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Abstract

Background: Branch lengths are an important attribute of phylogenetic trees, providing essential information for
many studies in evolutionary biology. Yet, part of the current methodology to reconstruct a phylogeny from genomic
information — namely supertree methods — focuses on the topology or structure of the phylogenetic tree, rather
than the evolutionary divergences associated to it. Moreover, accurate methods to estimate branch lengths —
typically based on probabilistic analysis of a concatenated alignment — are limited by large demands in memory and
computing time, and may become impractical when the data sets are too large.

Results: Here, we present a novel phylogenomic distance-based method, named ERaBLE (Evolutionary Rates and
Branch Length Estimation), to estimate the branch lengths of a given reference topology, and the relative
evolutionary rates of the genes employed in the analysis. ERaBLE uses as input data a potentially very large collection
of distance matrices, where each matrix is obtained from a different genomic region — either directly from its
sequence alignment, or indirectly from a gene tree inferred from the alignment. Our experiments show that ERaBLE is
very fast and fairly accurate when compared to other possible approaches for the same tasks. Specifically, it efficiently
and accurately deals with large data sets, such as the OrthoMaM v8 database, composed of 6,953 exons from up to 40

mammals.

phylogenomic data sets.

Conclusions: ERaBLE may be used as a complement to supertree methods — or it may provide an efficient
alternative to maximum likelihood analysis of concatenated alignments — to estimate branch lengths from

Keywords: Phylogenomics, Supertree, Branch lengths, Gene rates, Distance-based, Least-squares

Background

With the continuous growth of genome sequencing capa-
bilities, phylogenetic inference is increasingly based on
large collections of genomic regions, if not entire genomes
[1-3]. We have entered the era of phylogenomics — the
study of evolution at a genomic scale.

New methodological challenges arise in this field.
Clearly, the large amount of data — sequences from sev-
eral taxa and large collections of genes — makes computa-
tional efficiency essential. Besides quantity, the nature of
the data is also a concern, and it is extremely important to
correctly account for the distinctive features of a typical
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phylogenomic data set: for example the heterogeneity in
the evolution of genomic regions [4-9], and the fact that
each region is typically sequenced in a subset of the taxa
under analysis, with only partial overlap between different
subsets [10, 11].

In this paper, we focus on the problem of how to effi-
ciently and accurately estimate the branch lengths of a tree
in a phylogenomic context, a problem for which, to date,
only computationally-intensive techniques appear to be
available. Yet, evolutionary distance information is essen-
tial to answer several important biological questions, from
molecular dating [12, 13] of events such as speciations, to
the reconciliation of gene trees with a species tree [14],
or to the measure of biodiversity in conservation biology
[15]. Another goal here is the efficient estimation of the
relative rates of evolution of different genomic regions.
This information — strictly linked to branch lengths —
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is also very useful, for example to recognize the diverse
selective pressures acting on different parts of the genome
[16, 17]. Tree inferences in a phylogenomic context fall
roughly into three frameworks: the supertree, the super-
alignment and the medium-level framework. We consider
them in relation to our goals of branch length and gene
rate estimation.

Supertree approaches [18, 19] combine the information
from several phylogenetic trees into a larger phylogeny.
A strength of these methods is that the source trees
can come from different types of data, such as DNA
or protein sequences, or even morphological data.
In a phylogenomic context, each source phylogeny is
inferred from a different locus, with standard methods
such as maximum likelihood, maximum parsimony or
distance-based approaches. Within this category, MRP
(Matrix Representation with Parsimony) [20, 21] and
its derived methods (e.g., SuperFine [22]) are to date
the most widely used approaches. In its standard form,
MRP does not use branch length information in the
source trees (if present), a limitation that is shared by
most supertree methods — with very few exceptions,
such as BWD (Build with Distances) [23], ACS (Average
Consensus Supertree) [24] and SDM (Super Distance
Matrix) [25]. As a consequence, virtually all supertree
approaches are unable to provide meaningful estimates
for branch lengths (MRP may provide branch weights,
but these should be interpreted as a measure of evidence,
not evolutionary change), or any estimate at all for gene
rates.

Superalignment methods are the other classical
approach for phylogenomic tree inference. They concate-
nate all available genomic sequence alignments into a
unique alignment (often called a character supermatrix),
which is then analyzed with standard or specially-
tailored phylogenetic reconstruction algorithms [26].
These methods — whose accuracy relies on the use of
state-of-the-art statistical inference techniques (typically
maximum likelihood or Bayesian methods) — naturally
model branch lengths and across-site rate heterogeneity.
However they are computationally demanding, and may
become impractical if computing time or memory are
limited, or when the concatenated alignment is very large.
Moreover, heterogeneity in the evolutionary processes
at different genomic regions — which is readily handled
in a supertree context — may require the use of models
such as partition models [8, 9] or mixture models [6, 7].
These models, however, further increase the number of
parameters to estimate, and consequently computational
costs.

Lastly, the medium-level [25, 27, 28] framework com-
bines the information originating from the different
loci at a level that is intermediate between sequence
alignments and complete gene trees. For example, this
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intermediate level may consist of partial trees — such as
quartets [29, 30] — or pairwise distances between gene
sequences [24, 25]. Specifically, distance-based methods
naturally account for and can estimate branch lengths,
and in some cases they can even estimate gene rates
[5, 25]. Moreover, they are relatively light computation-
ally. The method we present here, ERaBLE (Evolutionary
Rates and Branch Length Estimation), falls within this
category. Unlike other phylogenomic methods, however,
its goal is not tree estimation, and ERaBLE should be
used to complement existing approaches that do not
estimate branch lengths and/or gene rates. Alternatively,
it can be used on its own when the evolutionary relation-
ships among the species under consideration are largely
known.

Note that distance-based phylogenomic methods such
as ERaBLE, ACS [24] and SDM [25] can be used both in
the medium-level framework — when the input distances
are directly estimated from genomic alignments — but also
in the supertree framework — when the input distances
require prior inference of a collection of gene trees. We
will see examples of this in our experiments (“Results and
discussion” section).

The methodology we propose here can be seen as a
generalization of classical weighted least squares (WLS)
branch length estimation, to the case where multiple
distance matrices are estimated from different genomic
regions. In fact if only one matrix is given, ERaBLE
behaves exactly like WLS. WLS fits the branch lengths of
a tree T so as to make the distances between its leaves
as close as possible to the input distances. Formally, it
minimises the criterion ), < Wij ((Sij — di]T. )2, where the
d; denote the input distances, the diT. are the distances
between the leaves of T (determined by the lengths
assigned to its branches), and the weights w;; > 0 express
the confidence in the estimate §;;. When multiple distance
matrices are provided, we face the problem that, due to
rate heterogeneity among the alignments, their distances
cannot readily be compared to di]T. . ERaBLE thus applies a
rescaling of the input distances, in order to use them for
branch length estimation. Compared to WLS, this entails
surprisingly little computational overhead.

In the following, we first describe our new method and
the data sets on which we compared its performance
to that of other possible approaches for the same task
(“Methods” section). Then, we present the results of our
experiments on these data sets (“Results and discussion”
section).

Methods

In this paper, we assume that the analysis focuses on
a collection of orthologous genomic regions, or genes,
G1,Ga, ..., Gy, whose evolution mostly differs because
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of rate heterogeneity. In other words, the trees describ-
ing their evolution are topologically compatible [31]. This
is an optimal scenario for the methods we describe here,
but it does not preclude their application to real-world
datasets where this assumption will be necessarily violated
to some degree. Gene tree topological incompatibilities
may in fact arise due to incomplete lineage sorting [32, 33],
gene duplication and loss [34], or even lateral gene trans-
fer (see [35] for an excellent review of these phenomena).
An even stronger assumption, which is useful to clarify the
meaning of branch lengths and rates at a genomic level, is
that of the proportional model [4, 36], which we describe
further below.

Defining phylogenomic branch lengths
The length of branch e in the gene tree for Gi, denoted
here bgk), generally represents the average (or expected)
number of substitutions per site, occurred between the
endpoints of e. If we let x and y denote these endpoints,
we can rewrite this as:
S(k)
bgk) — ﬂ, (1)
Ni

where s,(cl;) is the (expected) number of substitutions in Gy

occurred between x and y, and Ny is the sequence length
of gene Gi.

We wish to give the same meaning to the branch lengths
of the phylogenomic (or species) tree representing the
evolution of genes G1, Go, . . ., Gy,. If we define the length
of branch e in this tree as the average (or expected) num-
ber of substitutions per site between its endpoints x and y,
we then have:

>
k=1
be=""1—.
> Ni
k=1

()

This definition determines the relationship between the
branch lengths in the species tree and those in the gene
trees. If we let N = ) "} | N, and use Eq. (1), then Eq. (2)
can be rewritten as:

1 m
- )
be = 1?71 Nib; (3)

In other words, branch length b, in the species tree is
equal to an average of the corresponding branch lengths
b in the gene trees, weighted by the lengths of the gene
sequences.

Note that in this paper we assume that genes are sam-
pled in different, partially overlapping sets of taxa, mean-
ing that a branch in a gene tree will in general correspond
to a path in the species tree. Thus, in Eq. (3), and in the
equations that follow, it is more accurate to interpret b,
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and bék) as lengths of paths connecting the same nodes
across all trees, depending on the taxa sampled for each
gene.

The proportional model

In order to provide a stronger link among branch lengths
in gene trees and in the species tree, and to set a mean-
ingful scale for the gene rate estimates, we now introduce
the proportional model [4, 36], an implicit assumption of
many phylogenomics methods [4, 5, 36], including ours.
This model assumes that each gene Gy induces the same
tree up to a multiplicative constant for branch lengths, ry,
representing its evolutionary rate (and up to removal of
branches leading to taxa for which Gy is not sampled). In
other words, if we let bfgk) denote the length of a branch e
(or a path, see above) in the gene tree for G, then

b

;is constant forallk =1,...,m. (4)
This model is a rough approximation of biological real-
ity, as typically the relative values of the gene rates
r1,72,..., "y, may vary over time — a phenomenon known
as heterotachy [37]. Nevertheless, this simple model
greatly restricts the number of parameters to estimate and
leads to robust analyses.

The proportional model, as specified by Eq. (4), defines
relative rates, that is, it determines ry up to a multiplica-
tive constant. Here, we take ry as the rate of Gy, relative to
the “phylogenomic rate’, that is, we require ry = b /be.
Equation (3) then implies that the weighted average of
gene rates must be 1. In fact, by substituting bgk) with r¢b,
into Eq. (3), and dividing both sides by b,, we obtain:

1
N ZNkrk =1 (5)
k=1

We will use this equation later on, to set a meaningful
scale for the gene rates output by our method (and others).
The same rescaling will be applied to the returned branch
lengths, as they are strictly linked to the rates.

The ERaBLE method

The new method presented here, ERaBLE (Evolution-
ary Rates and Branch Length Estimation), simultaneously
estimates gene rates and the branch lengths of a phy-
logenomic tree of given topology, using a collection of
distance matrices — one distance matrix per gene Gy. As
we illustrate in our experiments (Results section), these
distance matrices can either be directly estimated from
pairwise alignments of the gene sequences, or they can
be calculated from gene trees inferred for each Gi. A
C++ implementation of ERaBLE is available on the web at
http://www.atgc-montpellier.fr/erable/.
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Let Ly designate the set of taxa for which the sequence

of Gy is available. For i,j € Lg, let then (Si(jk) denote the
input distance for gene Gy between taxa i and j. Given a
tree topology T with leaves labelled by the taxa in L =
ke Lk, the goal is to estimate the branch lengths of 7°
and the evolutionary rates of the m genes under consider-
ation. 7 can either reflect a well-known phylogeny for the
taxa in L, or it can be inferred prior to ERaBLE’s execu-
tion, for example using MRP or other supertree methods.
We do not make any assumption on the degree of over-
lap between the taxon sets L. Extremely sparse data sets
may not determine a unique optimal solution to our esti-
mation problem, but this does not prevent the application
of ERaBLE.

Now let b, denote the estimated length for branch e.
This determines the additive distance d;; between any two

taxa i and j, simply defined as the sum of the be for all e
in the path between i and j in 7. For mathematical conve-
nience, we choose to estimate the inverses of gene rates:
we refer to &y, the estimate for 1/ry, as the scale factor
of gene Gy. ERaBLE thus seeks the values of l;e, for all
branches in 7, and of @, for k = 1,2, ..., m, that solve the
following optimization problem:

~ m k k ~\2
minimize Q@5 =3 ¥ wl (&k(s}j) —d,-») ,
k=1 {i,j}CLy
m m
subjectto Y Ziax = > Zy.
k=1 k=1

(6)

ERaBLE can efficiently solve this problem for any choice
(k)
ij<
rationale behind the objective function Q(&,b) and the
constraint in problem (6), and provide practical choices

of positive values for w;;” and Zj. Below, we explain the

for wg() and Zy. Then, we briefly describe the algorithm
that allows ERaBLE to efficiently solve problem (6).
Details are provided in Additional file 1. Lastly, we show
how to rescale the optimal values for l;e and @, so that
they comply with their definitions in Egs. (3) and (5).

The objective function. As predicted by the proportional
model, we would like the distances in the phylogenomic
tree to be approximately equal to the gene-specific dis-
tances, up to the multiplicative factor ry. Thus, we would
like to set the l;e and @y, so that:

(k)
(,Ail'/‘ ~ SL

" ~ &kéi(jk) forallk € {1,2,...,m}and i,j € Ly.

The optimisation criterion Q(&, I;) provides a score for
the discrepancy between the dj; and the scaled distances
aid l(lk) It is a WLS criterion, where wtg.k) is a strictly posi-

tive weight indicating the confidence given to the distance
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estimate § i(jk), and which ideally is inversely proportional to
its variance. In our experiments, we have chosen the sim-
ple approach of setting wlq() = N (i.e., the length of the
alignment for gene Gi), but ERaBLE is capable of using
more sophisticated weightings (e.g., [5, 38]).

WLS is a special case of GLS, a class of criteria that
account for the covariances between the (Si(jk). However,
GLS criteria are rarely used for phylogenetic inference,
because of the computational complexity of optimizing
them, and because of the difficulty of evaluating the
covariances. WLS is a good compromise, and it is notably
used in the well-known algorithm of Fitch and Margoliash
[39] and in FastME [40].

Criterion Q(&, b) is similar to those by Bevan et al. [5]
and Criscuolo et al. [25]. The optimisation problems in
these papers, however, seek optimal values for 2[,7 directly,
without assuming any relationship between these dis-
tances and a tree (namely without assuming additivity).
ERaBLE, instead, assumes a particular topology 7, and
constrains the distances 21,7 to be additive with respect to
T, meaning that its problem unknowns are the branch
lengths in 7.

The constraint. Q(&, b) is trivially minimized by setting
all & = 0, and all l;e = 0. In order to obtain more mean-
ingful solutions, while ensuring mathematical tractability,
we adopt a linear constraint over the d&y: the constraint in
(6) is in fact the most general form for such a linear con-
straint. In Additional file 1, we show that the right-hand
side in this constraint is irrelevant to the end results, as it
only determines their scale, which is subsequently reset by
the step described in Rescaling the outputs below.

As to the choice for Z, the two simplest approaches
are to set Zp = 1 [4, 25] or Z; = Ni. The latter results
in a constraint that is similar in spirit to Eq. (5) above, as
it constrains more strongly the rates (or more precisely
their inverses) of long genes. However, our experiments
have shown that both these approaches can incur in
significant over-estimation of the scale factors & for
genes appearing in a small subset Ly of closely related
taxa. In Additional file 2, we show a small example where
the reasons for this are evident. In order to deal with this
problem, we have chosen to set Z; = Ny ZiJeLk Si(ik) in all
the experiments below, an approach that at the same time
puts a stronger constraint on the scale factors of long
genes — like (5) above — and that we have experimentally
verified to largely fix the over-estimation problem for
the ay.

Solving the problem. The one in (6) is a classic
quadratic programming problem, which can be solved
using Lagrange multipliers [41]. As we show in Additional
file 1, this yields a system of O(n 4 m) linear equations in
O(n + m) unknowns (all the l;e and the &), where # is the
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number of taxa in L, and m is the number of genes. Calcu-
lating naively the coefficients of this system and solving it
would require O(mn* + (n + m)?) time and O((n + m)?)
auxiliary memory (i.e., not including the memory to store
the input), but careful adaptation of techniques for WLS
branch length calculation [5, 42, 43] leads to a reduction
of the algorithm’s complexity to O (mn? + n®) time and
O (mn + nz) auxiliary memory. In Additional file 1, we
describe this algorithm in detail.

Given that problem (6) can be seen as a generalization,
for several distance matrices, of standard WLS branch
length estimation, it is interesting to note that, for m =
O(n), their computational complexities coincide — as
standard WLS requires O (n?’) time and O (nz) memory
[42]. If instead m >> n, which is the most common sce-
nario in phylogenomics, an attractive aspect of ERaBLE
is that its complexity grows linearly in m, which makes it
particularly suited to analyze phylogenomic data sets from
large collections of genes (typically several thousands)
sampled across a moderate number of taxa (few hun-
dreds at most). This is indeed the scenario that we have
tested in the experiments in the “Results and discussion”
section, where m varies from 500 to about 7,000 and
n = 40.

Finally, we remark that for some data sets the optimal
solution of problem (6) may not be unique. This can
happen when some pairs of taxa do not co-occur in any
input distance matrix (note that this is a necessary but not
sufficient condition for multiplicity of solutions). All such
cases are recognized by ERaBLE, and the user is notified
of the existence of multiple alternative solutions beyond
the one returned.

Rescaling the outputs. Equation (5) shows that, as a con-
sequence of their definition, the gene rates should have a
weighted average of 1. We thus require that the estimated
rates also satisfy this property, meaning that we need to
rescale the @y so that the inverses of the new scale factors
satisfy Eq. (5). In other words, we multiply the &, obtained
by solving problem (6) by a correction factor ¢ such that

m

1 N,
FODE S
Nk—lc' k

By solving this equation for ¢, we obtain:

1 N
c= 2ok 7)
k=1 %k
Moreover, note that in order for El,-j ~ c~&k8i(jk) to still hold,
the same rescaling by ¢ must be applied to the estimated
branch lengths. In conclusion, ERaBLE returns:

1 ~
and c¢-b,

~

c-
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as estimates of ry and b, — the rate of gene Gy and the
phylogenomic length of branch e, respectively.

Other phylogenomic distance-based methods

In our experiments, we have compared ERaBLE to a
number of other approaches that bioinformaticians and
evolutionary biologists may adopt in order to estimate
gene rates and the branch lengths of a species tree in
a phylogenomic context. These approaches are imple-
mented as analysis pipelines, and described in detail
in the “Results and discussion” section. While some of
these pipelines implement standard techniques such
as maximum-likelihood or distance-based analysis of a
concatenated alignment, most pipelines are based on
two phylogenomic distance-based methods that we now
describe.

SDM (Super Distance Matrix) has the objective to con-
struct a distance matrix summarizing the topological
signal in a collection of gene-specific distance matrices
[25]. This “average” matrix can then be used to infer a
phylogenomic tree, using distance-based methods based
on a single matrix. SDM applies two transformations to
the input matrices — it multiplies each of them by a scale
factor, and adds a scalar to each column and row (thus
extending or shrinking external branches in the underly-
ing gene tree) — with the goal of bringing them as close
as possible to each other. The matrices thus obtained
are then averaged to obtain a matrix that can then be
analyzed with other distance-based methods. Our experi-
ments use SDM*, a variant of SDM that only applies the
scale factor transformation to the input matrices, which
avoids altering the ratio between the lengths of internal
and external branches in the reconstructed tree. We note
that the implementation of SDM* includes a preprocess-
ing step that corrects the input matrices to make them
satisfy the triangle inequality. Since this step, as expected,
affected negatively the estimation of branch lengths (but
helps that of the tree topology), we removed it from the
original code. In our experiments, the average matrix
produced by SDM* is used to estimate the branch lengths
of a fixed topology 7 using standard OLS, and gene rate
estimates are obtained by taking the inverses of the scale
factors returned by SDM*. Average distances and scale
factors are rescaled as described for ERaBLE, that is,
multiplied by the correction factor c in Eq. (7) above.

DistR [5] was conceived to estimate gene rates from a
collection of distance matrices, and from the alignments
used to calculate the distances. DistR uses the alignments
to approximate the variances of the input distances, with
the classical formulae by Bulmer [38]. These variances
are then used in a distance-based optimization problem
akin to that solved by SDM* — the main difference being
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the constraint on the scale of the results. DistR returns
estimates for the gene rates, and, as a byproduct, a dis-
tance matrix that we use to estimate the branch lengths
of a fixed topology 7 using standard OLS, as done for
SDM*. No rescaling of the outputs was conducted for
DistR, as it automatically produces rates and distances at
a meaningful scale.

Data sets

In this section, we describe the data sets that we have
used in our experiments to evaluate the performance
of ERaBLE and competing methods. The first data set
consists of 500 simulated replicates: for each replicate,
we take a random tree over 40 taxa, and for each tree
we simulate sequence data for 500 genes, which are
only present in a random subset of taxa, and evolve at
different rates. The second data set consists of the 6,953
exon alignments for 40 mammals in OrthoMaM v8 [44].
Detailed descriptions follow.

Simulated data. Each of the 500 replicates is obtained as
follows.

e Gene trees. A tree T? is taken randomly (without
replacement) from the 5,000 trees on n = 40 taxa in
the original test data set for PhyML [45]. This tree is
then rescaled to a total branch length of 1, by dividing
all branch lengths by their sum. Call the resulting tree
T!. We then construct m = 500 gene trees
T1, ..., Ty by multiplying the lengths of all the
branches in T by factors #1, . . ., & randomly drawn
from a continuous uniform distribution on the
interval [ 0.4, 9]. This interval gives biologically
realistic branch lengths [45].

e Sequence generation. For each gene tree T, we
generate a DNA alignment consisting of n = 40
sequences of length Ny, where Ny is an integer drawn
uniformly from the interval [ 200, 600]. We chose
relatively short sequences to avoid making the
simulated data sets too informative, so as to be able to
discriminate among the estimation accuracies of the
methods tested. Each alignment is generated with
Seq-Gen [46], using Ty and the model K2P+TI", with
ratio between transition and transversion rates R = 2
(equivalent to k = 4 ([47] Sec. 1.2.4)) and with a
continuous gamma distribution with shape
parameter 1, to model rate heterogeneity across sites.

® Missing data. To simulate the partial overlap in the
gene presence/absence patterns typical of real data
sets, for each alignment we randomly remove a
number of sequences. More precisely, for each of the
m alignments generated in the previous step, we
draw a parameter p uniformly between 0 and 1, and
then we suppress each sequence with probability p. If
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the number of remaining sequences in Ly is less than
4, then we leave 4 sequences chosen randomly out of
the 40, so as to guarantee a minimum amount of data
to estimate the rate for that gene.

e Model tree definition. We call the tree that we wish
to reconstruct the “model tree”, and we denote it by
T. Clearly, T must be the same as 7° and T, up to
their scale, and up to the removal of the taxa missing
from all the simulated alignments. In order to define
the correct scale of the model tree, we define tree 72,
with the same topology as T and T*, and branch
lengths defined by b = ~ Y /- Nib where b
denotes the length of e in T, and N = Y j_; Ni.
Note that this is the same as Eq. (3), whose
justification is amply given above. Finally, we obtain
the model tree T by taking the restriction of T2 on
the set of taxa L = | Jj—; Lk

e Model rates definition. Similarly to the model tree,
the “model gene rates” must be the same as #1, ..., 4,
up to their scale. The absolute values of 1, . . . , £, are
in fact unrecoverable from the data. By imposing
Eq. (5) to the rescaled rates, we must have:

tr 1 &
rr = —, whereF = — Nity.
k F N/; klk

OrthoMaM data set. OrthoMaM (v8) [44] consists of a
collection of single-copy orthologous phylogenetic mark-
ers, selected among the genomes of the 40 mammals in
the Ensembl v73 database [48]. We downloaded the entire
set of the 6,953 nucleotide exon alignments in OrthoMaM
v8, filtered with trimAl [49]. Alignment lengths Ny range
from 231 to 17,103 (median: 702), and each alignment
contains a variable subset Ly of taxa, with 4 < [Lg| < 40
(median: 27).

Results and discussion

In order to compare the performance of ERaBLE to that
of other approaches, we have conducted a number of
experiments on the data sets described in the “Methods”
section. For each of the 500 simulated replicates and for
the OrthoMaM data set, we compare the branch length
and gene rate estimates obtained by a number of com-
peting approaches, including ERaBLE. For the OrthoMaM
data set (6,953 genes), which is an order of magnitude
larger than the simulated replicates (500 genes), we also
compare their running times and memory usage.

Since, to the best of our knowledge, no tool is read-
ily available for the simultaneous estimation of branch
lengths and gene rates in a phylogenomic context, for our
comparisons we have assembled a number of pipelines
from existing methods. Besides ERaBLE, these methods
include SDM* [25] and DistR [5], which however were
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conceived for other tasks than ours. We refer to the
“Methods” for a brief description of how we adapted these
tools to our goals. We describe the pipelines below.

Analysis protocol
The OrthoMaM data set and each replicate in the sim-
ulated data set have the same structure: they consist of
m gene alignments Aj,As,...,A, over the taxon sets
Li,Ly,...,L, (m = 500 for the simulated data sets, m =
6,953 for OrthoMaM). In addition to these inputs, the
tested methods are also provided with a reference topol-
ogy T, over the set of taxa L = | J;_; Lk, to which they
aim to assign branch lengths. For simulated data, 7 is the
topology of the model tree T, whereas for OrthoMaM T
is the mammalian tree topology in Additional file 5. The
outputs are a tree estimate T with topology 7, and gene
rate estimates 71, . . .
The tested methods are classified in the three frame-
works described in the “Background” section: supertree,
superalignment and medium-level. Note that for distance
estimation, as well as for maximum likelihood (ML) tree
reconstruction, we use the model TN93+T, as it is the
most complex nucleotide substitution model for which
an analytic formula for pairwise distance estimation is
available. In the following, we denote by I'; the contin-
uous Gamma distribution used for pairwise distance
estimation, and by I'g the discrete Gamma distribution
based on 8 categories, which we adopt for ML tree infer-
ence. Also note that for pairwise distance estimation,
the shape parameter for the Gamma distribution cannot
be estimated from the data, and thus must be set to a
realistic value by the user [47] (more detail on this point
below). All tested methods are depicted schematically
in Fig. 1 and their names together with short descrip-
tions can be found in Table 1. A detailed description
follows.

-
s P

Supertree methods. For each alignment A; we infer a
gene tree T; with PhyML [45, 50], using the model
TNO93+I's. The shape parameter for the Gamma distribu-
tion is set to 1 for the simulated data sets (that is, the
value used to generate the data), and left free to esti-
mate for the OrthoMaM data set. Unless otherwise stated,
in the following experiments PhyML is free to estimate
the topology of T, which is realistic when gene trees are
inferred as part of a separate analysis, for example to pro-
vide the input for supertree topology reconstruction. In
other experiments, we have constrained PhyML to recon-
struct gene trees of topology agreeing with 7, an approach
that significantly reduces running times. (More precisely,
the topology of Ty is constrained to be the restriction of
T to Lg.) This is the correct way to proceed when the
only goal is the estimation of branch lengths in a reference
tree. We will come back on this second approach when
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comparing the computational efficiencies of the methods
tested.

Standard supertree methods, such as MRP [20, 21],
would then only consider the topologies of the inferred
gene trees 11, Ty,..., Ty, but this makes it impossible
to estimate branch lengths for the phylogenomic tree. In
order to conserve branch length information, we con-
struct the additive distance matrices D1, D>, ...,D,, cor-
responding to these gene trees — that is, the distance
between taxa i and j in Dy equals the sum of the lengths
of the branches between i and j in T. Note that, as addi-
tive distances uniquely determine a tree [51], Dy can just
be interpreted as a different representation for 7j. We test
three methods based on these additive matrices (hence
“add” in their names).

e SDM*add. We run SDM* on D1, Dy, ..., D,,, with
Dy weighted by the alignment length Ni. The average
matrix and scale factors thus obtained are then
multiplied by the scaling factor ¢ in Eq. (7), thus
giving a scaled average matrix Dgpy+, and gene rate
estimates (the inverses of the resulting scale factors).
Finally, on the basis of Dgp+ we assign OLS branch
lengths to the reference topology 7, using FastME
[40].

e DistRadd. We run DistR on Dy,D»,...,D,,

(and A1, Ay, ..., Ay), thus obtaining gene rate
estimates and an average matrix Dp;sr. The latter is
then used to assign OLS branch lengths to 7, with
FastME.

® ERaBLEadd. We run ERaBLE on Dy, D>, ...,D,, and
T, with the weighings for wl(uk) and Zy described in

the “Methods” section. ERaBLE directly provides gene

rate estimates and branch length estimates for 7.

Note that it is problematic to evaluate the variances of
the distances computed by SDM* and DistR (those in
Dgpy+ and Dpiger, respectively). This is why we used OLS
branch length estimation for the last step in SDM*add
and DistRadd.

Medium-level methods. From each alignment Ay, we
estimate a distance matrix Ay, using FastME [40] with
the model TN93+T".. Note that estimation of the shape
parameter for the Gamma distribution would require
joint comparison of multiple sequences [47], but here
we only use pairwise comparisons. Thus, we set the
shape parameter to 1 for the simulated data sets (that
is, the value used to generate the data), and to 0.5 for
the OrthoMaM data set, as we consider this as a realistic
estimate for mammals. (E.g., the median shape parameter
estimated by PhyML when inferring the OrthoMaM gene
trees is 0.493.) We test three methods identical to those
described above for supertree methods, except that they
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Fig. 1 Pipelines of the analyses applied to both data sets, represented as flowcharts. We refer to the “Analysis protocol” subsection for a detailed

use the estimated matrices A1, Ag, ..., A,, instead of the
additive matrices deriving from the ML gene trees. We
call these methods SDM*, DistR and ERaBLE. (See again
Fig. 1.)

Superalignment methods. Let Agyp denote the align-
ment obtained by concatenating Ay, ..., A,,. We test two
methods based on Agyp.

® Concat+ML. We assign branch lengths to the
reference topology 7 by running
topology-constrained PhyML on Agp, with the

model TN93+T'g. We call the resulting tree
YA"cOmaHML. Here the shape parameter for the
Gamma distribution is left free to estimate. In fact,
even though for each gene alignment A taken
separately we may set this parameter to 1 for the
simulated data, or to 0.5 for OrthoMaM, these values
cannot be used on the concatenation Ag;yp. This is
because the alignments A, Ay, ..., Ay, derive from
trees at different scales, meaning that rate variation in
Asyp will be larger than that on a single Ay, and the
shape parameters smaller (PhyML estimates 0.487 for
OrthoMaM, and 0.7 on average for the simulated
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Table 1 Names and short descriptions of the methods tested

Name Brief description

Concat+Dist  Distance-based analysis of the concatenated alignment

Concat+ML ML analysis of the concatenated alignment

SDM*add SDM* run on the gene tree distance matrices (+ post-
processing)

DistRadd DistR run on the gene tree distance matrices (+ post-
processing)

ERaBLEadd ERaBLE run on the gene tree distance matrices

SDM* SDM* run on the estimated distance matrices (+ post-
processing)

DistR DistR run on the estimated distance matrices (+ post-
processing)

ERaBLE ERaBLE run on the estimated distance matrices

data). As to gene rate estimates, 7 is then obtained as
the ratio between the total length of the ML gene tree
Ty (a source tree for supertree methods) and the total
length of the tree that is obtained from TConcat+ML by
taking its restriction to Lg. For OrthoMaM, which,
unlike the simulated data set, does not have model
gene rates and a model tree, we take the outputs of
this method as reference. The choice of PhyML over
more computationally efficient alternatives is due to
its greater availability of models, which may entail
better accuracy. (See also Additional file 7, where we
report about the effects of using alternative ML
methods in our experiments.)

e (Concat+Dist. From Agp, we estimate a distance
matrix Agyp, using FastME with the model
TN93+TI'.. The shape parameter for the Gamma
distribution is set to the value estimated above by
PhyML on Agyp. Then, on the basis of Agp, we
assign OLS branch lengths to the reference topology
T, using FastME. Call the resulting tree YA"ConcaHDist.
Finally, in order to estimate gene rates, we use the
same procedure as that for Concat+ML, but in a
distance-based context: 7 is obtained as the ratio
between the total length of a distance-based gene tree
j}fl and the length of the restriction of %ConcawDist to

L. Distance-based gene trees 7%, ..., T% are
obtained from the estimated distance matrices
A1, ..., Ay, using FastME with default options.

Results and discussion for the simulated data

Given the large number of replicates, the simulated
data set is especially useful to compare the estimation
accuracy of the methods tested. For each method we
have plotted estimation errors against the correct values
of the parameters to estimate (branch lengths and gene
rates), which are known for the simulated data. Figures 2
and 3 show the accuracies of all tested methods in the
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estimation of branch lengths and gene rates, respec-
tively. For gene rates, the scatterplots are logarithmic,
as rates are inherently ratios (e.g. rates x and 1/x, with
x > 0, should be depicted as equally distant from
rate 1).

Branch length estimation. The most accurate estimates
of branch lengths are produced by Concat+ML and
ERaBLEadd (see Fig. 2). Then, intermediate results are
obtained by SDM*add, ERaBLE and SDM*, where some
biases are observed: SDM*add seems to underestimate
branch lengths, whereas ERaBLE appears to overestimate
them, proportionally to the branch length. Currently, we
do not have an explanation for these biases, which how-
ever are small (< 5 %) relative to the length of a branch (cf.
the slope of the point cloud). Finally, DistRadd, DistR and
Concat+Dist are all affected by relatively strong estima-
tion problems for branch lengths: consider, for example,
the mean fraction of variance unexplained, which for
these methods is tens of times that of Concat+ML and
ERaBLEadd. For DistR this is not surprising, as this
method was only conceived to estimate gene rates (and
not for species tree estimation) [5]. As for Concat+Dist,
it is clear that the construction of a distance matrix
from the superalignment entails a significant loss of
information.

Gene rate estimation. With the exception of SDM-based
methods (SDM* and SDM*add), all methods are approx-
imately equally accurate in the estimation of gene rates
(see Fig. 3), the best method being, as expected, Con-
cat+ML. As apparent in the two scatterplots at the top
of Fig. 3, SDM-based methods often strongly underesti-
mate (by a factor of 2 or more) the rates of some genes.
Typically these are genes that are only present in a small
subset of closely related taxa. Moreover, for the other
genes where this problem is not present, rate estimates
tend to be slightly overestimated (see the red core of the
point cloud, which lies above the horizontal red line).
The reasons for this issue lie in the constraint used in
the optimization problem solved by SDM*, which causes
the same phenomena as those described in Additional
file 2. The constraint used by ERaBLE avoids these
issues.

Discussion. A common feature of the experiments
on branch length and gene rate estimation above is
that medium-level methods are generally less accurate
than their supertree counterparts (compare SDM* to
SDM*add, ERaBLE to ERaBLEadd, DistR to DistRadd).
Again, this is not surprising, as supertree methods are
based on additive distance matrices (D1,Ds,...,Dy,),
which are expected to be more accurate estimates of the
correct distances than the distances estimated directly
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Fig. 2 Accuracy of branch length estimates in the simulated data set. For each method, model branch lengths b, (x-axis) are plotted against
estimation errors Be — b, (y-axis) for all branches in all 500 model trees (500 x 77 = 38,500 points per plot). Colors (from blue to red) indicate
increased density of points. The horizontal red line corresponds to no estimation error. Method names are shown at the top of each plot, followed
by the mean (over 500 values) of the fraction of variance unexplained of (b.) relative to (55) (see Additional file 3)
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from the alignments (A1, A,...,A,). However, infer-
ring additive distance matrices comes at a (computa-
tional) cost, as we shall show on the experiments on the
OrthoMaM data set in the next section.

We conclude noting that the only methods that do not
incur in any major accuracy problem on the simulated
data set are ERaBLE, ERaBLEadd and Concat+ML. How-
ever, their running times and memory requirements are
very different: on this data set, Concat+ML is five hundred
times slower than ERaBLE (about 3h 30 m vs. 25 s on aver-
age for a single replicate on a cluster machine with 200 GB
RAM and 2.66 GHz CPU) and requires far more memory
(4.2 GB vs. 70 MB). In this case the computational effort
to analyse the simulated data sets is clearly not problem-
atic for Concat+ML. This is because a simulated replicate
data set is relatively small (m = 500). We look in more
detail at running times and memory usage in the experi-
ments in the next section, which are on a computationally
more challenging data set.

Results and discussion for the OrthoMaM data set
Assessing estimation accuracy on the OrthoMaM data
set is more problematic than on the simulated data set,
first, because the correct values for the branch lengths and
gene rates are not known and, second, because statistical
noise may play an important role here, as no replicates
are available. We address the former issue by adopting
the estimates obtained by Concat+ML as reference val-
ues. This is justified by the observation that Concat+ML
provides the most accurate branch length and gene rate
estimates on the simulated data set.

On the other hand, the OrthoMaM data set allows us to
observe the robustness of the methods tested to violations
of the proportional model, whose assumptions are not
expected to hold in real data sets. Moreover, given the
relatively large number of genes, this phylogenomic data
set is particularly appropriate to assess the computational
feasibility of the approaches we implemented.

Computational efficiencies. Running times and memory
usages of the tested methods are reported in Table 2. We
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decomposed running times in two parts: first (Ty), we
look at the times necessary for preprocessing steps (essen-
tially gene tree estimation for supertree methods and
distance estimation for medium-level methods); second
(T2), we show the remaining running times, to actually
produce branch length and gene rate estimates.

Preprocessing times (T; in Table 2) show an advan-
tage of medium-level methods (T in the order of the
min), over supertree methods and Concat+ML, and the
advantage of constraining PhyML to only optimize branch
lengths and model parameters (T in h), rather than also
seeking an ML topology (T in days). Note however that
running times in preprocessing steps is highly and eas-
ily parallelizable, meaning that waiting times on parallel
architectures will be much lower than the running times
indicated here.

Actual processing times (Ty) and memory require-
ments (M) in Table 2 illustrate the main strength of the
new methods we propose here: while for most methods
the running times are in the order of the hours (up to
about 41 h for branch length estimation in Concat+ML)
and memory usage in the order of the gigabytes, ERaBLE
and ERaBLEadd only require a few seconds and a few
hundred megabytes on the OrthoMaM data set. Particu-
larly heavy are the memory requirements for Concat+ML:
only users with access to large memory machines may
use this method on a large data set (with several thou-
sands of genes) such as OrthoMaM. As for the difference
between ERaBLE and the other distance-based methods
(SDM-based and DistR-based), this is consistent with
the differences in computational complexities of these
methods, which only for ERaBLE is linear in m. The only
method with computational costs comparable to those of
ERaBLE is Concat+Dist, which however on the simulated
data leads to inaccurate branch length estimates.

Branch length estimation. Figure 4 shows the accu-
racy of all tested methods in the estimation of branch
lengths. These experiments confirm that, not surprisingly,
DistR-based methods are inaccurate at this task — as
already observed in the simulated data set. Moreover, it

Table 2 Computational efficiencies on the OrthoMaM data set for the tested methods

Concat+Dist Concat+ML SDM*add DistRadd ERaBLEadd SDM* DistR ERaBLE
T ~0 3h20m/39h28m 2m46s 2m46s 2m46s
T 5m4ls 41h16m 8h2m 2h9m 75s 8h33m 2hém 75
M 889 MB 117GB 12GB 28GB 222 MB 12GB 3.0GB 221 MB

NoTe.— The first row gives (T¢) the running time to obtain the data on which subsequent computations are based: the superalignment and the distance-based gene trees
for Concat+Dist, the superalignment and ML gene trees for Concat+ML, the ML gene trees and resulting additive distances for the three supertree methods, and the
estimated distances for the three medium-level methods. When ML gene trees are used (Concat+ML, SDM*add, DistRadd and ERaBLEadd), two alternative approaches are
possible and therefore two running times are provided: first that to infer trees with fixed topology (3 h 20 m), and then that to infer trees where the topology is also estimated
(39 h 28 m). The second row gives (T3) the remaining running time to obtain estimates for branch lengths and gene rates. The third row (M) gives the maximum amount of
memory allocated. All the experiments were conducted on a PC with 4 GB RAM and a 2.7 GHz CPU, except branch length estimation (T2 and M) for Concat+ML, which,
because of the large memory requirements, was run on a cluster machine with 200 GB RAM and a 2.66 GHz CPU
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is clear that the tested methods provide branch length
estimates at slightly different scales, as their scatterplots
tend to be distributed along non-horizontal lines. SDM-
based and ERaBLE-based methods produce branches that
are on average 5-20 % longer than those estimated by
Concat+ML (the same holds for DistR-based methods,
although it is harder to observe, because of the large
variance of the estimates), whereas Concat+Dist tends to
produce shorter branches.

The main reason for these discrepancies is the presence
in OrthoMaM of an inverse correlation between the
rate of a gene and the depth of its alignment: whereas
superalignment methods are sensitive to gene alignment
depths — with branch lengths estimates more influenced
by genes with many aligned sequences, and thus evolving
less rapidly — this is not true for the other tested methods.
This observation explains the scale differences observed,
as we explain in more detail in Additional file 4.

Gene rate estimation. Figure 5 shows the accuracy of all
tested methods in the estimation of gene rates. Two obser-
vations can be made: (1) the main difference in accuracy
is now between supertree methods and all other meth-
ods (whereas on simulated data, the main difference was
between SDM-based methods and the others); (2) again
estimates are at slightly different scales, with supertree
and medium-level methods having a tendency to estimate
lower rates than Concat+ML.

Observation (1) is due to the use of a unique Gamma
shape parameter (0.5), common to all genes, to estimate all
matrices Ay, A, ..., Ay, Although this is common prac-
tice in distance-based analyses, for many genes this is far
from the biological reality, as the shape parameters are
themselves very different from gene to gene (the distri-
bution of shape parameters inferred by PhyML has a 5 %
quantile of 0.21, a median of 0.493, and a 95 % quan-
tile of 1.73). Because distance estimates are monotonically
decreasing functions of the shape parameter [47], under-
estimating (or overestimating) the shape parameter for
gene Gy results in overestimating (respectively, underes-
timating) all the distances in Ay, and therefore the rate
r¢. This explains the poor accuracy in gene rate estima-
tion for all methods that use Aj, Ag,..., A, (ie., the
medium-level methods and Concat+Dist).

It is possible to confirm this explanation by inspecting
the genes corresponding to dots that significantly deviate
from the red line in Fig. 5, which as expected tend to have
ML Gamma shape parameters strongly deviating from 0.5
(not shown). Alternatively, Fig. 5 bis in Additional file 6
shows that if we use gene-specific Gamma shape param-
eters in the estimation of A1, Ag,..., A,,, then rate esti-
mates become much more accurate for all methods that
use these matrices. (However, note that this information is
not available from pairwise sequence comparisons only).
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Figure 5 bis also shows that, once the effect described
above is taken away, SDM-based methods become again
the least accurate — consistent with our results for the
simulated data set.

As for observation (2) — the fact that gene rate esti-
mates tend to be lower than those of Concat+ML for all
methods except Concat+Dist (see Fig. 5) — it is easy to
understand that this is strictly linked to the fact that the
estimated branches tend to be longer than those of Con-
cat+ML for all methods except Concat+Dist (see Fig. 4).

Discussion. One of the main differences with the results
on the simulated data is the difficulty of setting a scale for
branch lengths and gene rates. We expect this observation
to extend to most real data sets, where inferring absolute
estimates, rather than relative, may be very challenging.

Apart from this scaling issue, the results on the
OrthoMaM data set are largely in line with those obtained
on the simulated data set: DistR-based methods (DistR
and DistRadd) lead to inaccurate branch length estimates,
and SDM-based methods (SDM* and SDM*add) lead to
inaccurate gene rate estimates — which is not surpris-
ing, given that neither of these methods was originally
designed for both these tasks (in fact SDM* was designed
for neither of these tasks). As for Concat+Dist, the high
variance in branch length estimates observed on the sim-
ulated data seems to not be present for OrthoMaM. This
is surprising, but we recall that it is hard to draw firm con-
clusions on estimation accuracy from this data set, for the
reasons explained above.

That leaves us with ERaBLE-based methods and Con-
cat+ML. It would seem that the choice among ERaBLE,
ERaBLEadd and Concat+ML should largely be done
based on their tradeoff between accuracy and compu-
tational cost (the first method being the fastest and
the last the most accurate). One important lesson
that the experiments on OrthoMaM highlight, how-
ever, is that unless we adopt gene-specific parameters
modelling rates-across-sites heterogeneity (e.g., gene-
specific Gamma shape parameters), medium-level meth-
ods such as ERaBLE may produce inaccurate gene rate
estimates.

Conclusion

In this paper we have examined the notions of branch
lengths in a species tree and of gene rates in a phyloge-
nomic context. We have presented ERaBLE, a novel and
efficient method for the estimation of these quantities,
which are often overlooked in phylogenomic analy-
ses — for example by classical supertree methods — or
whose estimation requires computationally-demanding
methodologies — usually likelihood-based analysis of a
concatenated superalignment. Note that for large phy-
logenomic data sets such as OrthoMaM - where the
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concatenated alignment consists of more than 6 million
sites — the application of likelihood is very onerous,
especially in terms of memory requirements, which
may be problematic for some users. Recall that in our
experiments we have constrained the tree topology; a full
likelihood analysis would further increase computational
costs. Moreover, in Additional file 7, we show that ML
methods more efficient than PhyML — namely ExaML [52]
and FastTree 2 [53] — are still very inefficient relative to
ERaBLE.

Methodologically, ERaBLE represents the fastest avail-
able method to estimate the branch lengths of a given
topology from a collection of distance matrices — one
matrix per gene under consideration. It generalises and
reduces to (when only one matrix is provided) classi-
cal WLS branch length estimation. The most important
difference with single-gene WLS is that ERaBLE also
estimates gene rate parameters, modelling the different
“speeds” of evolution of different genes — with little com-
putational overhead.

ERaBLE’s limitations are its reliance on a tree topology —
either a well-accepted phylogeny or a tree reconstructed
prior to its execution — and its seemingly strong assump-
tions about the data (orthology of the genes under
analysis, and the proportional model). However, we
stress that these hypotheses represent an ideal scenario.
As shown by the experiments on the OrthoMaM data
set, ERaBLE can perform well on real-world data sets
where these assumptions will probably be violated to
some degree, namely because of phenomena such as
heterotachy [37] or limited topological incompatibilities
due to incomplete lineage sorting (ILS), gene duplication
and/or lateral gene transfer [35]. In order to investigate
the robustness of ERaBLE and competing methods to
these violations, it would be interesting to simulate
data following more realistic assumptions, for example
those of the multispecies coalescent [33] to study the
effects of ILS. Furthermore, it would be useful to model
alignment errors which are undoubtedly present in real
data.

ERaBLE can be used in two ways, which differ in the
way the input distance matrices are obtained: they can
either be directly estimated from gene alignments, or
they can be based on phylogenetic trees inferred for
each gene. Our experiments (“Results and discussion”
section) show that both these approaches provide valid
alternatives to existing methodologies: the alternative
methods are either only accurate for one of the two tasks
that ERaBLE carries out — SDM-based methods provide
branch lengths estimates comparable to those of ERaBLE,
while DistR-based methods provides marginally better
gene rates estimates — or computationally very demand-
ing — as in the case of ML analysis of a concatenated
superalignment.
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A possible use of ERaBLE is as a complement to clas-
sical supertree methods (e.g., MRP [20, 21]), which often
disregard branch length information, yet present in the
input trees. In this context, ERaBLE would allow to rapidly
assign meaningful branch lengths to the tree topologies
reconstructed by these methods.

Alternatively, when (most of) the evolutionary rela-
tionships between the species under consideration are
relatively well-known, ERaBLE can be used as a stan-
dalone, using a reference topology as input. This is the
scenario that we have assumed in our experiments on the
OrthoMaM data set. An interesting question for future
research is the robustness of ERaBLE’s estimates to errors
in the reference topology.

Furthermore, it would be interesting to investigate the
possibility of combining the assignment of branch lengths
made by ERaBLE with a criterion for topological infer-
ence, allowing to score different tree topologies for their fit
with the data. This is analogous to what is done in classical
distance-based phylogenetics, where least squares branch
lengths can be used in combination with criteria such
as minimum evolution [54]. However, this would proba-
bly need more methodological advances, first, to reduce
further the time needed to evaluate a topology — if pos-
sible, by extending the approaches shown for particular
cases of WLS in recent studies [40, 43, 55] — and, sec-
ond, to avoid issues of statistical inconsistency, which are
known to affect single-matrix WLS in combination with
minimum evolution [56].

Availability of supporting data
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porting the results of this article can be found online at:
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