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Phytochemicals are natural small-molecule compounds derived from plants that have
attracted attention for their anticancer activities. Some phytochemicals have been
developed as first-line anticancer drugs, such as paclitaxel and vincristine. In addition,
several phytochemicals show good tumor suppression functions in various cancer types.
Bladder cancer is a malignant tumor of the urinary system. To date, few specific
phytochemicals have been used for bladder cancer therapy, although many have been
studied in bladder cancer cells and mouse models. Therefore, it is important to collate and
summarize the available information on the role of phytochemicals in the prevention and
treatment of bladder cancer. In this review, we summarize the effects of several
phytochemicals including flavonoids, steroids, nitrogen compounds, and aromatic
substances with anticancer properties and classify the mechanism of action of
phytochemicals in bladder cancer. This review will contribute to facilitating the
development of new anticancer drugs and strategies for the treatment of bladder
cancer using phytochemicals.
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INTRODUCTION

Cancer has multiple causes, such as genetic mutation and cellular dysregulation. The disease is
characterized by uncontrolled cell growth, abnormal differentiation, proliferation, invasion, and
metastasis (1). Several plant compounds inhibit cancer cell phenotypes. Based on this anticancer
activity, several phytochemicals have been developed as FDA-approved drugs for cancer therapy
(2, 3). For example, paclitaxel has been carried out the clinical trial and been a first-line treatment
for lung, ovarian, and breast cancer (3). Paclitaxel promotes tubulin polymerization and assembly,
and prevents depolymerization, thereby stabilizing tubulin, inhibiting cancer cell mitosis, and
preventing cell apoptosis to effectively prevent cancer cell proliferation and exhibit anticancer
activity (3). Paclitaxel has also entered the clinical trial stage III for bladder cancer with other
chemotherapeutic drugs together - paclitaxel/gemcitabine/cisplatin (PGC): 142 patients were
involved into this clinical trial (74 observation and 68 PGC treatment). This study indicated that
PGC improves overall survival in high risk invasive bladder cancer (4). However paclitaxel alone has
not been carried out clinical trial study on bladder cancer. Another phytochemical-derived
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antitumor drug, vincristine, is used to treat acute lymphoblastic
leukemia and is effective in treating other acute leukemia,
lymphatic sarcoma, reticular cell sarcoma, and breast cancer. It
exerts these effects via suppression of microtubule formation in
mitotic spindles, resulting in cell cycle arrest at the metaphase
stage (5, 6).

Phytochemicals can be used for cancer treatment and
prevention. Furthermore, these compounds can be used to
treat patients whose cancer has recurred and can contribute to
preventing carcinogenesis in those who do not have cancer
during their lifetime. Resveratrol (3,5,4’-trihydroxy-trans-
stilbene), a non-flavonoid polyphenol found in several food
plants including grapes, peanuts, soy beans, berries, and
pomegranates, possesses cancer prevention benefits via its anti-
proliferative and anti-oxidative activities (7). Because
phytochemicals are abundant in food sources and have low
side effects, an increasing number have been developed as
health supplements, including resveratrol and curcumin (8).

Bladder cancer is a common cancer of the urinary system.
Because muscle invasive bladder cancer (MIBC) has a high
mortality rate, and non-muscle invasive bladder cancer
(NMIBC) has a high recurrence rate, both cancer types cause
considerable physical and physiological pain to patients (9).
Although phytochemicals have been studied for the treatment
and prevention of bladder cancer, a systematic summary of their
uses is lacking. Further, few drugs based on phytochemicals and
their derivatives have been developed. Therefore, a
comprehensive summary of previous studies on the activity of
phytochemicals against bladder cancer is important for focusing
on research priorities, achieving novel breakthroughs, and
developing new anticancer drugs. In this review, two decades
of research on phytochemical-based treatment of bladder cancer
are systematically summarized.
FLAVONOIDS

Flavonoids are natural compounds that have a 2-phenylfluorone
structure with a ketone carbonyl group and a basic oxygen atom.
These compounds form salts in the presence of strong acids and
the resulting hydroxyl derivatives are usually yellow. Thus, these
compounds are also called flavins or flavones (10). In plants,
flavonoids usually combine with sugars to form glycosides with a
small portion existing in a free state (aglycone). A considerable
number of plants contain flavonoids, which play important roles
in growth, development, flowering, fruit development, and
disease prevention. Recently, the anticancer activities of
flavonoids have been reported (11).

Flavone
Baicalein is a flavone extracted from Scutellaria altissima L or S.
baicalensis Georgi (12). Previous studies showed that baicalin
suppresses bladder cancer T24 cell proliferation by inhibiting the
cell cycle at the G1/S phase (13). Moreover, baicalein increases
apoptosis through a mitochondrial- and caspase-dependent
pathway in T24 cells. Indeed, baicalin activates caspase 9 and
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caspase 3, decreases B-cell lymphoma-2 (Bcl-2) expression, and
elevates Bcl-2 associated X protein (Bax) expression, thereby
causing apoptosis of T24 cells (14). Chinese scholars reported
that 40~80 mmol/L baicalein effectively kills bladder cancer cells
by suppressing cell proliferation via downregulating cyclin B1
expression and decreasing CDC2 phosphorylation at Thr161 in
bladder cancer T24 and HT1376 cells (15). In addition, baicalin
inhibits bladder cancer cell invasion by attenuating matrix
metallopeptidases (MMPs) levels including MMP-9 and MMP-
2 in bladder carcinoma 5637 cells (16).

Apigenin, a flavonoid found in celery, is widely recognized for
its anticancer activity. Our previous study demonstrated that
apigenin suppresses cancer cell invasion by downregulating
urokinase-type plasminogen activator receptor (uPAR)
expression in bladder cancer T24 cells. In particular, apigenin
showed substantial anticancer activity through the suppression
of high levels of interleukin (IL)-1b-induced uPAR expression
(17). These effects are mediated via the inhibition of mitogen-
activated protein kinase (MAPK)-induced nuclear factor (NF)-
kB and activator protein (AP)-1 activity, which are essential
transcription factors for uPAR (17). Finally, apigenin suppresses
T24 bladder cancer cell proliferation by arresting the cell cycle in
the G2/M phase (18, 19).

Luteolin, widely found in nature, was originally isolated from
the leaves, stems, and branches of plants of the Resedaceae
family. Recently, luteolin was reported to inhibit bladder
cancer cell viability and induce G2/M cell cycle arrest via
upregulation of p21/WAF1 and reduction of phosphorylated
S6 (p-S6), a key downstream molecule in the mechanistic target
of rapamycin (mTOR) signaling pathway. Furthermore, luteolin
also has an antioxidant effect that reduces intracellular reactive
oxygen species (ROS) by elevating thioredoxin 1. Orally
administered luteolin showed antitumor activity by markedly
suppressing tumor growth in a xenograft mouse model by
upregulating p21/WAF1 and repressing mTOR signaling (20).

Nobiletin, a methoxylated flavone extracted from citrus fruit
peel, has anticancer activities. For example, nobiletin effectively
inhibits BFTC-905 bladder cancer cell growth, increases DNA
fragmentation, and expedites apoptosis. Additionally, this
compound triggers mitochondrial dysfunction, leading to
cytochrome C release into the cytosol, which in turn,
upregulates the pro-apoptotic proteins Bcl-2 associated agonist
of cell death (Bad), Bax, caspase 3, and caspase 9. These effects of
nobiletin also downregulate the anti-apoptotic proteins Bcl-2
and myeloid cell leukemia sequence (MCL)-1 by affecting the
phosphoinositide 3-kinase (PI3K)/AKT/mTOR axis and PERK/
eukaryotic translation initiation factor 2a kinase (elF2a)/
activating transcription factor 4 (ATF4)/C/EBP homologous
protein axis (21).

Tangeretin is among the most abundant flavones in citrus
peels, and its anticancer properties have been described, such as
its inhibition of bladder carcinoma BFTC-905 cell viability
through apoptosis. Besides, tangeretin induces calcium
homeostasis in the mitochondria, activates caspase 3 and
caspase-9, and causes cytochrome C release, which in turn,
enhances apoptosis (22).
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3′-Hydroxyflavone
3-Hydroxyflavone contains a 3-hydroxyl group and has an
excellent resonance structure and chelating ability, as well as
anti-inflammatory, antitumor, and antiviral properties (23).
Casticin, a 3′-hydroxyflavone isolated from Vitex rotundifolia,
induces DNA damage and inhibits TSGH-8301 bladder cancer
cell viability (24). Additionally, casticin decreases ataxia
telangiectasia mutated (ATM) andataxia telangiectasia and
Rad3 related (ATR) phosphorylation and downregulates
mediator of DNA damage checkpoint 1 (MDC1) and O-6-
methylguanine-DNA methyltransferase (MGMT). Moreover,
casticin increases p-p53, H2A.X variant histone, and poly-ADP
ribose polymerase (PARP) levels, and affects phospho-p53
translocation from the cytoplasm to the nucleus in bladder
cancer cells (24). This compound also increases intracellular
ROS production, activates the caspase cascade, and disrupts the
mitochondrial membrane potential (DYm). X-linked inhibitor of
apoptosis protein–associated factor 1 and transcriptionally active
p73 are upregulated by casticin treatment in T24 bladder cancer
cells (25).

The 3′-hydroxy-flavone kaempferol, widely found in various
fruits, vegetables, and beverages, and its anticancer activities have
been reported in several studies as follows. Dang et al. (26)
showed that kaempferol inhibits bladder cancer proliferation and
invasion by downregulating the c-Met/p38 signaling pathway in
bladder cancer 5637, T24, 253J, and TCCSUP cells. Wu et al. (27)
reported the anti-oxidative and anticancer activities of
kaempferol in bladder cancer. Furthermore, kaempferol
attenuates ROS-induced hemolysis and decreases cell
proliferation by suppressing p-AKT, Bcl lymphoma extra-large
(Bcl-xL), cyclin-dependent kinase 4 (CDK4), cyclin D1, and
MCL-1. In addition, it enhances p21/WAF1, p38, p53, p-ATM,
p-BRCA1 DNA repair-associated, Bax, and BH3 interacting
domain death agonist (Bid) expression, leading to S phase
arrest and the induction of apoptosis of EJ bladder cancer
cells (28).

Fisetin, a flavonoid derived from Rhus succedanea L., induces
apoptosis of human bladder cancer by increasing the ratio
between pro-apoptotic and anti-apoptotic proteins by
upregulating p53 and downregulating NF-kB activity in T24
and EJ bladder cancer cells. Additionally, fisetin elevates p53 and
p21/WAF1 protein levels and decreases CDK2, CDK4, cyclin A,
and cyclin D1 levels, thereby leading to G0/G1 cell cycle arrest.
Moreover, fisetin increases Bcl antagonist/killer (Bak) and Bax
expression and decreases Bcl-2 and Bcl-xL expression, which in
turn triggers apoptosis (28).

Morinis a pale-yellow pigment extracted from the bark of
plants of the mulberry family such as the yellow mulberry,
mulberry orange tree, and many Chinese herbs. Morin has
been shown to exhibit multiple anticancer activities such as
inhibition of bladder cancer cell proliferation and invasion
(29). Morin decreases CDK2, CDK4, cyclin D1, and cyclin E
viamodulation of the p21/WAF1 pathway, suppressing c-Jun N-
terminal kinase (JNK) and AKT phosphorylation, and
preventing MMP-9 expression by repressing NF-kB, SP-1, and
AP-1 in EJ bladder cancer cells (29).
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Quercetin is a flavonol that is widely distributed in the plant
kingdom and exhibits various biological activities. Several studies
have shown that quercetin inhibits cell survival and induces
apoptosis of bladder cancer cell lines: This compound also
upregulates tumor suppressors by inhibiting CDK inhibitor 2A
(CDKN2A) and Ras association domain family member 1A
(RASSF1A) gene methylation (30, 31). Quercetin inhibits
cancer cell growth by arresting the cell cycle at the G0/G1
phase and decreases the protein expression of mutant p53 and
survivin in EJ, J82, and T24 bladder cancer cells (30).

Isoflavone
Isoflavones are phenolic compounds formed by cyclization
following the extension of the cinnamyl coenzyme A side
chain during phenylalanine metabolism in plants (32). The
isoflavone genistein mainly exists in legumes such as the locust
horn and mountain bean root (33). Genistein inhibits bladder
cancer cells proliferation by arresting the cell cycle at the G2/M
phase via suppression of cyclin A and cyclin B1, and
upregulation of CDKN1A (p21/WAF1). Moreover, genistein
also inactivates the PI3K/AKT signaling pathway by increasing
ROS accumulation in T24 bladder cancer cells (34). Interestingly,
g en i s t e in a l so sens i t i ze s b l adder cance r ce l l s to
hydroxycamptothecin treatment in vitro and in vivo through
ATM/NF-kB/inhibitor of NF-kB kinase (IKK)-mediated
apoptosis (35). Another representative isoflavone is puerarin,
which is isolated from Radix puerariae. Ye et al. (36) reported
that puerarin inhibits proliferation and triggers apoptosis of T24
bladder cancer cells. The proposed underlying mechanism is the
inhibition of the sirtuin 1 (SIRT1)/p53 signaling pathway (36).
Puerarin also inhibits bladder cancer cell viability through cell
cycle arrest at the G0/G1 phase by a mechanism that involves
downregulation of mTOR and p70S6K phosphorylation, without
affecting their protein levels (37). Moreover, puerarin
upregulates the microRNA miR-16, which subsequently
downregulates cyclooxygenase (COX)-2 expression via NF-kB
signaling pathway inactivation, thereby decreasing the viability
of T24 bladder cancer cells (38).

Flavonol
Catechins are typical flavanols and (-)-epigallocatechin-3-gallate
(EGCG), a bioactive compound extracted from green tea, is
among the most widely studied anticancer catechin compounds.
It has been extensively studied for its beneficial effects on various
cancers, including bladder cancer (39). EGCG inhibits cancer cell
proliferation and deactivates DNA methyltransferase activity of
T24 bladder cancer cells (40). In SW780 bladder carcinoma cells,
EGCG also showed anticancer activity by effectively inhibiting
their proliferation and migration by suppressing NF-kB and
downregulating MMP-9 (41). Lee et al. (41) studied the effects of
EGCG on the transcriptome of BFTC-905 bladder cancer cells
and found that it substantially changed the transcription of 108
genes. These genes are mainly involved in inflammatory
responses, oxidation-reduction metabolism, and nicotinamide
adenine dinucleotide biogenesis. The genes upregulated by
EGCG include general transcription factor IIH subunit 2
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xia et al. Phytochemicals Against Bladder Cancer
family member C (GTF2H2C), proline rich transmembrane
protein 2 (PRRT2), RAS p21 protein activator 4 (RASA4),
transmembrane protein 92 (TMEM92), and RANBP2 like and
GRIP domain containing 5 (RGPD5), whereas those
downregulated include kynurenine 3-monooxygenase (KMO),
NADH: ubiquinone oxidoreductase core subunit S1 (NDUFS1),
gastric inhibitory polypeptide receptor (GIPR), and thioredoxin
domain containing 2 (TXNDC2). Furthermore, many miRNA-
mRNA interactions that mediate the response to EGCG
treatment have been identified, including miR-22-3p-protein
phosphatase 1K (miR-22-3p-PPM1K), miR-31-5p-tensin 1
(miR-31-5p-TNS1), and miR-185-3p-arrestin beta 1 (miR-185-
3p-ARRB1) (42). Recently, a double-blind, randomized, clinical
trial was performed in presurgical bladder cancer patients. The
results showed EGCG modulated many cell proliferation related
molecules e.g. PCNA, MMP2, VEGF, IGF-1, IGFBP-3 in bladder
tumor tissue, which indicated EGCG would be an effective and
safe cancer preventive agent for bladder cancer (43)

Silibinin is a dihydroflavonol with anticancer activity that
inhibits transforming growth factor (TGF)−b1−induced cancer
cell invasion by attenuating the epithelial-to-mesenchymal
transition (EMT). TGF−b1−induced COX−2 expression is
inhibited by silibinin (44). In addition, silibinin sensitizes bladder
cancer cells to radiation treatment and photodynamic therapy
(PDT) (45, 46). In vitro, silibinin sensitizes murine invasive cells
to radiotherapy by inhibiting radiotherapy-activated NF-kB and
PI3K signaling. In vivo, silibinin enhances responses to radiotherapy
and overall survival rate in patients with invasive bladder tumors
(45). Silibinin also enhances the anticancer effect of PDT, which is a
photosensitization-based anticancer therapeutic strategy for
malignant cells. This indicates that silibinin has potential as an
adjuvant for PDT based on its activity against T24 human bladder
cancer cells (46). In addition, silibinin markedly attenuates bladder
cancer tumor chemoresistance through NF-kB-dependent and
-independent mechanisms in T24 and J82 bladder cancer cells (47).

Flavanone
Flavanones are dihydroflavones found in the peels of citrus fruits
such as lemon and pomelo fruits. Naringenin is an example an
active flavanone found in citrus fruit extracts, and is known for
its pharmacological utility (48, 49). Although the anticancer
activities of naringenin have been widely reported, recent
experimental evidence indicates that naringenin inhibits
TSGH-8301 bladder cancer cell migration via deactivation of
AKT signaling and MMP-2 downregulation (50).

Naringin dose-dependently inhibits the proliferation of 5637
bladder cancer cells by arresting the cell cycle in the G1 phase.
Moreover, naringin strongly induces p21/WAF1 expression and
decreases cyclins (cyclin D1 and cyclin E), and CDKs (CDK4 and
CDK6) expression. Furthermore, naringin activates the MAPK
signal transduction pathways by elevating the phosphorylation of
extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38
MAPK, and JNK in 5637 bladder cancer cells (51).

Flavonoid Glycosides
Baicalein, a flavonoid glycoside, has impressive anticancer
activities (52). Baicalein induces apoptosis by activating
Frontiers in Oncology | www.frontiersin.org 4
apoptosis-related genes, including Bcl2, Bcl-xL, and XIAP, with
effects on both their mRNA and protein levels in T24 and 253J
bladder cancer cells (53). Other studies have shown that baicalein
suppresses proliferation and migration while enhancing
apoptosis. Further, baicalein strongly downregulates miR-106,
which targets p21/WAF1 to inhibit JNK, MAPK kinase (MEK),
and ERK in T24 bladder cancer cells (54). Baicalein also
promotes apoptosis via an ROS-dependent pathway in human
bladder cancer 5637 cells. Finally, baicalein downregulates
several anti-apoptotic proteins such as cellular inhibitor of
apoptosis protein (cIAP)-1 and cIAP-2, and activates caspase 9
and caspase 3 (55).

Orientin is a polyhydroxy-flavanone found in Lophatherum
gracile and Trollius chinensis Bunge (56). This compound
inhibits cancer cell proliferation, reduces cell viability, causes
cell cycle arrest, and represses the expression of inflammatory
mediators in T24 bladder cancer cells. In addition, orientin
decreases the expression of NF-kB components and blocks the
Hedgehog signaling pathway (57).

Biflavone
Ginkgetin, amentoflavone, sotetsuflavone, and hinokiflavone are
representative biflavones. Ginkgetin, one of the best known
biflavones, has been used to treat breast (58), lung (59), and
prostate (60) cancers; however, its effects on bladder cancer have
not been reported. Sotetsuflavone and hinokiflavone suppress
lung cancer, but not bladder cancer. Amentoflavone markedly
inhibits TSGH-8301 bladder cancer cell activity via the induction
of mitochondria-dependent intrinsic apoptosis and Fas cell
surface death receptor (FAS)/FAS ligand (FASL)-dependent
extrinsic apoptosis. Further, amentoflavone reduces the
expression of anti-apoptotic proteins including MCL-1 and
cellular FLICE-like inhibitory protein, thereby enhancing
apoptosis (61).
STEROIDS

Phytosterols
Phytosterols are plant sterols and mainly include those found in
grain, rapeseed oil, beans, and rapeseed sterols, and
corresponding alkanols. Phytosterols are active plant
constituents that have numerous human health benefits (62).
Studies have found that phytosterols reduce blood cholesterol,
prevent and treat prostatic hypertrophy, inhibit tissue
hyperplasia, and regulate immunity (62, 63). Recently, the
anticancer activities of phytosterols have been described (64, 65).

Dioscin, a plant-based steroid, mainly comes from the roots
of the ginger plant (66). This compound induces cancer cell
apoptosis by demethylation of death-associated protein kinase 1
(DAPK-1) and Ras-association domain family 1a (RASSF-1a)
genes via antioxidant activity in T24 and 5637 bladder cancer
cells. In many carcinomas, DNA is often methylated at CpG rich
regions (66), and many tumor suppressor genes are often
hypermethylated including RASSF-1a and DAPK-1, whichhave
been identified in studies conducted in some western countries.
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Dioscin regulates RASSF-1a and DAPK-1 methylation, which in
turn elevates their expression. Moreover, dioscin specifically
inhibits bladder tumor cells, but not normal bladder epithelial
cells (66).

Solasonine is a steroidal glycoside alkaloid isolated from black
nightshade, and its anticancer activity has not been widely
studied because of its low water solubility. Miranda et al. (67)
developed a nanotechnology-based strategy using poly (D, L-
lactide) nanoparticles to improve the performance of solasonine
for bladder cancer therapy. Interestingly, this study showed high
nanoparticle uptake by RT4 bladder and MDA-MB-231 breast
cancer cells, but not by normal HaCaT keratinocytes cells,
suggesting targeted cancer cell uptake (67).

In addition to bladder and breast cancers, solasonine inhibits
hepatocellular carcinoma cells via the non-apoptotic cell death
pathway, ferroptosis. Solasonine suppresses glutathione
synthetase (GSS) and glutathione peroxidase 4 (GPX4) (68).
GSS, the key enzyme in the synthesis of the oxidation inhibitor
GSH, suppresses ferroptosis by regulating the intracellular
peroxidation environment. GPX4 prevents ferroptosis by
converting hydroperoxide lipids into nontoxic lipid
alcohols (68).

Monoterpenes
Monoterpenes are terpenoids usually derived from the
polymerization of two isoprene molecules, and their oxygen-
containing and saturated derivatives (69). Monoterpenes are
divided into the following four categories according to the
basic carbon skeleton of the molecule: acyclic monoterpenes,
single-ring monoterpenes, double-ring monoterpenes, and
tricyclic monoterpenes. Monoterpenes are important materials
for the pharmaceutical, food, and cosmetic industries (69).
Limonene, a monocyclic monoterpene, is found in citrus fruits,
especially the peels. Recently, limonene was found to strongly
suppress the viability of human T24 bladder cancer cells [half-
maximal inhibitory concentration (IC50)= 9 mM] (70). In
addition, it caused chromatin concentration and nuclear
fragmentation, thereby inducing bladder cancer cell apoptosis
by the downregulation of Bcl-2 expression and upregulation of
Bax and caspase-3 expression. Moreover, limonene also induces
cell cycle arrest in the G2/M phase and inhibits bladder cancer
cell migration and invasion (70). The terpenoid linalool exhibits
strong anticancer activity against various carcinoma cells,
particularly cervical (IC50 = 0.37 mg/mL), stomach (IC50 = 14.1
mg/mL), skin (IC50 = 14.9 mg/mL), lung (IC50 = 21.5 mg/mL), and
bone (IC50 = 21.7 mg/mL) carcinoma (71).

Sesquiterpenes
Sesquiterpenes are natural terpenes that contain three isoprene
units and have various skeletal structures, such as chains and
rings. Sesquiterpenes are mostly liquid and are mainly found in
volatile plant oils. Curcumol, a natural sesquiterpene with
anticancer activity, was originally isolated from Curcuma
rhizomes (72). Zhou et al. (73) reported that curcumol inhibits
EJ and T24 bladder cancer cell proliferation and induces
apoptosis in a dose-dependent manner by decreasing the
accumulation of enhancer of zeste homolog 2 (EZH2).
Frontiers in Oncology | www.frontiersin.org 5
Atractylenolide I, an active sesquiterpene component
extracted from Rhizoma atractylodis, inhibits T24 bladder
cancer cell proliferation by arresting the cell cycle in the G2/M
phase via downregulation of cell cycle-related proteins such as
CDK1, cell division cycle 25C (CDC25c), and cyclin B1.
Moreover, atractylenolide I promotes apoptosis via activation
of the mitochondria-dependent apoptotic pathway and
inhibition of the PI3K/AKT pathway in both T24 cells and
xenografted tumors (74).

Parthenolide, a sesquiterpene lactone found in the herb,
Brachynoma, has antitumor activity. Further, parthenolide
substantially decreases bladder cancer cell viability via G1 phase
cell cycle arrest by modulation of CDK2 phosphorylation. It also
triggers apoptosis by enhancing Bcl-2 degradation and stabilizing
PARP in 5637 bladder cancer cells (75).

A sesquiterpene lactone called costunolide exhibits anticancer
properties in numerous cancers, including of the bladder.
Costunolide dose-dependently inhibits cell viability, induces
apoptosis, downregulates Bcl-2 and survivin expression,
activates caspase 3, and elevates Bax expression in T24 bladder
cancer cells (76).

Diterpenes
Yuanhuacine, an active diterpene from Daphne genkwa, has a
wide range of antitumor activities. Zhang et al. (77) discovered
that yuanhuacine inhibits T24T bladder cancer cell proliferation
by arresting the cell cycle in the G2/M phase in an SP1-
dependent manner. Yuanhuacine upregulates p21/WAF1
expression through a p38 pathway, but does not affect p53 or
activate p53 protein levels.

Triptolide is a diterpenoid epoxide compound extracted from
the roots, leaves, flowers, and fruits of Tripterygium wilfordii,
with widely reported anticancer properties (78). Triptolide
inhibits T24 bladder cancer cell proliferation with an IC50 of
68 ± 5 nmol/L after 72 h. Further, 25, 50, 100, and 250 nmol/L
triptolide induced 27% ± 4%, 38% ± 5%, 50% ± 9%, and 65% ±
8% apoptosis, respectively. In this mechanism, triptolide
decreases AKT and Forkhead box O3A phosphorylation and
increases Bax, Bim, and cleaved caspase 3 levels (79). Triptolide
also has excellent effects in drug cotherapy for bladder cancer,
and in combination with gemcitabine, it is more effective against
bladder cancer than gemcitabine alone. Further, it induces cell
cycle arrest in the G1 phase through downregulation of cyclin
A1, cyclin A2, CDK4, and CDK6. Moreover, apoptosis-related
proteins such as Bcl-xL and caspase 8 are also elevated following
triptolide and gemcitabine cotreatment (80).

Triptolide can also be used in combination with
hydroxycamptothecin to enhance the anticancer effect of
chemotherapeutic drugs on bladder cancer cells. This effect is
achieved by increasing apoptosis through the upregulation of
apoptosis-related proteins (Bcl-xL and Caspase 8) and inhibition
of cyclin D1, CDK4, and CDK6 expression, which arrested the
cell cycle of EJ and UMUC3 bladder cancer cells in the G1/S
phase (81). In addition, some diterpenes with antitumor activity,
such as jolkinolide B, cafestol, and oridonin, exhibited excellent
efficacy against prostate, esophageal, and lung cancer, but have
not been studied in bladder cancer (82–84).
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Triterpenes
Triterpenes are composed of several isoprenoids joined end to
end by the removal of the hydroxyl group, and some of these
compounds have antitumor activity. Ursolic acid, a triterpene
presents in Prunella vulgaris L and Ilex rotunda Thunb, represses
T24 bladder cancer cell growth by regulating anti-apoptotic NF-
kB-p65 and AKT signaling, and suppressing IkBa, NF-kB-p65,
and AKT phosphorylation. In addition, ursolic acid upregulates
pro-apoptotic proteins such as caspase 3, indicating that it could
serve as a candidate for the treatment and prevention of bladder
cancer (85). Pachymic acid is an antitumor lanostane-type
triterpenoid extracted from Poria cocos. Importantly, pachymic
acid suppresses the growth of EJ bladder cancer cells by
increasing the sub-G1 DNA ratio, with the accumulation of
apoptotic bodies and promotion of DNA fragmentation.
Molecularly, pachymic acid activates caspase3, caspase8, and
caspase9, which in turn, dose-dependently accelerate apoptosis.
Furthermore, pachymic acid elevates ROS and decreases the
DYm (86). Nimbolide, an active triterpene derived from
Azadirachta indica, reportedly has several antitumor activities
against bladder cancer. Nimbolide strongly inhibits bladder
cancer cell proliferation with an IC50 of 3.0 mM. In bladder
cancer cells treated with nimbolide, the G2/M phase cell cycle
was arrested via the checkpoint kinase 2 (Chk2)/Cdc25C and
Chk2/p21WAF1-related cyclin B1/Wee1 pathway. Moreover,
nimbolide elevates JNK phosphorylation while reducing p38
and AKT phosphorylation in EJ and 5637 bladder cancer
cells (87).

Iridoids
Iridoids are plant-derived monoterpenes, which usually form
iridoid glycosides with sugars. Catalpol is an active iridoid
glucoside that is abundantly present in the traditional Chinese
medicinal plant Rehmannia glutinosa. Its anticancer activity was
recently described by Jin et al. (88) who found that it strongly
inhibited the proliferation, migration, and invasion of T24
bladder cancer cells. Moreover, many proteins involved in
apoptosis are upregulated by catalpol such as active caspase 3
and PARP. Catalpol also promotes apoptosis by inducing pro-
apoptotic protein expression and suppressing Bcl-2 protein
expression by modulating the PI3K/AKT pathway (88).
Genipin, a natural iridoid derived from Gardenia jasminoides
fruit, inhibits the growth of T24 and 5637 bladder cancer cell
lines in vitro and in vivo (89). Genipin decreases clonogenic
growth and cell viability in a dose-dependent manner, arrests the
cell cycle at the G0/G1 phase, and increases the percentage of
apoptotic cells, leading to loss of the DYm, promotion
of cytochrome C release into the cytosol, and suppression of
PI3K and AKT phosphorylation (90).
ALKALOIDS

Alkaloids are nitrogen-containing organic compounds found in
nature, mainly in various plants and some animals. Most
alkaloids have a complex ring structure with nitrogen located
Frontiers in Oncology | www.frontiersin.org 6
in the ring structure, which confers important biological activity.
Alkaloids are also important bioactive ingredients of many
traditional Chinese herbs. Many alkaloids screened from herbs
or medicinal plants have shown anticancer and anti-proliferative
effects in vivo and in vitro. Some have already been successfully
developed as antitumor drugs, such as vinblastine, vinorelbine,
vincristine, and vindesine (91). Goonewardene carried out a
phase I/II clinical study using vincristine combined with
methotrexate and cisplatin. This clinical trial result showed
that vincristine combined chemotherapy significantly
prolonged the survival period of invasive bladder cancer
patients (92). The neoadjuvant cisplatin, methotrexate, and
vinblastine (CMV) chemotherapy in muscle-invasive bladder
cancer patients was studied in a randomized phase III trial.
CMV treatment showed a statistically significant 16% reduction
in the risk of death, indicating CMV chemotherapy improves
outcome as first-line adjunctive treatment for invasive bladder
cancer (93).

The alkaloid oxymatrine has been extracted from the
dried roots, plants, and fruits of the leguminous matrine plant
using organic solvents such as ethanol. The anti-bladder cancer
activity of oxymatrine was recently discovered: Oxymatrine
dose-dependently suppresses the proliferation of bladder
cancer cells, arrests the cell cycle, and triggers apoptosis
through Bax and caspase 3 upregulation and downregulation
of p53, Bcl-2, and survivin expression in T24 bladder cancer
cells (94).

Dauricine is a diphenyl isoquinoline alkaloid that exists in the
rhizome of the Asiatic Moonseed. Dauricine inhibits the
proliferation of urinary system cancer cells, including EJ
bladder cancer cells and PC-3M prostate cancer cells. The
minimum effective concentration was 3.81–5.15 g/mL, and the
anticancer effect was concentration-dependent (95).

Capsaicin is an alkaloid found in chili peppers. Capsaicin
markedly inhibited cell migration through the suppression of
SIRT1 deacetylase via proteasome-mediated protein degradation,
thereby elevating b-catenin acetylation and decreasing MMP-9
and MMP-2 activation (96) in T24 bladder cancer cells.

Other studies have shown that capsaicin inhibits bladder
cancer cell migration and suppresses cell growth by enhancing
apoptosis and inducing cell cycle arrest of TSGH-8301 and T24
bladder cancer cells. Capsaicin represses ERK, FAK, and paxillin
phosphorylation, thereby inhibiting cancer cell migration.
Moreover, capsaicin reduces the expression of tumor-
associated NADH oxidase and SIRT1, thereby inhibiting
proliferation, triggering apoptosis, and delaying cell cycle
progression (97).

Piperlongumine, a naturally occurring alkaloid extracted from
the longer pepper (Piper longum), was recently discovered to have
selective anticancer activity. Piperlongumine inhibits bladder
cancer cell proliferation, blocking the cell cycle at the G2/M
phase and suppressing cell migration. Additionally,
piperlongumine drastically increases ROS levels, which are
closely related to the inhibition of cell cycle progression of cancer
cells. In in vivo experiments, piperlongumine inhibited cancer cells
via downregulation of Slug, N-cadherin, ZEB1, and b-catenin (98).
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ORGANIC ACIDS AND ESTERS

Natural organic acids isolated from plants or agricultural
byproducts have exhibited certain physiological activities.
These acids are widely distributed in the leaves, roots, and
fruits of Chinese herbs and fruits, such as black plums,
schisandra chinensis and raspberries. Ellagic acid is a
polyphenolic organic acid found in green tea, nuts, grapes,
pomegranates, and berries, and shows antitumor activity in
four different bladder cancer cell lines (UMUC3, 5637, T24,
and HT1376). It exerts anti-proliferative activities and enhances
the anticancer activity of mitomycin C in bladder cancer therapy.
Ellagic acid also suppresses cancer cell invasion and represses
chemotaxis, specifically via reduced vascular endothelial growth
factor (VEGF)-A-induced VEGF receptor (VEGFR)-2
expression. More interestingly, ellagic acid reduces the
expression of programmed cell death 1 ligand 1, an important
protein in tumor cell immune escape. In addition, an in vivo
study showed the antitumor activity of ellagic acid in human
bladder cancer xenografts (99). In another study using a TSGH-
8301 bladder cancer cell model, the antitumor activity of ellagic
acid was reported to inhibit cell growth, leading to morphological
changes, arrest of the cell cycle at the G0/G1 checkpoint, and
triggering of apoptosis. Molecularly, ellagic acid enhances Ca2+

levels, elevates ROS, decreases the DYm, and activates caspases
including caspase 9 and caspase 3 (100).

Gallic acid is a polyphenol organic acid found in various
plants such as rhubarb, dogwood, and eucalyptus. Gallic acid
concentration-dependently inhibited T24 bladder cell viability,
with IC50 values of 21.73, 18.62, and 11.59 µg/mL following
treatment for 24, 48, and 72 h, respectively. In addition, gallic
acid induces T24 cell apoptosis associated with ROS
accumulation. Gallic acid-induced apoptosis involves DYm
depolarization and the caspase 3, Bax, p53, and cytoplasmic
cytochrome C levels increase, whereas PI3K, AKT, IkBa, IKKa,
and NF-kB p65 phosphorylation decrease. These results indicate
that gallic acid is a potential anticancer drug candidate that
inhibits cell proliferation, promotes apoptosis, and suppresses
the PI3K/AKT/NF-kB signaling axis (101). In addition, the
antitumor mechanism of action of gallic acid has been shown
to be mediated via the MAPK and PI3K/AKT pathways. Finally,
gallic acid inhibits fatty acid synthase and increases estrogen
receptor (ER) alpha in TSGH-8301 bladder cancer cells (102).
AROMATIC PHYTOCHEMICALS

Anthrone and Its Derivatives
Gambogic acid, extracted from gamboges, has an anthrone-
derived structure, induces ROS, and promotes a dramatic
autophagic response via the JNK pathway. Gambogic acid
induces ROS-mediated caspases activation, leading to the
degradation of autophagic proteins, and causes mitochondrial
hyperpolarization and caspase activation, which triggers the
intrinsic apoptotic pathway. In addition, gambogic acid
suppresses NF-kB activation through ROS-mediated
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suppression of IkBa phosphorylation in T24 and UMUC3
bladder cancer cell lines (103).

Gartanin, a naturally occurring xanthone, has anticancer
activity in various bladder cancer cell lines including HT1376,
T24, 5637, TCCSUP, RT4, UMUC3and J82 cells (104). The
underlying molecular mechanism of gartanin involves a
marked suppression of eukaryotic translation initiation factor
4E binding protein 1 (4EBP1) and p70S6 expression in T24 and
RT4 cells. Further, triggering of mTOR pathway-mediated
autophagy in T24 and RT4 cells has also been observed. In
addition, gartanin downregulates protein expression of the
apoptosis inhibitor Bcl-2, whereas it activates the p53 pathway,
inducing apoptosis (104).

Cinnamate
3-Phenyl-2-acrylate (cinnamate), is an aromatic organic acid
isolated from cinnamon bark or benzoin. Curcumin, a
representative cinnamate derivative, widely exists in the
rhizomes of some plants of the Zingiberaceae and Araceae
families (105). The anticancer activity of curcumin has been
widely investigated against various cancers, including that of the
bladder, where it regulates numerous intracellular signaling
molecules (106). The human trophoblast cell surface antigen 2
(Trop2) is a well-known cancer driver that is dysregulated in
many cancers. Zhang et al. (107) found that curcumin strongly
inhibits T24 and RT4 bladder cancer cell proliferation by
decreasing Trop2 expression and its key downstream molecule
cyclin E1. Recently, the anticancer effect of curcumin against
bladder cancer stem cells has been reported: Curcumin reduces
cell sphere formation by suppressing the expression of breast
cancer stem cell markers such as CD133, CD44, Nanog, and
octamer-binding transcription factor 4 in UMUC3 and EJ
bladder cancer cells. In addition, curcumin inhibits
proliferation and triggers apoptosis of bladder cancer cells.
Interestingly, curcumin suppresses Sonic Hedgehog pathway
activation, which is positively correlated with tumor growth
(108). In addition, curcumin enhances the antitumor activity
of cisplatin against bladder cancer. The apoptotic cell ratio of T24
and 253J-Bv cells cotreated with curcumin and cisplatin was
higher than that of cells incubated with either agent alone. The
ROS scavenger N-acetyl-L-cysteine and ERK inhibitor U0126
abolished the combined effect of curcumin and cisplatin. Thus,
curcumin might induce apoptosis via a ROS-mediated MEK/
ERK-dependent pathway (109). Ferulic acid, another cinnamate-
type phytochemical, has also been studied for its activity against
bladder cancer. For instance, Peng et al. (110) reported the effects
of ferulic acid on T24 bladder cancer cells in two-dimensional
(2D) and 3D cell culture systems where they found that it
dramatically increased apoptosis, and induced much higher
cytotoxicity in 3D than in 2D culture systems. Ferulic acid also
upregulates anti-oxidative enzymes such as superoxide
dismutase, catalase, and pro-apoptotic proteins such as
caspase3, cleaved caspase 9, and Bax (111).

Stilbenes
Piceatannol is a phytochemical, similar to resveratrol, found in
grapes, blueberries, passionfruit, and other fruits. Piceatannol
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inhibits EJ bladder cancer cell proliferation by arresting the cell
cycle in the G0/G1 phase. Moreover, piceatannol induces EJ cell
apoptosis through a mechanism associated with the increases in
protein expression of phosphatase and tensin homolog in
concert with a decrease in the phosphorylation of AKT (111).
QUINONE COMPOUNDS

Anthraquinones
Emodin is an anthraquinone found in dried rhizomes and roots
of Polygonum. This compound has anticancer effects against
various cell lines, including bladder cancer cells (112). Ma et al.
(113) reported that emodin dose-dependently suppresses
proliferation and invasion of T24 and 5637 bladder cancer
cells. Further, emodin downregulates the mRNA and protein
expression of Notch1, Jagged1, VEGF, VEGFR2, and MMP2
(113). Additionally, Notch1 overexpression rescues emodin-
induced cell growth suppression, indicating that emodin
inhibits the proliferation of bladder cancer cells via the Notch1
pathway (113).

Arbutin, which occurs abundantly in the bearberry plant, is a
glycosylated hydroquinone that inhibits the proliferation of
TCCSUP bladder cancer cells in a concentration-dependent
manner. However, arbutin did not show marked cytotoxicity
against TCCSUP cells even at concentrations of 500 µg/mL.
Arbutin inactivates the ERK pathway and downregulates cell
proliferation. Moreover, arbutin markedly elevates p21/
WAF1expression, thereby negatively regulating the cell cycle
(114). Juglone is a quinone isolated from the root bark,
pericarp, and branch bark of fresh Juglone catalpa and its
anticancer activity includes inhibition of proliferation and
induction of apoptosis of RT4 and TCCSUP bladder cancer
cell lines (115).

Phenanthraquinone
Tanshinone IIA is a lipid-soluble phenanthraquinone compound
extracted from Salvia miltiorrhiza Bunge. Tanshinone IIA has
been reported to inhibit cell proliferation with an IC50< 5 mg/mL
against various bladder cancer cells, including T24, 5637, and
BFTC-905 cells. Moreover, tanshinone IIA suppresses cancer cell
invasion by decreasing the expression and activity of MMP-9 and
MMP-2, and suppresses the expression of C-C motif chemokine
ligand 2. In addition, tanshinone IIA inhibits EMT by elevating
the epithelial marker E-cadherin and reducing mesenchymal
markers such as vimentin and N-cadherin. Tanshinone IIA
also decreases transcription regulators such as Slug and Snail
in bladder cancer cells (116).

Naphthoquinone
b-Lapachone is a natural naphthoquinone compound extracted
from the bark of the lapacho tree that inhibits the viability of T24
bladder cancer cells by inducing apoptosis at the micromolar
concentration range. Treatment of T24 cells with b-lapachone
downregulated Bcl-2 expression and upregulated that of Bax. b-
Lapachone-induced apoptosis is associated with the activation of
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caspase 9 and caspase 3. Moreover, b-lapachone also inhibits
FAS and FASL in a dose-dependent manner in bladder
cancer (117).

Based on the above review, phytochemicals exhibited
anticancer activities through various mechanisms, including
the MAPK, PI3K/AKT, and mTOR, cell cycle checkpoint, and
apoptosis regulation signaling pathways (Figure 1). Proteins
involved in these signaling pathways are affected by
phytochemicals and are interrelated. For example, AKT
influences cell proliferation by phosphorylating p21/WAF1 and
regulates NF-kB signal transduction by phosphorylating IKKs
(118). Caspases are a family of cysteine proteases that are central
regulatory proteins of apoptosis (119). FAS is activated by FASL,
leading to the activation of downstream caspases (e.g., caspase8
and caspase 9), which in turn, activate downstream molecules
(e.g., caspase-3) to perform apoptosis (119). Various
phytochemicals, such as nobiletin, tangeretin, genipin, and
gallic acid, increase the release of cytochrome C in the
mitochondria, triggering mitochondria-dependent apoptosis.
The anti-apoptotic proteins Bcl-2 and Bcl-xL are localized in
the mitochondrial outer membrane and inhibit the release of
cytochrome C (120). Pro-apoptotic proteins, such as Bad, Bax,
Bid, and Bim, are localized in the cytoplasm and translocate to
the mitochondria after receiving a death signal, and promote the
release of cytochrome C. When Bad is transferred to the
mitochondria, it forms a pre-apoptotic complex with Bcl-xL,
thereby accelerating the release of cytochrome C (120).
Following its release, cytochrome C binds to apoptotic
peptidase activating factor 1 and forms an apoptotic activation
complex with caspase9, thereby accelerating apoptosis (121). The
phytochemicals which are able to induce apoptosis have been
shown as Figure 2.

Various phytochemicals, such as tanshinone, silibinin, and
piperlongumine, effectively inhibit cell invasion via attenuating
MMPs and uPAR (Figure 3) and alleviation of NF-kB.
Moreover, EMT is an important mechanism for cell invasion,
and the tumor microenvironment and tumor cells secrete
cytokines that lead to EMT. These cytokines activate
intracellular signal transduction pathways that upregulate
specific zinc-finger transcription factors such as Slug, ZEB1,
and Snail, thereby enhancing EMT (Figure 3).

MAPKs are a family of protein kinases that are specific to
serine, threonine, and tyrosine (122), and play important roles in
complicated cellular processes such as embryonic development,
cell differentiation, tumorigenesis, and cancer metastasis. Three
MAPK families, ERK, JNK and p38 kinase, have been classified
in mammalian cells (122), and activation of the ERK and JNK
pathways is positively related to tumor cell proliferation (123).
Since targeting MAPK has been considered as good anticancer
strategy (124), this review summarizes the anticancer activities of
numerous phytochemicals, such as arbutin, apigenin, capsaicin,
curcumin, kaempferol, morin, naringin, nimbolide, and
yuanhuacine, which modulate the MAPK signaling pathway.

The cell cycle is another key process related to cell
proliferation and cell cycle related molecules are widely
considered as anticancer targets (124). CDK4, CDK6, cyclin D,
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FIGURE 1 | Schematic diagram of phytochemicals targeting molecules on bladder cancer. Generally the anticancer functions were summarized into four groups:
suppression of cell cycle, inhibition of proliferation, induction of apoptosis and repression of MET. The red ovals represent upregulated molecules by phytochemicals
and the blue ovals represent downregulated molecules by phytochemicals.
FIGURE 2 | Phytochemicals induce apoptosis through upregulation of Bim, Bax, Bad, PARP, caspase 3, caspase 8 and caspase 9, as well as downregulation of
Bcl-2, Bcl-xL and MCL1 in bladder cancer cells. The red ovals represent upregulated molecules by phytochemicals and the green ovals represent downregulated
molecules by phytochemicals.
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and cyclin E are essential for the transition of cells from the G1
phase to S phase, whereas p16Ink4A and p21/WAF1 inhibit cell
cycle progression (125). During the G2/M transition, cells
cr i t ica l ly require CDC2 and cycl in B, and p53 is
the checkpoint protein mediating this process (125).
We summarized the anticancer activities of various
phytochemicals, including fisetin, quercetin, genistein,
puerarin, naringin, limonene, atractylenolide I, triptolide,
nimbolide, capsaicin, piperlongumine, ellagic acid, piceatannol,
and arbutin, which attenuate the cell cycle via different
mechanisms, mainly by suppressing CDK and cyclin
expression and increasing cell cycle inhibitor expression
(Figure 4).

Because of various anti-tumor activities of phytochemicals,
intake of plant-derived diets to prevent bladder cancer has also
been extensively studied. Epidemiological studies showed high
fluid intake reduce 49% bladder cancer risk compared with the
low intake group, indicating phytochemical might be used for
preventing bladder carcinogenesis (126). Moreover, the bladder
cancer preventive function of phytochemical monomer was also
studied: EGCG intake could reduce the tumor cell proliferation
Frontiers in Oncology | www.frontiersin.org 10
markers, which was consistent with potential chemo-preventive
efficacy in bladder cancer patients (43).
CONCLUSION

In summary, phytochemicals can combat bladder cancer through
various mechanisms, such as inhibition of proliferation,
migration and invasion; induction of apoptosis; and promotion
of autophagy. Table 1 provides an overview of the functions and
corresponding molecular mechanisms of di ff erent
phytochemicals. The use of phytochemicals could be a
potentially effective approach for cancer prevention and
treatment based on several unique properties. 1) Drug and food
homology: many phytochemicals with anticancer activities are
derived from vegetables and fruits, and dietary habits are closely
linked to cancer. 2) Phytochemicals come from a wide range of
sources and can either be extracted from plants or chemically
synthesized. 3) Most phytochemicals are metabolized and
excreted in the urine and, consequently, are more efficient at
reaching the lesion location, the bladder. Overall, this review
FIGURE 3 | Phytochemicals inhibit metastasis by suppressing MMP2, MMP9, uPAR, Slug, and decreasing transcription factor activities including NF-kB, ZEB1 and
b-catenin in bladder cancer cells. The blue ovals represent metastasis related molecules.
April 2021 | Volume 11 | Article 652033
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FIGURE 4 | Phytochemicals inhibit bladder cancer cells proliferation by blocking cell cycle via suppressing various cyclins and CDKs, as well as upregulation of
p21waf1 and p16-Ink4a in bladder cancer cells. The red ovals represent upregulated molecules by phytochemicals, and the blue ovals represent downregulated
molecules by phytochemicals.
TABLE 1 | Anticancer effects of phytochemicals on bladder cancer.

Category Phytochemical Function Molecular mechanism Cell line &
Reference

Flavone Baicalin Anti-proliferation, Arrest
G1/S cell cycle, Induce
apoptosis, Anti-invasion

Activates caspase 9, activates caspase 3,
decreases Bcl-2, elevates Bax, decreases cyclin
B1, decrease CDC2 phosphorylation, decreases
MMP-9 and MMP-2

T24, HT1376
and 5637
(12–16)

Apigenin Inhibit invasion, Anti-
proliferation, Arrest G2/M
cell cycle

Decreases uPAR, suppresses MAPK,
suppresses NF-kB, suppresses AP-1

T24 (17–19)

Luteolin Inhibits viability, Arrests
G2/M cell cycle

Increases p21, decreases phosphorylated S6 (p-
S6), Increase TRX1, suppresses mTOR, reduces
ROS

T24 and
5637 (20)

(Continued)
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TABLE 1 | Continued

Category Phytochemical Function Molecular mechanism Cell line &
Reference

Nobiletin Induces DNA
fragmentation, induces
apoptosis, induces
mitochondrial dysfunction

Increases Bad, increases Bax, increases caspase
3, increase caspase 9, decreases Bcl-2,
decreases Mcl-1, suppresses PI3K/AKT/mTOR
axis, suppresses PERK/elF2a/ATF4/CHOP axis,
causes cytochrome C release

BFTC-905
(21)

Tangeretin Inhibits viability, induce
apoptosis, Leads to
calcium homeostasis loss
in the mitochondria

Activates caspase 3 and caspase 9, causes
cytochrome C release

BFTC-905
(22)

3′-Hydroxyflavone Casticin Induces DNA damage,
inhibits cell viability,
increase intracellular ROS

Decreases ATM and ATR, decrease MDC1 and
MGMT, increases p-p53, increases PARP,
increases XAF1 and TAp73

TSGH-8301
and T24
(24, 25)

Kaempferol Inhibits invasion, Anti-
proliferation, Attenuates
ROS-induced hemolysis

Suppresses c-Met/p38, decreases p-AKT,
decreases Bcl-xL, decrease CDK4 and cyclin D1,
decreases Mcl-1, increases p21, increases p-
ATM, increases Bax and Bid

5637, T24,
253J
TCCSUP,
and EJ
(26–28)

Fisetin Induces apoptosis, arrest
of G0/G1 cell cycle,
triggers apoptosis

Increases p53, downregulation of NF-kB,
increases p21, decreases CDK2, decreases
CDK4, decreases cyclin A, decrease cyclin D1,
increases Bax, decreases Bcl-2 and Bcl-xL.

T24 and EJ
(28)

Morin Anti-proliferation, inhibits
invasion

Decreases CDK2 and CDK4, decreases cyclin
D1 and cyclin E, suppresses JNK and AKT
phosphorylation, suppresses NF-kB, suppresses
SP-1, suppresses AP-1, decreases MMP-9.

EJ (29)

Quercetin Inhibits cell survival,
induces apoptosis, arrests
G0/G1 cell cycle

Suppresses DNA methylation of CDKN2A and
RASSF1A, decreases mutant p53, decreases
survivin

EJ, J82, and
T24 (30, 31)
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TABLE 1 | Continued

Category Phytochemical Function Molecular mechanism Cell line &
Reference

Isoflavone Genistein Anti-proliferation, arrests
G2/M cell cycle, sensitizes
bladder cancer cells to
anticancer drug

Increases ROS, decreases cyclin A and cyclin
B1, increases p21WAF1/CIP1, suppresses PI3K/
Akt, inactivates ATM/NF-kB/IKK axis

T24, J82,
SCaBER,
and TCCSUP
(33–35)

Puerarin Inhibits viability, arrests the
G0/G1cell cycle, inhibits
proliferation, triggers
apoptosis

Inhibits SIRT1/p53 pathway, decreases p-mTOR
and p-p70S6K, increases miR-16, decreases
COX-2, inactivates NF-kB.

T24 and EJ
(36–38)

Flavonol EGCG Anti-proliferation, Inhibits
migration and invasion.

Deactivates DNA methyltransferase, suppresses
NF-kB, decreases MMP-9.

T24, SW780,
and BFTC-
905 (39–43)

Silibinin Inhibits TGF-b1-induced
invasion, enhances
photodynamic therapy
(PDT), enhances
radiotherapy response

Inhibits EMT, decreases COX-2, suppresses
radiotherapy-activated NF-kB and PI3K

T24 and J82
(44–47)

Flavanone Naringenin inhibits migration Deactivates AKT, decrease MMP-2 TSGH-8301
(48–50)

Naringin Inhibits cell growth, arrests
cell cycle

Increases p21/WAF1, decreases cyclin D1 and
cyclin E Decreases CDK2 and CDK4, activates
p38 MAPK and ERK1/2

5637 (51)

(Continued)
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TABLE 1 | Continued

Category Phytochemical Function Molecular mechanism Cell line &
Reference

Flavonoid
glycoside

Baicalein Induces apoptosis,
suppresses proliferation,
inhibits migration, induce
apoptosis

Decreases Bcl-2 and Bcl-xL, increase p21,
decreases miR-106, decreases cIAP-1 and cIAP-
2, activates caspase 9 and caspase 3

T24, 253J,
and 5637
(52–55)

Orientin Inhibits proliferation,
reduces viability

Deactivates NF-kB, blocks Hedgehog signaling T24 (56, 57)

Biflavone Amentoflavone Induces apoptosis Increases FAS and FAS-ligand, increases BAX,
reduces MCL-1 and C-FLIP

TSGH-8301
(58–61)

Phytosterol Dioscin Inhibits cell growth,
induces apoptosis

Demethylation of DAPK-1 and RASSF-1a T24 and
5637 (66)

Monoterpene Limonene Inhibits viability, induces
cell cycle G2/M,
suppresses migration and
invasion

Induces chromatin concentration and nuclear
fragmentation, increases Bax, increases caspase
3, decreases Bcl-2

T24 (70, 71)

Sesquiterpene Curcumol Inhibits proliferation,
Induces apoptosis, inhibits
colony formation

Induces ROS, decreases EZH2 EJ and T24
(72, 73)

(Continued)
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TABLE 1 | Continued

Category Phytochemical Function Molecular mechanism Cell line &
Reference

Atractylenolide I Arrests G2/M cell cycle,
induces apoptosis, inhibits
proliferation

Decreases CDK1and CDC25c, decreases cyclin
B1, suppresses PI3K/Akt

T24 (74)

Parthenolide Inhibits viability induces
apoptosis

Modulates CDK2 phosphorylation, decreases
Bcl-2

5637 (75)

Costunolide Inhibits viability, induces
apoptosis

Decreases Bcl-2 and survivin, activates caspase-
3, increases Bax

T24 (76)

Diterpene Yuanhuacine Inhibits viability, arrests cell
cycle at G2/M

Stabilizes Sp1, increases p21, activates p38 T24T (77)

Triptolide Inhibits proliferation,
induces apoptosis, arrests
cell cycle at G1/S,
enhances the anticancer
effect of
chemotherapeutics

Decreases Akt and FOXO3a phosphorylation,
increases Bax and Bim, increases cleaved-
caspase3, decreases cyclinA1 and cyclinA2,
decreases CDK4 and CDK6

T24, EJ, and
UMUC3
(78–84)

Triterpene Ursolic acid Induces apoptosis Deactivates NF-kB and Akt, increases caspase 3 T24 (85)

(Continued)
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TABLE 1 | Continued

Category Phytochemical Function Molecular mechanism Cell line &
Reference

Pachymic acid Inhibits proliferation,
induces apoptosis

Elevates ROS, activate caspase 3, caspase 8,
and caspase 9

T24 (86)

Nimbolide Inhibits proliferation,
arrests cell cycle at G2/M

Reduces the phosphorylation of p38 and AKT,
elevates the phosphorylation of JNK

EJ and 5637
(87)

Iridoid Catalpol Inhibits proliferation,
inhibits migration and
invasion, induces
apoptosis

Activates caspase 3 and PARP, decreases Bcl-2,
modulates PI3K/Akt

T24 (88)

Genipin Inhibits clonogenic growth,
suppresses viability,
increases apoptotic

Promotes cytochrome C release to cytosol,
suppresses the phosphorylation of PI3K and Akt

T24 and
5637 (89, 90)

Alkaloid Oxymatrine Inhibits proliferation,
induces apoptosis

Increases Bax and caspase 3, decreases Bcl-2,
and survivin

T24 (94)

Capsaicin Inhibits proliferation,
inhibits migration,induces
apoptosis,prolongs cell
cycle

Suppression of SIRT1, elevates acetylation of b-
catenin, decreases MMP-9 and MMP-2
activation, suppresses the phosphorylation of
ERK, reduces the phosphorylation of FAK.

T24 and
TSGH-8301
(96, 97)
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TABLE 1 | Continued

Category Phytochemical Function Molecular mechanism Cell line &
Reference

Piperlongumine Inhibits proliferation,
arrests cell cycle at G2/M,
inhibits EMT

Increases ROS, decrease Slug, decreases N-
Cadherin, decreases ZEB1, decreases b-catenin

T24, BIU-87,
and EJ (98)

Organic acid/ester Ellagic acid Anti-proliferation, inhibits
invasion, arrests cell cycle
at G0/G1, induce
apoptosis

Reduces VEGF-A and VEGFR-2, decreases PD-
L1, increases ROS, increases caspase 9 and
caspase 3

UMUC3,
5637, T24,
HT1376, and
TSGH-8301
(99, 100)

Gallic acid Inhibits viability, inhibits
proliferation, Promotes
apoptosis

Increases ROS, increases caspase 3 and Bax,
increases p53, increases cytoplasmic
cytochrome C, decreases phosphorylation level
of PI3K and Akt, decreases phosphorylation of
IkBa, IKKa, and NF-kB p65

T24 and
TSGH-8301
(101, 102)

Anthrone Gambogic acid Induces apoptosis Increases ROS, induces mitochondrial
hyperpolarization, deactivates NF-kB, suppresses
IkBa phosphorylation

T24 and
UMUC3 (103)

Gartanin Induces apoptosis Decreases 4E-BP1, decreases p70S6, activates
mTOR, decreases Bcl-2, activates p53

T24, RT4,
UMUC3,
5637,
TCCSUP,
HT1376, and
J82 (104)
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TABLE 1 | Continued

Category Phytochemical Function Molecular mechanism Cell line &
Reference

Cinnamate Curcumin Inhibits proliferation,
induces apoptosis

Inhibits proliferation, decreases Trop2, decreases
cyclin E1, decreases CD133 and CD44, reduces
Nanog and OCT-4, suppresses ROS-mediated
MEK/ERK

T24, RT4,
UMUC3, EJ,
T24, and
253J-Bv
(106–109)

Ferulic acid Induces apoptosis, Increases SOD, increases caspase 3, increases
cleaved caspase 9, increases Bax

T24 (110)

Stilbenes Piceatannol Inhibits proliferation,
arrests cell cycle at G0/G1,
induces apoptosis,

Increases PTEN, decreases the phosphorylation
of Akt

EJ (111)

Anthraquinones Emodin Anti-proliferation, inhibits
invasion,

Suppresses Notch1, decreases Jagged1, VEGF,
VEGFR2, and MMP2

T24 and
5637 (112,
113)

Arbutin Inhibits proliferation
regulates cell cycle

Inactivates ERK, increases p21WAF1/CIP1 TCCSUP
(114, 115)

Phenanthraquinone Tanshinone Inhibits proliferation,
inhibits invasion

Decreases MMP-9 and MMP-2, suppresses
CCL2, inhibits EMT, reduces vimentin and N-
cadherin

T24, 5637,
and BFTC-
905 (116)

Naphthoquinone b-lapachone Inhibits viability, induces
apoptosis

Decreases Bcl-2, increases Bax, increases
caspase 9 and caspase 3

T24 (117)
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Xia et al. Phytochemicals Against Bladder Cancer
summarizes natural phytochemicals targeting bladder cancer cell
proliferation, migration, and invasion via different signaling
pathways in vitro and in vivo. Further, it provides an overview
of previous studies on the effects of phytochemicals against
bladder cancer, the development of new anticancer drugs, and
novel strategies for the treatment of bladder cancer.
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