
Analysis of Time-Resolved Gene Expression
Measurements across Individuals
Laura L. Elo1,2*, Benno Schwikowski3*

1 Department of Mathematics and Statistics, University of Turku, Turku, Finland, 2 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku,
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Abstract

Genetic and environmental determinants of altered cellular function, disease state, and drug response are increasingly
studied using time-resolved transcriptomic profiles. While it is widely acknowledged that the rate of biological processes
may vary between individuals, data analysis approaches that go beyond evaluating differential expression of single genes
have so far not taken this variability into account. To this end, we introduce here a robust multi-gene data analysis approach
and evaluate it in a biomarker discovery scenario across four publicly available datasets. In our evaluation, existing methods
perform surprisingly poorly on time-resolved data; only the approach taking the variability into account yields reproducible
and biologically plausible results. Our results indicate the need to capture gene expression between potentially
heterogeneous individuals at multiple time points, and highlight the importance of robust data analysis in the presence of
heterogeneous gene expression responses.
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Introduction

Gene expression is regarded as an important molecular

phenotype reflecting the genetic and environmental determinants

of disease, drug response, and altered cellular function [1–6]. In

the simplest case, a higher-level phenotype of interest is associated

with the abundance of a single gene transcript measured at a given

point in time, which may be then identified using a transcriptome

measurement at that time in the process. A problem in the case of

dynamic biological processes, such as cancer or infection, is the

choice of a suitable time point. One reason is that the start of the

process is in many cases unknown, and may differ across

individuals. Another reason is that the speed of the process may

vary between, for instance in individuals of different genetic or

epigenetic background [7,8].

Spurred by the ongoing increase in the capacity of transcrip-

tomic technology, these problems can be addressed by acquiring

multiple time points for each sample, and the importance of

dynamics of gene expression for the purpose of selecting

biomarkers has been recognized [9]. The statistical concept of

differential expression has been extended to time series [10], and

methods to correct for different speeds of transcriptomic response

between individuals in single genes have been developed [11].

Besides their focus on single genes, a major limitation is the

common application of these methods to a statistically low number

of time points [11,12].

The model of a single transcript as an indicator of disease state

is attractive, but possibly unrealistic [13]. Therefore, the concept

of using signatures composed of multiple transcripts is gaining

traction [14–16]. One popular paradigm is the idea of co-

regulation and resulting correlated expression of a group of

functionally related genes over experimental conditions. The

absence of such co-expression has been found to be associated with

higher-level phenotypes (e.g., disease state), and the corresponding

genes have been used as biomarkers, typically in non-time series

data [17].

One of the first studies to perform differential co-expression

analysis on grouped time-series data between two different cell

lines was a study by Remondini et al [18]. For each gene, they first

determined a single average time series in both groups by

averaging the expression values across the replicate sample series.

In a second step, for each gene pair, time series correlations were

then calculated separately for each group and differential co-

expression between the groups was defined as the difference

between these correlations (see Fig. 1 upper path for an

illustration). As a final step, all pairwise differential correlation

values involving a given gene can be aggregated to produce a

ranked list of genes for further study.

The above approach, the now-common weighted gene co-

expression network analysis (WGCNA) [19–21], and a more

recently introduced variant called Differential Co-expression

Profile analysis (DCp) [22] are straightforward to apply to multiple

individuals in a group after averaging, and various implementa-

tions are readily available. While this remains a current de facto

strategy for the analysis of time-series data [23,24], we argue here

that the initial group averaging step, which makes grouped time-

series data accessible to these methods, can be highly problematic

in the case of heterogeneity in the transcriptomic response

between individuals, because it may lose a large part of the initial

correlation. The same holds true for most differential expression

approaches applied to time series data, which by default typically
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ignore the time heterogeneity between the sample series. Figure 1
illustrates this weakness of the ‘group average’-based approaches

(Fig. 1 upper path), and the alternative ‘individual correlation’-

based approach we introduce here (Fig. 1 lower path). Data

shown is from a study of gene expression in responders and

nonresponders to interferon/ribavirin therapy to Hepatitis C [25].

The strong pairwise correlation within each individual is lost in the

average-based approach, whereas it is clearly exposed by the

individual correlation-based approach.

To systematically examine the differences between group

average- and individual correlation-based approaches, we evalu-

ated them using a biomarker discovery scenario across four

different published datasets (Table 1). Additionally, we evaluated

an alternative strategy of concatenating the time series measure-

ments across individuals within the groups, as applied earlier

[26,27]. More specifically, we considered here six different

approaches: (i) conventional differential expression analysis using

the Bioconductor limma package [28]; (ii) differential co-expression

analysis after group averaging using the popular WGCNA

approach or (iii) the more recent DCp method; (iv) differential

co-expression analysis after concatenating the time series within

the groups using WGCNA; (v) differential co-expression analysis

on individual correlations using WGCNA or (vi) an alternative

approach we introduce here, which we name Dynamically Co-

expressed Neighborhoods (DCeN), that takes into account also the

neighbor-wise co-expression changes instead of a simple total

connectivity of a gene. Each method was used to rank all the

measured genes, with the idea that genes that have an important

functional role in the transcriptional response should appear

consistently among the top-ranked genes.

Results

Consistency
We assessed the reproducibility of the top-ranked genes in the

human hepatitis C virus (HCV) treatment dataset [25] across

independent subsamples of two to six replicates (Fig. 2 and Fig.
S1). Throughout all numbers of replicates tested, the reproduc-

ibility of our DCeN method was significantly higher than that of

the current state-of-the-art gene ranking methods based on

differential expression or differential co-expression (Fig. 2;

Wilcoxon signed rank test, p,0.01). In general, the individual

correlation-based approach improved markedly also the perfor-

mance of WGCNA when compared to the previously applied

Figure 1. Schematic illustration of two approaches to differential co-expression analysis between groups of individuals. Data are
from three responders (yellow) and three nonresponders (grey) to interferon/ribavirin therapy for Hepatitis C infection (genes and individuals
selected from larger sets) [25]. (a) Gene expression profile for each individual. The responder profiles (yellow) are consistent with the hypothesis of a
series of qualitative changes (down–up–down) occurring within each individual, but at different time scales when compared between individuals (the
third sequence not being entirely observed). Nonresponder profiles (grey) do not appear particularly correlated. (b) Average expression profiles of
logarithmic intensities when averaged over the individuals in each group. (c) Correlation between average expression profiles. As the average
responder time courses in (b) do not reflect the strong correlation in the individuals, correlation between average expression profiles appears no
stronger than in nonresponders. (d) Pairwise correlation coefficient of expression profiles within each individual. (e) Average correlation values
within each group. Pairwise correlations in responders are significantly higher than in nonresponders, leading to a large difference between average
correlation between responders and nonresponders. In this illustration, all correlations are Pearson correlations; averages are arithmetic averages.
doi:10.1371/journal.pone.0082340.g001

Analysis for Time-Resolved Transcriptomics

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e82340



average-based and concatenation-based approaches, although its

reproducibility remained significantly lower than that of DCeN.

We also tested whether subtracting the gene-wise average intensity

from each individual before concatenation would improve the

concatenation-based approach but we did not observe any

significant effect (Fig. S2; Wilcoxon signed rank test, p.0.05).

Not unexpectedly, reproducibility increased with the number of

replicates for the DCeN and the differential expression method.

However, for the previously proposed differential co-expression

methods WGCNA and DCp, such increase was not evident.

Overall biological relevance
To systematically assess the overall biological relevance of each

computational method, we applied them to two publicly available

gene expression time series datasets in which the biological

importance of many genes had been independently assessed using

RNA interference (RNAi) or gene deletions.

In the LPS data set, the transcriptome of mouse dendritic cells

was profiled at multiple time points after stimulation with various

toll-like receptor ligands, and without stimulation. Independently,

the biological role of 125 transcription factors had been probed

and validated using RNAi and a set of signature genes [29]. We

used each computational analysis method to rank the validated

factors, and then quantified an average regulatory effect of the top-

ranked factors on the basis of the RNAi data; the regulatory effect

of a factor was defined as the percentage of the signature genes

that were identified as its targets (Fig. 3a). Genes with the highest

DCeN values tended to have, on average, larger regulatory effects

than expected by chance (permutation test, most significant

p = 0.004). Notably, no such effect could be observed when the

other methods were used (permutation test, p.0.1 at all top list

sizes).

In the CDC13 data set, time series of gene expression profiles in

wild-type yeast strains and in strains carrying the temperature-

sensitive cdc13-1 mutation were acquired after a temperature

change [30]. Additionally, independent genome-wide screens for

deletion mutants showing genetic interactions with the cdc13-1

mutation had been performed [30,31]. Ranking the screened

genes on the basis of their temporal gene expression revealed that

the genes with the highest DCeN values were enriched with

genetic interactions with cdc13-1 (permutation test, most signifi-

cant p = 0.014; Fig. 3b). In these data, also the individual

correlation-based WGCNA produced significant enrichment

(permutation test, most significant p = 0.003). Again, no statistically

significant enrichment was observed for the other methods

(permutation test, p.0.05 at all top list sizes from 1 to 1000).

Overall, the traditional differential expression or differential co-

expression measures performed surprisingly poorly, whereas the

individual correlation-based approaches improved the detections.

Only DCeN identified significant numbers of functionally relevant

genes in both datasets, while individual correlation-based

WGCNA performed well only in the CDC13 data.

Detection of specific co-expression patterns
Finally, we performed a detailed manual analysis using DCeN

on the human T helper 2 (Th2) cell differentiation dataset [32].

Human activated CD4+ T cells were profiled with and without

polarization towards Th2 with IL-4. Among the 115 top-ranked

Table 1. Time series gene expression datasets used in this study.

Dataset
Study
organism Array type Individuals/strains Sample series

GEO/Array Express
accession number Reference

HCV Human Affymetrix Human
Genome U133A

17 responders,
13 nonresponders

0, 1, 2, 7,14, 28 days GSE7123 [25]

LPS Mouse Affymetrix Mouse
Genome 430A 2.0

2 mice stimulated with LPS,
1 non-stimulated mouse

0.5, 1, 2, 4, 6, 8, 12, 16,
24 hours

GSE17721 [29]

CDC13 Yeast Affymetrix Yeast
Genome 2.0

3 wild-type yeast strains, 3 strains
carrying cdc13-1 mutation

0, 1, 2, 3, 4 hours E-MEXP-1551 [30]

Th2 Human Affymetrix Human
Genome U133 Plus 2.0

3 Th2-polarized,
3 non-Th2-polarized

Thp, 0.5, 1, 2, 4, 6, 12,
24, 48, 72 hours

GSE18017 [32]

doi:10.1371/journal.pone.0082340.t001

Figure 2. Reproducibility of detection in independent subsam-
ples of human hepatitis C virus (HCV) dataset among different
methods. Pairs of independent sub-datasets of two to six replicates (x-
axis) were generated by random sampling without replacement.
Reproducibility is here defined as the overlap of the top-ranked
detections at various top list sizes. For summary, the average relative
reproducibility over 100 pairs of independent sub-datasets is shown at
top list size of 200 (y-axis). Error bars show the empirical standard
error of the mean. Complete reproducibility values are provided in
Figure S1. Each gene ranking method was applied to identical data
sets. (DCeN, Differential Co-expression Networks; WGCNA, Weighted
Gene Co-expression Network Analysis; DCp, Differential Co-expression
profiles; Random, random permutation).
doi:10.1371/journal.pone.0082340.g002
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genes for differential co-expression (permutation test, p,0.05)

were several factors with previously assigned functions specific to

Th2 cells, such as ITK, ICOS, LEF1, and GATA3, a well-known

master regulator of Th2 cell differentiation, as well as genes that

have only more recently been proposed to play an important role

in Th2 cell differentiation, such as SOCS2 and STAT3 [33–38].

Also, the strong enrichment of the DCeN genes for immune

response (19%, false discovery rate FDR,1025) and regulation of

apoptosis (18%, FDR,1024) was consistent with the different Th

cell subsets playing a critical role in immune response and having

different susceptibility to apoptosis.

Interestingly, there were eleven transcription regulators (AR-

ID5B, EPAS1, GATA3, IRF1, IRF7, IRF9, LEF1, SP100,

STAT3, TRIM22, XBP1) among the detected genes, seven of

which (64%; EPAS1, IRF1, IRF7, IRF9, LEF1, STAT3, XBP1)

corresponded to transcription factor motifs recently identified as

enriched in lineage-specific enhancers compared to random

locations in genome (p,0.05), suggesting their regulatory role in

T cell polarization [39]. This was significantly more than expected

by chance (Fisher exact test p,0.01). Notably, two of these factors,

IRF9 and LEF1, would have been completely missed in the

present study on the basis of differential expression only. We note

in passing that 20% of our detections did not show evidence for

differential expression [32].

Further detailed analysis revealed patterns difficult to extract

using existing approaches. One example is a ‘switching pattern’

exhibited by GAB2 (Fig. 4) whose expression changes between co-

expression with one cluster of consistently co-expressed genes

under Th2 polarizing conditions to another consistently co-

expressed cluster under non-polarizing conditions. GAB2 is an

adaptor protein that activates PI3K and Akt, which subsequently

regulates IL-4 production [40]. Recently, GAB2 was suggested to

be a potential key player in the IL-4-STAT6 regulatory feedback

loop [39]. Notably, while most of the genes in the co-expression

clusters remained consistently co-expressed with each other under

both conditions, we identified also four other genes (GATA3,

KPNA6, PPP1R14A, RRS1) that were part of the same co-

expression cluster as GAB2 under the Th2 polarizing conditions

but not under the non-polarizing conditions. Of these, GATA3

and RRS1 were identified in our DCeN analysis, whereas KPNA6

and PPP1R14A fell slightly below our significance thresholds

(DCeN ranks 148 and 127, respectively).

Discussion

Our results suggest surprising significant weaknesses of state-of-

the-art data analysis approaches to detect differential co-expres-

sion from grouped time-resolved transcriptomic data. In our

evaluation across the few published datasets of this type, the DCeN

method, which we introduced here, was the only approach to

consistently extract significant numbers of genes corroborated in

independent studies, and highlighted dynamic association of

known immune regulators under corresponding experimental

conditions. The insights enabled by the global measurement of

dynamic patterns across groups of individuals will make this type

of data increasingly attractive, and will certainly create a broader

basis for studies such as this in the future.

Nonetheless, the observed difference in performance is striking.

The DCeN method itself is neither particularly elaborate, nor

Figure 3. Biological relevance of results from DCeN and current state-of-the-art gene ranking methods. (a) In the LPS data set, average
regulatory effect of the top candidates (y-axis) was investigated as a function of the top list size (x-axis). Here, the regulatory effect of any validated
transcription factors in the LPS data set was measured as the percentage of signature genes identified as its targets. Statistical significance was
assessed using permutation tests. The most significant p-value is indicated by an arrow. (b) In the CDC13 data set, biological relevance of the top
candidates was measured as the proportion of the top candidates showing genetic interaction with the cdc13-1 mutation (y-axis) as a function of the
top list size (x-axis). Statistical significance was assessed by permutation. The most significant p-values are indicated by an arrow. (DCeN, Differential
Co-expression Networks; WGCNA, Weighted Gene Co-expression Network Analysis; DCp, Differential Co-expression profiles; Random, random
permutation).
doi:10.1371/journal.pone.0082340.g003
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adapted to the particular data sets used here, suggesting that the

best explanation of the observed performance difference is its

fundamentally different analysis approach based on individual

correlation instead of group averages. Computing correlation

between pairs of genes within each individual is unaffected by

variability between individuals, whereas the averaging step in

state-of-the-art approaches potentially loses a significant amount of

information, particularly across individuals, or through other

aspects that are typically hard to control.

This interpretation of our results has different corollaries for

experiment design and analysis, in particular, in the case of

transcriptomic measurements across individuals. Firstly, the

apparent importance of robustness against variation, which is

likely due to – typically a priori unknown, but potentially

widespread – variations in speed and timing, underlines the

necessity to acquire transcriptome profiles at multiple time points

to ensure that characteristic changes are captured in each time

course. Secondly, clustering methods, as close relatives to co-

expression detection methods, need to take the potentially different

timing between individuals into account as well. Thirdly, more

detailed computational models of biological processes may have to

better accommodate heterogeneity, for instance, by explicitly

modeling heterogeneous speeds of low- and high-level biological

processes, to enable satisfactory agreement with experimental data

and to attain the high level of robust predictive performance

required for their broad use in biomedical applications.

Materials and Methods

Dynamically Co-Expressed Neighborhoods (DCeN)
A schematic illustration of the general DCeN procedure is

shown in Figure 5. Given two sets of gene expression profiles and

a gene g, the DCeN method assigns to g a score dg that quantifies

the differences in the co-expression of g with any other gene

between the two sets. In the present study, we determine the score

dg based on the Pearson correlation rghi between genes g and h for

an individual i, after taking the number m of time points into

account.

Specifically, let pghi be the significance of an observed correlation

rghi, determined using the statistic t~r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m{2)=(1{r2)

p
, which has

a Student’s t-distribution with df ~m{2 degrees of freedom under

the hypothesis of no correlation [41]. A weighted graph for

individual i is then constructed using the weights wghi~

sgn(rghi)(1{pghi)for each pair fg,hg of genes, where sgn is the

sign function. Finally, to focus on gene-gene correlations that are

consistent across individuals, only gene pairs fg,hgwith a positive or

negative correlation with pghi,0.05 in at least 25% of the individuals

i in at least one group are used for further analysis (with a minimum

of two individuals if available). The rather liberal significance

threshold was selected to discard only those links that are most likely

to be uninteresting. Changing the threshold to 0.01 or 0.25 did not

have a large impact on results but all the thresholds improved

markedly the reproducibility as compared to analyses without any

prefiltering (Fig. S3). We use agh to denote whether the relationship

between genes g and h satisfies the above criterion (agh = 1) or not

(agh = 0). Dynamically Co-expressed Neighborhoods (DCeN) are

finally determined using averaged weights wX
gh~

X
i[X

wghi=nX

and wY
gh~

X
i[Y

wghi=nY , and the formula dg~P
h=g agh minfjwX

gh{wY
ghj, maxfjwX

ghj,jwY
ghjggP

h=g agh maxfjwX
ghj,jwY

ghjg
, if
X

h=g
aghw0.

Here, nX and nY are the numbers of individuals in the two

groups X and Y under comparison. The numerator corresponds to

the cumulative difference in the neighborhood of a gene g between

the two groups (changed neighborhood), whereas the denominator

reflects the total connectivity of gene g across the groups (total

neighborhood). If the neighborhoods are equal under both

conditions, then dg = 0. The maximum value of 1 is obtained

when the stronger (positive or negative) weight over the conditions

is zero or of opposite sign under the other condition. IfX
h=g

agh~0, we define dg = 0.

DE, WGCNA, and DCp
Differential expression (DE) was determined using the Biocon-

ductor limma package [28]. Genes were ranked according to the

moderated F-test. Weighted Gene Co-expression Network Anal-

ysis (WGCNA) [42] and Differential Co-expression Profile analysis

(DCp) [22] were applied using the R package DCGL following the

instructions provided in the package manual [43]. DCp was

recently suggested to improve the detection of differentially co-

expressed genes, whereas WGCNA showed the best performance

among the popular existing algorithms in the same study [22].

Figure 4. Switching pattern for GAB2 in human T helper 2 cell differentiation (Th2) dataset, detected by DCeN. Co-expression clusters,
visualized here using Cytoscape, contain those genes with the largest difference in co-expression with GAB2 between the two experiments (top
0.5%). Connecting edges indicate strong correlation (co-expression weight.0.95). Co-expression of GAB2 with other genes switches between
different co-expression clusters, depending on whether polarization towards Th2 was induced or not.
doi:10.1371/journal.pone.0082340.g004
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Datasets used for evaluation
The human hepatitis C virus (HCV) dataset [25] used for the

reproducibility analysis included gene expression profiles of

peripheral blood mononuclear cells from Caucasian American

patients with chronic HCV infection. Gene expression was

profiled at six time points after initiation of treatment. The

preprocessed data on 30 patients with measurements at each time

point was downloaded [44], including 17 patients showing good

(marked or intermediate) response and 13 patients showing poor

response.

The mouse lipopolysaccharide (LPS) dataset [29] includes gene

expression profiles of mouse dendritic cells exposed to LPS. Gene

expression was profiled in duplicate series at nine time points after

stimulation with LPS, and in a non-stimulated control series. The

normalized data was downloaded from GEO (GSE17721). A set of

125 candidate regulators were validated in the original study using

RNAi and a set of signature genes [29]. In the present study, the

regulatory effect of a candidate regulator was defined as the

percentage of the signature genes that were identified as its targets

at 95% confidence in terms of both gene-specific and perturba-

tion-specific noise.

The yeast CDC13 dataset [30] includes gene expression profiles

of three wild-type yeast strains and three strains carrying the

temperature sensitive cdc13-1 mutation. Gene expression was

profiled initially at 23uC and then at additional four time points

after a temperature shift to 30uC. The data was preprocessed as

described earlier [45]. In two separate studies, the same laboratory

carried out genome-wide screens for deletion mutants showing

genetic interactions with the cdc13-1 mutation [31,46]. Here, we

focused on the interactions that were reproducibly identified in

both of the screens.

The human T helper 2 (Th2) cell differentiation dataset [32]

includes gene expression profiles of human CD4+ T cells activated

(Th0), or activated and polarized towards Th2 with IL-4. Gene

expression was profiled in triplicate series in naı̈ve Th precursor

(Thp) cells and at nine time points after activation and initiation of

polarization. Here, we used those seven time points that had gene

expression data from each replicate. The quantile-normalized

probe-level data was transformed into probe set-level signal log-

ratios between each non-Thp sample and the corresponding Thp

sample using the probe-level expression change averaging

procedure [47], as described in GEO (GSE18017).

Figure 5. Schematic illustration of Dynamically Co-Expressed Neighborhoods (DCeN). Time series data is used to construct a separate
gene co-expression network for each individual case and control. For a particular gene (the gray node), only those neighbors are retained that are
consistently co-expressed across the replicates in at least one group (solid edges). These neighbors are then used to determine the changed and total
neighborhoods of the gene. The changed neighborhood corresponds to the cumulative difference in the co-expression values of the gene between
the two groups. The total neighborhood corresponds to the total connectivity of the gene across the groups. Finally, DCeN is defined as the
proportion of the total neighborhood that is changed. See Materials and Methods for details of the procedure.
doi:10.1371/journal.pone.0082340.g005

Analysis for Time-Resolved Transcriptomics
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From the original preprocessed datasets, only those probe sets

were retained that mapped to a unique Entrez ID. If multiple

probe sets mapped to the same Entrez ID then the one with the

highest overall intensity was selected [48]. In the LPS and CDC13

datasets, we focused on the genes tested in the independent RNAi

or gene deletion experiments. In the HCV and Th2 datasets, a

non-specific filter was applied to focus on the top 20% of the genes

with the highest overall variance [49].

Statistical analyses
When evaluating the statistical significance of the average

regulatory effects or the enrichment for genetic interactions among

the top-ranked genes, the observed values were compared to those

obtained when repeating the same analysis 10000 times after

randomly permuting the gene labels. Statistical significance of the

DCeN detections was estimated using the permutation approach

introduced earlier [22]. The sample labels were randomly

permuted 100 times to form an empirical null distribution.

Implementation
All differential expression and differential co-expression analyses

as well as the statistical analyses were implemented using the R

statistical software (http://www.r-project.org/). An R package

implementing the DCeN method is freely available under the

terms of the GNU General Public License version 3 or newer on

our website (http://www.btk.fi/research/research-groups/elo/).

The networks were visualized using Cytoscape [50].

Supporting Information

Figure S1 Reproducibility of detections in independent
subsamples of the human hepatitis C virus (HCV)
dataset. The performance of the Dynamically Co-expressed

Neighborhoods (DCeN) method was compared to that of the

current state-of-the-art gene ranking methods using differential

expression (DE) or differential co-expression (WGCNA and DCp).

Pairs of independent subdatasets were generated by randomly

sampling n = 2, …,6 cases from the groups of 17 responders and 13

nonresponders without replacement. Reproducibility was defined

as the overlap of the top-ranked detections at various top list sizes.

Average reproducibility over 100 pairs of datasets (y-axis) is shown

as a function of the top list size (x-axis). The same datasets were

analyzed with each gene ranking method.

(TIF)

Figure S2 Effect of subtracting the gene-wise average of
each individual on the reproducibility of the concatena-
tion-based approach. Pairs of independent subdatasets were

generated by randomly sampling n = 2, …,6 cases from the groups

of 17 responders and 13 nonresponders without replacement.

Reproducibility was defined as the overlap of the top-ranked

detections at various top list sizes. For summary, reproducibility of

100 pairs of datasets is shown at top list size of 200 (y-axis). The

same datasets were analyzed with each gene ranking method. The

boxes show the median and the interquartile range (IQR) of the

observed reproducibility, the whiskers indicate their range and the

points correspond to extreme observations with values greater

than 1.5 times the IQR. The difference between the approaches

was not significant at any sample size (Wilcoxon signed rank test,

p.0.05).

(TIF)

Figure S3 Effect of the prefiltering threshold on the
reproducibility of the Dynamically Co-expressed Neigh-
borhoods (DCeN) method. Reproducibility was assessed in the

human hepatitis C virus (HCV) data. Pairs of independent

subdatasets were generated by randomly sampling five cases from

the groups of 17 responders and 13 nonresponders without

replacement. Reproducibility was defined as the overlap of the

top-ranked detections at various top list sizes. Average reproduc-

ibility over 10 pairs of datasets (y-axis) is shown as a function of the

top list size (x-axis). The same datasets were analyzed with each

prefiltering threshold or without any prefiltering. See the Materials

and Methods section for details of the prefiltering threshold.

(TIF)
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