similar to Ca 2+ and often 
acts as a Ca 2+ surrogate in situ (Fatt and Ginsborg, 1958; 
Silinsky and Mellow, 1981) and was not investigated fur- 
ther. 

Quantification: Kd's of M-BAPTAs and the Use of a 
Synthetic Media 

As stated, YEPD6.5 medium contains substantial amounts 
of chelatable metal ions (Table I). To assess more strin- 
gently metal ion requirements we investigated the effects 
of BAPTA added to a defined medium depleted of these 
metals. This medium A is derived from the standard syn- 
thetic medium SD (Wickersham, 1951), buffered to pH 6.5 
with 50 mM potassium MES, and lacking salts of Mn 2÷, 
Ca 2÷, Zn 2+, Cu 2÷, and Fe 3+ specified in the SD formula 
(the 4 mM MgSO4 was not omitted). The levels or the up- 
per limits of contaminating metals are listed in Table I. 
The only measurable contaminating metal in medium A 
was 600 nM calcium. 

Yeast grew indefinitely at near normal rates in medium 
A, presumably on the contaminating metals that are 
mostly immeasurable. We did find, however, that cells in 
medium A entered stationary phase at about one-half the 
density of those in standard SD medium. Unlike the 5 mM 
B A P T A  required to arrest growth in YEPD6.5 medium, 
<100 txM BAPTA arrested growth in medium A. 

The affinities of BAPTA for Ca 2+, Mg 2+, H +, but not 
Mn 2÷ have been measured (Tsien, 1980). We used EPR 
spectroscopy (Cohn and Townsend, 1954) to determine 
the pKa of MnBAPTA 2- to be 8.8 (Fig. 1; see Materials 
and Methods). The pKd'S of ZnBAPTA 2-, CuBAPTA 2-, 
Fe(II)BAPTA 2-, and Fe(II I )BAPTA- were estimated from 
their relative affinities for four model chelators (see Mate- 
rials and Methods). Note that the Cu 2+, Fe n+, and Zn 2÷ 
concentrations are not crucial to our conclusion on Mn 2+ 
and Ca 2+, the focus of this study. Because the BAPTA 
Kd's for Cu 2÷, Fe n÷, and Zn 2+ are derived from extrapola- 
tions and not direct determinations, the calculated free 
concentrations of these cations are stated as order-of-mag- 

nitude approximations and should not be overinterpreted. 
All free ion concentrations are calculated from effective 
Ka's derived from absolute Ka's (Table II), the pH (6.5), 
and the estimated ionic strength of the media (0.2 N). 

Z n  2+ Is Required  

Unlike the case with YEPD6.5 medium, supplementation 
of a single individual metal chloride failed to restore growth 
in medium A containing BAPTA. Chlorides of Mn 2+, 
Ca 2+, Zn 2+, Cu 2÷, or Fe 3÷ were added at 200 IxM in all 
possible combinations to BAPTA-containing medium A 
(Table III). Total [BAPTA] was adjusted in each case so 
that the free [BAPTA] never varied significantly from 1.9 
raM. Only those cultures supplemented with ZnC12 sup- 
ported proliferation. Zn 2÷ was apparently necessary but 
not sufficient. MnC12 or a combination of CaC12 and FeC13 
were also needed (see below). Calculations showed that as 
little as ~10 pM free Zn 2÷ satisfies the requirement (in 10 
p~M ZnC12, 200 ~M MnC12, 2.2 mM total BAPTA) (see 
Table VII); ~1 pM free Zn 2+ does not (in 1 IxM ZnC12, 200 
IxM MnCI2, 2.2 mM total BAPTA). Zn 2+ cannot be re- 
placed here by any other metal ion, even when they are 
added at 3 mM (with 200 p,M MnCI2, in 5.2 mM total 
BAPTA). Elemental analysis shows that the rich YEPD6.5 
medium has 20 ixM total Zn 2+ (Table I). Therefore, after 
the addition of 12 mM BAPTA, between ~1 and 10 pM 
free Zn 2+ should remain in YEPD6.5 medium, which ap- 
parently is sufficient, since Zn 2+ supplementation was not 
required in YEPD6.5 medium (Fig. 6). 

Deprivation of Zn 2+ left cells unbudded and with 1 N 
nuclei (Fig. 7 A), distinctly different from the phenotype 
elicited by Mn 2+ and Ca 2+ deprivation (Figs. 4, 5, and 7, B 
and C). Because of the Zn 2+ requirement, all subsequent 
investigations were performed in medium A containing 
BAPTA and ZnCl2. These media are referred to as X mM 
BAPTA-Zn Medium, where X is the free [BAPTA] main- 
tained, and X/10 is the total [ZnCI2] added. 

Fe 3+ Potentiates  Ca 2+ 

Besides the requirement for ZnC12, Table III  also shows 
that growth in medium A with 1.9 mM free [BAPTA] re- 
quired 200 ixM MnC12. Unlike the case in YEPD6.5 me- 
dium, replacing this MnCI2 with CaC12 failed to support 
growth. However, the combined application of 200 ~M 
CaC12 and 200 ~M FeC13 restored growth in BAPTA-Zn 
medium. 

To investigate further this dual requirement for free 

Table III. Growth in BAPTA-added Medium A Supplemented 
with Metal Chlorides 

Cu 2+ 

Cu 2÷ Cu 2+ M n  2+ M n  2~ 

None  Cu  2+ Mrl 2+ 2112+ M n  2+ Zrl 2+ Zn  2+ Zn 2+ 

None  . . . . . .  + + 
C a 2 +  . . . . . .  + + 

Fe 3 + . . . . . .  + + 

Ca  2+, Fe 3+ - _ _ + - + + + 

Chlorides of the stated metal ions were added at 200 tzM each. Extra BAPTA was 
added accordingly so that free [BAPTA] was 1.9 mM throughout. + cultures that 
grew to >5  x 107 cells/ml in 48 h. - ,  cultures that showed no visible signs of growth 
(< approximately 106 cells/ml) in 48 h. 
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Ca 2+ and Fe 3+, we tested combinations of CaC12 and FeC13 
ranging from 0 to 3 mM in 1.9 mM B A P T A - Z n  media (Ta- 
ble IV A). CaC12 alone supported growth at the highest 
concentration tested, 3 mM in 1.9 mM B A P T A - Z n  medium 
(5.2 mM total BAPTA) .  However,  as little as 100 txM 
CaC12 supported growth in 1.9 mM B A P T A - Z n  medium 
when 100 tzM FeCI3 was also added (1/30 the amount  of 
Ca 2+ required in the absence of Fe 3+ supplementation) 
(Table IV A). 100 I~M FeC13 alone (Fig. 7 C) or 100 p,M 
CaC12 alone (Fig. 7 D) left yeast with a similar 2 N 
minibudded arrest in B A P T A - Z n  media. Thus it appears 
that Fe 3÷ is potentiating the ability of free Ca 2÷ to mediate 
bud and nuclear development.  

The rich YEP6.5 medium used above contained 12 IxM 
total iron, explaining why the potentiating effect of  addi- 
tional Fe 3+ was not detected there. There was measurable 
manganese contaminating our FeCI3 stock (Table I). We 
verified that this contaminating Mn 2÷ was not the agent 
potentiating free Ca 2+ rescue here (data not shown). Fe 3+ 
did not substantially potentiate Mn 2÷ in similar tests (Ta- 
ble IV B). The ability of Fe 3÷ to potentiate free Ca 2÷ was 
not investigated further, but Fe 3+ was added to most of the 
subsequent growth tests. 

Supplementation of Fe 3+ is complicated by the fact that 
it is toxic at higher concentrations in the presence of 
B A P T A .  All cultures in 1.9 mM B A P T A - Z n  media with 
/>1 mM FeC13 failed to grow, even in the presence of res- 
cuing amounts of free Mn > or Ca 2÷ (Table IV, A and B). 
It was the combination of Fe 3÷ and B A P T A  that was toxic 
since 1 mM FeCI 3 alone was not. This same toxicity was 
observed in YEPD6.5 medium (Fig. 6). Neither Ca 2÷, 
Cu e÷, Mn 2÷, nor Zn 2÷ showed this kind of toxicity. Che- 
lated Fe 3+ is known to react with hydrogen peroxide to 
generate toxic levels of free OH- radicals (Sutton and 
Winterbourn,  1984). At  ~<300 I~M FeC13 this toxicity was 
not observed. In 1 mM FeC13 and 3 mM B A P T A ,  cells be- 

Figure 7. Terminal phenotypes of 
cells lacking essential metal ions. 
Cells logarithmically growing in 
medium A were used to inoculate 
medium A containing 1.9 mM free 
BAPTA with 100 txM MnC12 (A); 
with 100 txM ZnC12 (B); with 100 
tzM ZnCl2 and 100 p~M FeCI3 (C); 
with 100 I~M ZnC12 and 100 IxM 
CaC12 (D). At 12 h, cells were 
photographed and assayed for nu- 
clear content (insets) as in Fig. 4. 
A lack of Zn 2+ left cells 1 N and 
unbudded (A). A lack of Mn 2+, 
Ca 2+, and Fe n+ (B), Mn 2+ and 
Ca 2+ (C), or Mn 2+ and Fe n+ (D) 
all left cells 2 N minibudded. Bar, 
10 ~m. 

came unbudded with 1 N nuclei, distinctly different from 
the 2 N minibudded arrest caused by B A P T A  alone. We 
did not investigate this toxicity further since it is not cen- 
tral to our study. 

Free Mn  2+ Is a Much More Efficient Mediator o f  
Cell-Cycle Progression Than Free Ca 2 + 

We tested the effects of different free [Mn 2+] and [Ca 2+] in 
medium A with B A P T A  (ZnC12 and FeCl3 were also 
added). Between 53 and 66 nM free Ca 2+ was sufficient 
without added Mn 2+ (Table V, rows 1-4) but only between 
66 and 130 pM free Mn 2÷ was sufficient without added 
Ca 2+ (rows 5-8). Free Mn 2+ thus supports bud and nuclear 

Table IV. Effects of Fe s+ 

Fe 3+ 

None 10 IxM 30 I~M 100 ~tM 300 p,M 1 mM 3 mM 

A. Ca  2+ 

None  . . . . .  

10 ~xM . . . . .  

30 p.M . . . . .  

100 pLM - - - + + 

300 ~ M  - + + + + 

1 m M  - + + + + 

3 m M  + + + + + 

B. Mn 2+ 

None  . . . . .  

10 IxM . . . . .  

30 p,M - + + + - 

100 ~xM + + + + + 

300 p,M + + + + + 

1 m M  + + + + + 

3 m M  + + + + + 

Chloride salts were added at the given concentrations to 1.9 mM BAPTA-Zn medium. 
Equimolar BAPTA was included with the chlorides to maintain the 1.9 mM free 
[BAPTA]. Growth was scored as in Table IlL 
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Table V. Comparison of the Growth-supporting 
Concentrations of Free Mn 2÷ and Ca 2+ 

Added total Calculated free 

BAPTA CaC12 MnCI 2 Ca/+ Mn 2÷ Growth 

Ca 2+ supported growth 

Mn 2+ supported growth 

mM ~ izM nM pM 

0.24 25 0 53 < 1 0  - 

0.25 40 0 88 < 10 + 

2.3 200 0 44 < 1.0 - 

2.4 300 0 66 < 1.0 + 

0.21 0 2.0 1.3 66 - 

0.22 0 5.0 1.3 1611 + 

2.1 0 20 0.13 65 - 

2.1 0 40 0.13 130 + 

Cells were inoculated to a density of 103 cells/ml into medium A containing the stated 
total [MnCI/I, [CaCU and [BAPTA]. All cultures contained FeCI 3 and ZnCI 2 each at 
either 5 p.m (~0.2 mM BAPTA cultures, rows 1, 2, 5, and 6) or 50 /~M (~2 mM 
BAPTA cultures, rows 3, 4, 7, and 8). These amounts of FeCI3 are far below the level 
that are toxic (Table IV). Note that the [Zn2*l is one-fourth that used in BAPTA-Zn 
medium but more than sufficient to support growth. The free [cation] supporting 
growth is bold. 

development at <1/500 the concentration of free Ca 2+. 
The fact that either ~70 nM free Ca 2÷ or ~150 pM free 
Mn 2÷ was required at the two different chelator concen- 
trations (~0.2 or 2 mM) demonstrates that growth is de- 
pendent on free, not total Mn 2+ or Ca ~+. In the rich 
YEPD6.5 medium (Fig. 2), the critical free [Ca 2+] calcu- 
lated from the total (Table I) was between 53 and 570 nM, 
agreeing with the findings in medium A (Table V). Free 
Mn 2+ was well below its critical concentration in YEPD6.5 
medium with 1 mM BAPTA. 

Zn 2+, Fe 3+, and Cu 2+ all failed to substitute for Mn 2+ or 
Ca 2+ at any concentration tested. However, even when 
added at 3 mM in 1.9 mM free BAPTA (5.2 mM total 
BAPTA), free Cu 2+ was only raised to ~10 -t3 M and free 
Fe 3+ to ~10 -16 M (Table VI) since they both bind BAPTA 
tenaciously (Table II). Whether one can use equimolar 
free Cu 2+ or Fe 3+ to replace free Mn 2+ or Ca 2+ cannot be 
tested here (but see BAPTA free experiments below). 

There was <1.0 pM free Mn 2+ contaminating the Ca 2+ 
test (Table V, line 4) and only 130 pM free Ca 2+ in the 
Mn 2+ test (Table V, line 8), judging from the measured to- 
tal metal contaminants (Table I). These concentrations set 
the upper limits of free Mn 2÷ or Ca 2+ required for nonin- 

Table VI. External Free [Metal Ion] Supporting Bud and 
Nuclear Development 

Total Total Free 
[Metal chloride] [BAPTA] [Metal ion] 

A. Supported 
Ca ~+ 3 × 10 4 2.4 × 10 .3 66 X 10 .9 

Mn 2+ 4 × 10 .5 2.1 X 10 .3 13 × 10 -11 

B. Did not support 
Cu z+ 3 × 10 -3 5.2 x l0 3 ~10-13 

Zn 2+ 3 × 10 3 5.2 x 10 .3 ,-,-,10 .9 

*Fe 3+ 6 × 10 4 8.2 × 10 -4 ~ 1 0  i6 

[A) The minimal [metal ion] (molar) required to overcome the 2 N minibudded arrest 
in medium A with BAPTA, Zn 2*, and Fe 3+ (from Table V). (B) The maximum free 
[cations] tested which failed to overcome this arrest in similar media as A. 
*The combination of 3 × 10 -3 M FeC13 and 5 × 10 -3 M BAPTA was toxic. 6 × 10 4 
M FeCl 3 and 8 × 10 -4 M BAPTA did not support growth but was not toxic, since the 
further addition of 2 × 10 -4 M MnCI 2 (and equimolar BAPTA) restored growth. All 
concentrations are given in molar. 

terchangable functions, if there are any. These are ~1/500 
the free Ca 2+ and <1/100 the free Mn 2+ concentrations re- 
quired for their interchangeable cell-cycle functions (Ta- 
ble VII, rows 2-5). 

Copper and Iron Requirements  

In the 1.9 mM BAPTA-Zn medium where growth was 
supported solely by Mn 2+ (Tables III and IV B), the free 
Cu 2+ should be less than ~10 -17 M (Table VII). This esti- 
mate is based on the limit of detectable Cu 2+ in medium A 
(Table I) and the extrapolated Ko of CuBAPTA ~- (Table 
II). Like Cu 2+, we could not detect an absolute require- 
ment for free Fe n+, which was at most ~10 pM as a con- 
taminant in growing cultures (Table VII). Note that this is 
the conservative high estimate based on the unlikely com- 
plete reduction of any Fe 3+ by extracellular ferric reduc- 
tase (Dancis et al., 1980), since Fe z+ binds BAPTA with 
lower affinity than Fe 3+ does (Table II). 

Table VII summarizes both the free ion concentrations 
required (A) and the upper limits of free metal ion re- 
quirements (in the case where a requirement could not be 
detected) (B) as deduced from our BAPTA studies. Our 
inability to detect a requirement for either free Cu E+ or 
Fe 3+ should not be taken as proof of their nonessentiality 
(see Discussion). 

Intracellular Ca 2+ and M n  2+ 

By spiking cultures with trace amounts of 45CAC12 o r  

54MnC12, intracellular Ca 2+ and Mn 2+ contents were deter- 
mined. Note that this method measures the total cellular 
[cation], most of which likely resides in organelles, not free 
in the cytosol (Ohsumi and Anraku, 1983; Nieuwenhuis et 
al., 1981). In BAPTA-free medium A, internal Ca 2+ traced 
w i t h  45Ca was found to be ~800 pmol/mg, or ~250 txM av- 
eraged over cell volume (Fig, 8). Using BAPTA to reduce 
the free C a  2+ in the medium from 100 IxM to 100 nM (a 
thousandfold drop) only reduced the cell Ca 2+ from 823 to 
354 pmol/mg (a 2.3-fold drop). Thus yeast cells can effec- 
tively extract Ca 2+ from the medium. However, we found 
this scavenging capability to be limited. Total cellular Ca 2+ 
dropped sharply with the decrease of medium free Ca 2+ 

Table VII. External Free [Metal Ion] Required for General 
Proliferation 

Metal Ion Free [M 2+ I 

A. Minimum required (requirement detected) 
Zn 2+ (with Mn 2+) 

Mn 2+ (with Zn 2+) 

Ca 2+ (with Zn 2+) 

B. Maximum required (no requirement detected) 
Mn 2+ (with Zn 2+, Ca 2+) 

Ca z+ (with Zn 2+, Mn 2+) 
Cu 2+ (with Zn 2+, Mn 2+) 

*Fe z+ (with Zn 2+, Mn 2+) 

~'-'10 ii 

1.3 × 10 - I°  
6.6 X 10 -s 

<1 .0  × 10 -13 

<1.3  × 10 ~0 
less than ~ 1 0  -17 

less than ~ 1 0  t~ 

(A) The minimum free [metal ion] (molar) required for proliferation in medium A 
containing BAPTA (plus stated additionally required cation) was calculated from the 
dissociation constants of BAPTA (Table II) and the total [cation] required for growth. 
(B) Maximal free [cation[ present in cases where its necessity could not be detected. 
The upper limit of free [cation] in 2 mM BAPTA-Zn medium (with 200 IxM Mn 2+ or 
300 IxM Ca z* as stated) was calculated as above from the maximal concentration of 
that cation contaminating the media (Table I). 
*The more conservative (higher) estimate of free [Fe n+] based on Fe z + is used here 
due to the potential reduction of the added Fe 3+ by extracellular ferric reductases. 
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Figure 8. Correlation of total internal Ca 2+ with external free 
[Ca2+]. Cells were inoculated into 45Ca containing medium A of 
varying free [Ca 2+] either with (O) or without ([3) 2 nM free 
Mn 2+ supplementation. Left of dashed line, 1.9 mM free BAPTA 
was maintained to lower free [Ca 2+] in the media. After 48 h 
growth, aliquots from cultures were either microfuged, dried, and 
weighed in tared tubes or filtered and rinsed with unlabled CaC12. 
The radioactivifies of the filtered cells were measured to deter- 
mine cellular Ca 2+ contents. All measurements were done in trip- 
licate and error bars represent the standard deviation of the 
mean. See Materials and Methods for a more detailed description 
of the experimental protocol. 

below 100 nM (Fig. 8). This same trend was seen with (Fig. 
8, open circles) or without (open squares) growth-support- 
ing free Mn 2+ in the medium. This observation shows that 
Mn 2+ does not stimulate Ca 2+ accumulation. 

Without  Mn 2+ supplement, losing cell Ca 2÷ below ,'-~200 
pmol/mg sharply curtailed growth (Fig. 9, open squares). 
In contrast, when sufficient free Mn 2÷ was added in the 
medium (open circles), growth continued robustly even 
when cell Ca 2+ was only 6 pmol/mg. This amount  is de- 
rived from a barely detectable activity of 45Ca retained on 
the filters. Even if this radioactivity is completely due to 
internal accumulation, it is no more than 3% the required 
amount  when Ca 2+ is the sole supporter of robust growth. 
Note that the trace 45CAC12 added here raises the free 
[Ca  2+] ~'~10 times that in the Mn2+-supported cultures 
shown in Tables I I I -V.  In those cultures, cell-associated 
Ca 2+ should be even less than this 3% estimate. Thus, 
growth in B A P T A - Z n  medium without C a  2+ supplement 
is supported largely, if not solely, by Mn 2+. It may well be 
possible to grow yeast completely free of cell-associated 
Ca 2+, but we were unable to unequivocally demonstrate  
that here. Nonetheless, it is at least safe to conclude that 
yeast cells need to maintain much higher concentrations of 
i n t e r n a l  C a  2+ in the absence of sufficient free Mn 2+ than in 
its presence. 

In reciprocal experiments, cell 54Mn fell below detection 
limits long before external free Mn 2+ became growth lim- 
iting. Therefore,  this tracer cannot be used to plot the 
slowing of growth with the loss of internal total Mn 2+, as in 
Fig. 9 for internal C a  2+. The detection limit for total cell 
Mn 2+ is ,--~1 pmol/mg or ~300 nM averaged over cell vol- 
ume. The critical average internal concentration must be 
lower. Note that a failure to define the critical internal 
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Figure 9. Mn 2+ addition overrides a growth requirement for in- 
tracellular Ca 2+. Growth rates of the cultures in Fig. 8 were deter- 
mined by measuring cellular density 8 h before and at the point of 
cellular Ca 2+ determination. These growth rates were plotted 
against the internal total Ca 2+ concentrations shown in Fig. 8. 

level of Mn 2+ does not deny its being required. Its being 
essential is judged by the need for a critical free external 
supply in the absence of sufficient free Ca 2+ (Table V). 

Mn 2+ Rescues cdcl Mutants  from Cell-Cycle Arrest  

There are complications in determining metal ion require- 
ments through the use of chelators. In particular, the free 
[Cu 2+ ] and [Fe 3+] always remain extremely low in B A P T A  
media (Table VI), and therefore we cannot make strong 
claims from their inability to rescue (see above and Dis- 
cussion). To circumvent these problems inherent to using 
chelators, we tested the ability of metal ions to rescue the 
temperature-induced growth arrest of cdcl ts mutants. We 
tested cdcl ts mutants because, at restrictive temperatures, 
they arrest with phenotypes nearly identical to Mn2+/Ca 2+ 
depletion: small budded (Hartwell, 1974), 2N, and viable 
at the time of arrest (Garrett, S., manuscript in prepara- 
tion). This phenotypic identity suggested that CDC1 may 
well function in a pathway that requires Mn 2+ or Ca 2+. 
Adding high concentration of either ion to the growth me- 
dium may thus compensate for a reduction of Cdcl  activ- 
ity caused by mutation. Indeed, we found that addition of 
100 mM CaC12 weakly restored and 5 mM MnC12 com- 
pletely restored cdcl-6 ts growth at restrictive temperatures 
in Y E P D  (Fig. 10). Similar results were obtained with 
cdcl-1 ts (not shown). CuCI2, FeC13, or ZnC12 did not rescue 
at any concentration showing that these ions indeed can- 
not support bud and nuclear development as Mn 2+ or 
C a  2+ can.  The likely association between Cdcl  function 
and Mn 2 +/Ca 2+ metabolism is interesting but is beyond the 
scope of this work. The CDC1 gene has been isolated and 
its deduced product bears no homology to any known pro- 
teins (Garrett,  S., personal communication). 

Discussion 

Metal Ion Requirements for Yeast Proliferation 

Using B A P T A  to effectively control metal ion concentra- 
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tions, we have ascertained two metal ion requirements for 
culturing yeast. First, ~ 10  pM free Zn > is needed in the 
medium (Table VII).  Zn 2+ deficiency, like deficiency of 
organic nutrients, results in G1 arrest (Fig. 7 A). Second, 
66 nM free Ca 2+ or 130 pM free Mn > is needed (Table V). 
Ca 2+ and Mn 2+ deficiency causes a cell-cycle arrest. The 
arrested populations are viable, mostly 2 N, and ~ 5 0 %  
minibudded (Figs. 2 B, 4, 5, and 7). The fact that addition 
of either ion alone prevents this arrest indicates that Mn 2+ 
and Ca 2+ interchangeably support both bud and nuclear 
development. 

B e c a u s e  Cu 2+ and Fe 3+ bind B A P T A  with very high af- 
finity (Table II), we could not adequately test their abili- 
ties to replace Mn2+/Ca 2+ in the B A P T A  experiments. In- 
vestigation of FeC13 was further complicated by its toxicity 
at high concentrations when applied with B A P T A  (Table 
IV). However,  addition of Cu 2+, Fe 3+, or Zn 2+ failed to re- 
lieve the 2 N small-budded viable arrest by cdcl-1 ts and 
cdcl-6 ts as Ca 2+ or Mn 2+ did (Fig. 10). By this chelator- 
free test then, Cu 2+, Fe 3+, or Zn 2+ cannot substitute for 
Mn 2+ or Ca 2+ for their cell-cycle functions. 

We could not detect an absolute need for free Cu 2+ or 
Fe 3+. This is surprising, since the free concentrations of 
Cu 2+ and Fe 3+ should have been extremely low in several 
growing cultures (Table VII) ,  possibly indicating that they 
are not required for vegetative growth. It should be noted, 
though, that chelation is not the same as omission. Since 
cells and B A P T A  in essence compete for contaminating 
free metal ions, a sufficient amount  of initially chelated 
Cu 2+ and Fe n+ may have accumulated into proliferating 
cells, away from the chelator. Both Cu 2+ and Fe n+ are 
known to bind intracellular receptors with very high affini- 
ties (see below) and thus this kind of irreversible partition- 
ing may be expected here. 

Figure 10. MnCI2 effectively 
restores growth of cdcl u 
strains. Approximately 104 
(A and B) or 102 (C and D) 
cells of the strain 373-14C 
(cdcl-6 ts) carrying either the 
plasmid YCP50 with a wild- 
type CDC1 insert (A and C, 
CDC1) or YCP50 without 
an insert (B and D, cdcl-6) 
were inoculated onto YEPD 
plates containing chloride 
salts of the stated metal ion. 
CaC12 was added at 100 mM, 
MnC12, FeC13, and ZnCI2 at 5 
mM, and CuC12 at 2 mM. A 
indicates no chloride was 
added. Plates were incubated 
for 48-450 h at 35°C. CaC12 
supported slow growth (B 
and D; note barely visible 
colony size in D) and MnC12 
supported full growth (B and 
D) of cdcl-6 at 35°C. Cells on 
all other media did not grow 
at 35°C (B). 

W h a t  Ro le  M i g h t  M n  2+ and  Ca 2~ 
In terchangeably  A s s u m e ?  

It is beyond the scope of this work to define the inter- 
changeable biochemical function(s) of Mn 2+ and Ca e+, but 
some general conclusions nonetheless can be drawn. The 
delayed onset of arrest by external B A P T A  indicates that 
depletion of intracellular, not extracellular Mn 2+ and Ca 2+ 
is the direct cause of cell-cycle arrest (Figs. 2 A and 3). 
Their shared role(s) is not as a catalytic cofactor, since 
Ca 2÷ is not a strong Lewis acid and has only one physio- 
logical oxidation state (Fratisto da Silva and Williams, 
1990). The principal role of cytoplasmic C a  2+ is as a signal 
transducer. The properties of Mn 2+, considered below, in- 
dicate that it may indeed have the potential to function 
like Ca 2+ as a signal transducer. It must be emphasized 
that assigning a signaling role to C a  2+ o r  Mn 2+ here is 
speculative since changes in cytoplasmic free [Ca 2+] or 
[Mn 2+] during mitotic cell-cycle progression have never 
adequately been demonstrated in yeast. Since there is evi- 
dence that transient increases in cytoplasmic Ca 2+ regulate 
the cell cycles of  other organisms (Hepler, 1992; Lu et al., 
1993; Whitaker, 1995), it is not unreasonable to speculate 
that Ca 2÷ and Mn 2+ may be functioning as signaling mole- 
cules here. On the other hand, their functioning as consti- 
tutive structural cofactors cannot be ruled out. 

Mn 2+ is often inappropriately grouped with softer tran- 
sition cations such as Cu 2+ and Zn 2+, and assumed to bind 
receptors too tightly to function as a signaling ion. The co- 
ordination chemistry of Mn > is in fact much closer to that 
of Ca 2+ than to those of Cu 2+ and Zn 2+ (Osterberg, 1974; 
Lawrence and Sawyer, 1978; Williams, 1982; Basolo and 
Johnson, 1986). Like Ca 2+ and unlike other transition cat- 
ions, Mn 2+ (in the common high-spin configuration) has 
no contribution to receptor binding from either ligand 
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field stabilization or soft acid/base interactions. As such, 
both Ca 2+ and Mn 2÷ bind to oxygen-based, and in Mn2+'s 
case, oxygen- and nitrogen-based, cellular receptors with in- 
termediate affinities, a property key for a transient signal 
transducer. As hard cations, neither Ca 2÷ nor Mn 2÷ binds 
with tenacious affinity to cysteine/histidine-based cellular 
receptors as Zn 2÷ and Cu 2+ do, and therefore are not se- 
questered by these receptors. The ionic radius of Mn 2÷ is 
closer to that of Ca 2+ than those of other cellular divalents 
are (Reed, 1986) and thus it comes as no surprise that Mn 2+ 
induces conformational changes similar to those caused by 
Ca 2+ in calmodulin and troponin C (Kawasaki et al., 1986; 
Sundaralingam, M., personal communication). Mn 2+ has 
in fact been shown to replace Ca 2+ in the activation of 
calmodulin (Wolff et al., 1977; MOrk and Geisler, 1989), in 
cyclic nucleotide metabolism (Keller et al., 1980) in secre- 
tion (Ritchie, 1979; Wilson and Kirshner, 1983; Drapeau 
and Nachshen, 1984), and to a limited extent, even in mus- 
cle contraction (Hoar and Kerrick, 1988; Lategan and 
Brading, 1988). 

A strong electrochemical gradient of Ca 2÷ towards the 
cytoplasm is required for its signaling function. Ca 2+ is ac- 
tively pumped out of the cytoplasm by transporters that 
generally also transport Mn 2+ (but not smaller cations 
such as Mg 2--) (Williams, 1982). Many Ca 2+ channels also 
pass Mn 2÷ (Guerrero and Darszon, 1989; LUckhoff and 
Clapham, 1992). Thus, the distribution (Williams, 1982) 
and mobilization of Mn 2- may well mirror those of Ca 2÷, if 
Mn 2÷ is available. Mn 2÷ is readily available to yeast, being 
present at 100 IxM or more in the rotting plant material on 
which yeast flourishes (Reed, 1986; Clarkson, 1988; Loner- 
agen, 1988). In summary, there is no clear reason why 
Ca 2÷ and Mn 2÷ could not function interchangeably as sig- 
nal transducers in wild yeast. 

Do These Results Contradict Previous Claims of the 
Roles of  Ca z÷ in Yeast Metabolism? 

We found that free Mn 2+ is at least 500-fold more effective 
than free Ca 2÷ in supporting yeast cell-cycle progression. 
This is contrary to a previous conclusion that Ca 2+ exclu- 
sively mediates the cell cycle based on studies using 
E G T A  and A23187 (Iida et al., 1990a). That conclusion 
was weakened by the observations in the same study that 
other metal ions also restored growth in E G T A  and 
A23187. The use of an invasive ionophore may have ef- 
fects besides metal ion depletion. Nonetheless, both 
EGTA-A23187 and BAPTA ultimately resulted in a 2 N 
arrest, indicating some commonality between the two ex- 
periments. 

Several essential yeast genes encode putative or bona 
fide Ca2+-binding proteins (Baum et al., 1986; Davis et al., 
1986; Miyamoto et al., 1987; Levin et al., 1990; Payne and 
Fitzgerald-Hayes, 1993). The Ca e÷ binding potential of 
these proteins is often entirely inferred from homology to 
canonical Cae+-binding motifs. The best characterized 
Ca2+-binding motif is the E-F hand structure described by 
Kretsinger (1975), who later cautioned against its use as 
the sole indicator of Ca 2÷ binding (1987). In some cases, 
Ca 2÷ binding potential was inferred from homology to less 
well-characterized motifs. Even in cases where Ca 2÷ bind- 
ing has been verified in vitro (Davis et al., 1986; Spang et 

al., 1993), the physiological relevance of this binding is not 
ensured in vivo. CMD1 encodes the essential yeast cal- 
modulin (Davis et al., 1986) yet directed mutations that 
completely abolish its ability to bind Ca 2÷ do not affect its 
essential functions (Geiser et al., 1991). Until the function 
of binding of Ca 2+ and Mn 2+ are directly tested, one needs 
to exercise caution in assigning physiological roles solely 
to Ca 2÷ based on the presence of putative and even genu- 
ine Ca2+-binding proteins. 

Some yeast mutants manifest their phenotypes in media 
containing high (N100 raM) concentrations of CaC12 (Ohya 
et al., 1986). It is not clear whether these phenotypes are 
truly Ca 2+ specific. There are no adequate controls for 
these experiments. Most multivalent cations are toxic at 
much lower concentrations. Mg 2÷ is not toxic but is a poor 
control since it differs greatly from other multivalent cat- 
ions. Mg 2+ is not scrupulously excluded from the cyto- 
plasm and has uniquely rigid coordination requirements 
because of its small size (Fratisto da Silva and Williams, 
1991). Even if the phenotype is truly Ca 2÷ specific, one still 
needs to distinguish between a mutational loss of a physio- 
logical Ca 2÷ function and a defect in coping with Ca 2+ tox- 
icity (Kretsinger, 1990). 

There are also mutants whose ability to grow is restored 
by the addition of hundreds of millimolar CaC12 (Ohya et 
al., 1984; Levin and Barlett-Heubusch, 1992). Given our 
results on cdcl ts (Fig. 10), it would be of interest to test 
whether MnC12 can also rescue these mutants. Mn 2÷ res- 
cue at low millimolar concentration may be a more spe- 
cific indicator of defect in Mn2+/Ca2+-binding protein than 
rescue by much higher concentrations of Ca 2+, which may 
have general ionic or osmotic effects. We are currently 
testing Mn2-'s ability to rescue these mutants. 

An increase in Ca 2+ accumulation occurs in response to 
mating pheromone (Iida et al., 1990b). Since most Ca 2+ 
transport systems also pass Mn 2+ (Williams, 1982; Guerrero 
and Darszon, 1989), it is likely that Mn 2+ accumulation 
likewise increases, though only Ca 2+ was tested. Recently 
mid1 mutants have been isolated, which are hyper-sensi- 
tive to Ca 2+ depletion during the mating response (Iida et 
al., 1994). Interestingly, it was found that Mn 2- also effec- 
tively restored viability here, but the authors discounted 
its effects since Mn 2÷ also prevented the normal morpho- 
genic response to mating pheromone (shmooing). Our re- 
suits may warrant a reinterpretation of this ability of Mn 2+ 
to substitute for Ca 2÷ in rescuing MID1. 

Conclusion 

We found that free Mn 2+ is 500- to 1,000-fold more effec- 
tive than free Ca 2÷ in supporting bud and nuclear develop- 
ment, and are thus led to conclude that Mn 2+ may indeed 
act as a physiological mediator of these two processes in 
yeast. To conclude that Ca 2+ is the sole physiological agent 
would have been based on an a priori bias. It does not 
seem plausible that if yeast evolved to use Ca 2+ exclusively 
an alternative ion would, by chance, work this much more 
efficiently. 

We have yet to define the biochemical targets of these 
two ions. Nonetheless we hope this and other works will 
stimulate further investigation and encourage more rigor- 
ous standards for assigning physiological roles to Ca ~+, 
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particularly in the case of plants and microbes that gener- 
ally require at most trace amounts of Ca 2+ and other metal 
ions (Burstr6m, 1968; Youatt, 1993) and, at least in the 
former case, contain substantial cellular concentrations of 
Mn 2÷ (Reed, 1986; Clarkson, 1988; Loneragen, 1988). 
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