
HIV-1 Induces DCIR Expression in CD4+ T Cells
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Abstract

The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells,
is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that
DCIR can also be detected in CD4+ T cells found in the synovial tissue from rheumatoid arthritis (RA) patients. Given that RA
and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation
status, we hypothesized that HIV-1 could promote DCIR expression in CD4+ T cells. We report here that HIV-1 drives DCIR
expression in human primary CD4+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive
persons) and cells acutely infected in vitro (seen in both virus-infected and uninfected cells). Soluble factors produced by virus-
infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted
viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following
acute infection of CD4+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a
mitochondria-mediated generation of free radicals) and -independent intrinsic apoptotic pathways (involving the death
effector AIF). Finally, we demonstrate that the higher surface expression of DCIR in CD4+ T cells is accompanied by an
enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR
membrane expression in CD4+ T cells, a process that might promote virus dissemination throughout the infected organism.
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Introduction

The Dendritic Cell ImmunoReceptor (DCIR) is a recently

described member of the C-type lectin family. It is mainly expressed

in cells of the myeloid lineage (i.e. neutrophils, dendritic cells,

monocytes and macrophages) and also in B cells [1]. Its precise role

and function are not completely understood but a recent work has

suggested that DCIR might regulate expansion of dendritic cells

(DCs) [2]. Moreover, it was previously established that DCIR can

behave as an attachment factor for human immunodeficiency virus

type-1 (HIV-1) on DCs and contribute possibly to virus dissemina-

tion by promoting both cis- and trans-infection processes [3].

Interestingly, DCIR is expressed on the surface of CD4+ T cells in

rheumatoid arthritis (RA) patients before glucocorticoid treatment

and a decrease of DCIR expression was seen with disease

improvement [4]. This study provides the first indication that

DCIR expression in CD4+ T cells can be promoted by

inflammatory and immune hyperactivated conditions since RA is

considered as a chronic, systemic inflammatory disorder character-

ized by a chronic T-cell response that has escaped normal control

mechanisms [4,5]. In addition, an increased surface expression of

DCIR has been detected in patients suffering from a myocardial

infarction [4], which corroborates that this molecule is induced by

an inflammatory environment.

It is now well established that HIV-1 infection causes a slow but

progressive impairment of the immune system, which is accom-

panied by a chronic hyperactivation of CD4+ and CD8+ T cells

[6,7,8]. Consequently, infected patients display a heightened

expression of various activation markers such as HLA-DR and

CD38 in both CD4- and CD8-expressing T cells [9]. A relentless

destruction of CD4+ T cells represents another hallmark of HIV-1

infection. The progressive loss of CD4+ T lymphocytes, either

infected or uninfected (also called bystander), occurs through

several distinct mechanisms. For example, it has been proposed

that cell death is resulting from direct killing of virus-infected cells

[10], elimination of HIV-1-infected CD4+ T cells by cytotoxic T

lymphocytes (CTL) [11], syncytia formation through a gp120-

mediated cell-to-cell fusion process [10], cytotoxic effects caused

by some soluble viral proteins (e.g. Tat and Vpr) [10] and, finally,

increased susceptibility to apoptosis in both infected and bystander

cells that can be due, for example, to an interaction between the

external envelope protein of HIV-1 (i.e. gp120) and primary

cellular receptor/coreceptor (i.e. CD4 and CXCR4 or CCR5)

[10,12]. Importantly, previous studies suggest a direct correlation

between the magnitude of apoptosis in circulating CD4+ T cells

and disease pathogenesis [13,14].

During evolution, the immune system has developed a number

of strategies to fight viral infections, such as necrosis, autophagy

and apoptosis. The last physiological mechanism is used by the

body to eliminate overabundant cell populations and defective

cells, and this form of cell death displays a propensity to be

amplified and/or deregulated in various pathological processes

[15]. Two major signalling pathways have been described to be

involved in apoptosis induction, i.e. the intrinsic and extrinsic
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pathways. The first intracellular program is initiated by the

disruption of the mitochondrial membrane and the release of

mitochondrial proteins, such as cytochrome c, into the cytoplasm

after developmental cues or severe cell stresses, such as DNA

damage [16]. The extrinsic pathway is activated by the binding of

ligands such as Fas ligand (FasL) (also termed CD95L), tumor

necrosis factor (TNF), and TRAIL/Apo-2 ligand to their death

receptors Fas/CD95/Apo-1, TNFR1 and DR4/DR5, respectively.

These two pathways converge via activation of intracellular caspase-

3 and -7. The caspase biochemical cascade ultimately triggers cell

death through the destruction of cellular proteins and induction of

DNA fragmentation [16]. It is known that apoptosis can also result

from a caspase-independent process, which relies on the apoptosis-

inducing factor (AIF). AIF represents the first mitochondrial protein

shown to mediate cell death without the requirement for caspases.

This protein is released from mitochondria and translocates to the

nucleus, where it mediates nuclear features of apoptosis such as

chromatin condensation and DNA degradation [17].

It has been shown that HIV-1 induces apoptosis in both infected

and bystander immune effector cells [18,19]. It has been

established that at least five different virus-encoded proteins can

induce apoptosis (i.e. Env, Tat, Nef, protease and Vpr) and three

of them share a capacity to induce cell surface expression of death

ligands and receptors of the TNF family (i.e. Env, Tat and Nef).

Previous work indicates that HIV-1 induces a mitochondrial

membrane permeabilization and release of AIF [20]. The

regulatory protein Nef can confer protection against apoptosis

but display also a converse capacity to induce apoptosis in

neighbouring immune effector cells [21]. Cross-linking of CD4

molecules is the probable mechanism by which the virus-encoded

gp120 can cause apoptosis in bystander CD4+ T cells [12,22].

Moreover, the viral protease, which inactivates anti-apoptotic Bcl-

2 with a concomitant induction of the pro-apoptotic procaspase-8,

renders the cell more prone to mitochondrial dysfunctions in

response to internal or external death signals [23]. It has been

proposed that apoptosis of bystander cells in the context of HIV-1

infection is likely to be multifactorial. Possible mechanisms include

soluble factors secreted by HIV-1-infected cells as well as virus-

encoded proteins (e.g. Env, Nef, TAT and Vpr) [24,25]. For

example, supernatants from HIV-1-infected DCs contain several

heat labile soluble factors that mediate the killing of bystander

thymocytes [26] and soluble factors were found to induce

apoptosis in bystander cells [27,28]. In addition, the viral accessory

protein Vpr mediates apoptosis of bystander cells by causing the

release of AIF [24].

Therefore given that RA and HIV-1 infection are both

characterized by inflammatory and immune hyperactivation

conditions and considering the recently described link between

RA and DCIR expression in CD4+ T cells, we hypothesized that

HIV-1 can trigger DCIR expression in CD4+ T cells.

Results

DCIR is up-regulated in CD4+ T cells from HIV-1-infected
persons and following acute infection in vitro

DCIR has been detected in CD4+ T cells originating from

patients with active RA, a chronic disease characterized by a state

of persistent inflammation and immune activation. Because a

systemic inflammatory disorder and immune hyperactivation

represent also key features of the HIV-1 infection, we first assessed

DCIR expression in CD4+ T cells isolated from infected

individuals. To this end, the level of ex vivo DCIR expression

was evaluated by flow cytometry in peripheral blood CD4+ T cells

from two HIV-1-infected aviremic/treated patients. Results

depicted in Figure 1A clearly indicate that DCIR is expressed in

this cell subset in the context of a natural infection as opposed to

what is seen in cells from uninfected healthy donors. Flow

cytometry analyses were also performed on circulating CD4+ T

cells from additional seropositive individuals but who were this

time viremic and treatment-naive. Again an up-regulation of

DCIR expression was detected in such samples (Figure 1B), which

supports the concept that HIV-1 infection promotes expression of

this C-type lectin receptor on the surface of circulating CD4+ T

cells. A cell activation marker was also monitored as well (i.e.

HLA-DR) and a positive correlation was found between DCIR

and HLA-DR since both cell surface constituents were found to be

increased in CD4+ T cells from viremic/treatment-naive persons

compared to uninfected control samples (data not shown).

In an attempt to investigate further the capacity of HIV-1 to

promote DCIR expression, in vitro studies were performed using

human primary CD4+ T cells acutely infected with X4- and R5-

using virus isolates (i.e. NL4-3 and NL4-3/Balenv, respectively).

Exposure of purified CD4+ T cells to NL4-3 for 3 days triggers

DCIR expression on the cell surface (Figure 1C). Similar observa-

tions were made when infection was carried out in parallel with the

two tested viral isolates. For example, DCIR was detected in

9.061.5% and 8.660.8% of CD4+ T cells inoculated with NL4-3

and NL4-3/Balenv, respectively (n = 3) (data not shown). In some

experiments, cells were first pre-treated with the antiretroviral drug

efavirenz (EFV) before virus infection. This experimental strategy

was used to decipher if the virus-mediated induction of DCIR

requires a complete replicative cycle (i.e. productive infection).

Treatment of purified CD4+ T cells with EFV reduced significantly

the percentage of DCIR-expressing cells, thus indicating that

productive infection with HIV-1 is mandatory to lead to DCIR

expression. Altogether these results suggest that HIV-1 drives DCIR

expression in vivo and in vitro in CD4+ T cells, a cell population

recognized as a major cellular reservoir for HIV-1.

Experiments were also performed with Vpr- or Nef-deleted

mutant to define the possible contribution of each single gene in

the virus-mediated induction of DCIR expression on the surface of

CD4+ T cells. Induction of DCIR was similar when cells were

acutely infected with wild-type and Vpr- or Nef-deleted mutant

viruses (data not shown).

HIV-1 induces DCIR expression in both infected and
bystander CD4+ T cells

We next set out to determine whether induction of DCIR

occurs in virus-infected and/or bystander cells. This fundamental

Author Summary

The type II transmembrane protein DCIR belongs to the C-
type lectin domain family receptor and is predominantly
expressed in cells of the myeloid lineage. However recent
evidence suggests that it can also be induced in CD4+ T
cells placed under an inflammatory condition. We assessed
the capacity of HIV-1 to promote DCIR expression in CD4+

T cells because the establishment of an inflammatory state
is a hallmark of this retroviral infection in humans. We
report here that a higher DCIR expression is detected not
only in CD4+ T cells acutely infected with HIV-1 in vitro but
also in clinical cell samples. Additional studies suggest a
possible link between DCIR induction and apoptosis
through both caspase-dependent and -independent in-
trinsic pathways. The greater expression of DCIR on the
surface of CD4+ T cells results in more efficient virus
attachment/entry, replication and transfer processes.

HIV-1 Drives DCIR Expression
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Figure 1. HIV-1 induces DCIR expression in CD4+ T cells under both in vivo and in vitro conditions. Purified CD4+ T cells were isolated
from uninfected healthy donors and two HIV-1-infected aviremic/treated persons (P,0.05) (A) or three viremic/treatment-naive patients (P,0.001)
(B). Next, cells (16106) were stained with the R-PE-labeled anti-DCIR monoclonal Ab. Expression of DCIR is shown as a dotted line, whereas the
continuous line represents staining obtained with an isotype-matched irrelevant control Ab. For uninfected healthy donors, data shown correspond
to a single experiment representative of 5 distinct donors. (C) Purified human primary CD4+ T cells (16106) were pulsed or not with NL4-3 (100 ng of
p24). Three days later, DCIR expression was evaluated by flow cytometric analysis through the use of a R-PE-labeled anti-DCIR monoclonal Ab.
Expression of DCIR is shown as a dotted line, whereas the continuous line represents results obtained with an isotype-matched irrelevant control Ab.
Data shown in panel C correspond to a single experiment representative of 3 independent experiments (P,0.01). Statistical analyses were made by
comparing fluorescence intensities in samples from HIV-1-infected patients or NL4-3-infected cells and the isotype-matched irrelevant control Ab.
doi:10.1371/journal.ppat.1001188.g001
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question was addressed through the use of a novel HIV-1 reporter

construct, NL4-3-IRES-HSA, which, unlike most of the previous

reporter constructs, will lead to the production of fully competent

virions [29]. This X4-tropic infectious molecular clone of HIV-1

codes for all viral genes, with no deletions in env, vpr, or nef. It also

expresses a cell surface reporter molecule, the murine heat-stable

antigen (HSA), which permits the detection by flow cytometry of

cells productively infected with HIV-1 through the surface

expression of the HSA molecule. Briefly, human primary CD4+

T cells were exposed to NL4-3-IRES-HSA for 3 days and surface

expression of HSA and DCIR was monitored by flow cytometry.

Data shown in Table 1 demonstrate that 15.863.1% of cells are

productively infected with HIV-1 (i.e. HSA-positive), whereas

DCIR is expressed in 5.060.8% of cells and 2.360.2% of cells

express both HSA and DCIR (n = 3) (a representative donor is

depicted in Figure 2). Therefore, about 46% of DCIR-expressing

cells are infected with HIV-1 and 56% of DCIR-positive cells are

uninfected. It can be concluded that HIV-1 infection of CD4+ T

cells promotes membrane expression of this C-type lectin surface

receptor in both virus-infected and bystander cells.

DCIR expression in bystander cells is due to soluble
factors produced by CD4+ T cells productively infected
with HIV-1

Our previous findings indicate that HIV-1 induces DCIR

expression not only in virus-infected but also in bystander cells as

well. Our next set of experiments was aimed at defining the

possible involvement of soluble factors produced by infected cells

in the up-regulation of DCIR seen in bystander cells. To this end,

human primary CD4+ T cells were cultured with cell-free culture

supernatants from HIV-1-infected cells and DCIR expression was

monitored by flow cytometry. As shown in Figure 3, exposure of

CD4+ T cells to supernatants originating from cells acutely

infected with HIV-1 is sufficient per se to drive DCIR expression in

the three distinct donors studied.

Correlation between HIV-1-mediated DCIR expression
and apoptosis through both caspase-dependent and
-independent intrinsic pathways

The HIV-1-mediated induction of apoptosis in both infected

and bystander CD4+ T cells is a well-described phenomenon

[30,31,32]. The peak of apoptosis is observed usually after 2 to 3

days [20], the same time frame in which we detected the HIV-1-

dependent induction of DCIR. Therefore, we next assessed

whether there might be a connection between the virus-induced

DCIR expression and apoptosis. We initially assessed the ability of

NL4-3-IRES-HSA reporter virus to drive apoptosis in CD4+ T

cells using FITC-VAD-FMK staining. This fluorochrome-labeled

pan-caspase inhibitor is a specific and convenient-to-use marker of

apoptotic cells, which can identify very early events of apoptosis

associated with caspase activation (i.e. pre-apoptotic cells) [33].

Our studies indicate that NL4-3-IRES-HSA virions can potently

mediate apoptosis in human primary CD4+ T cells (data not

shown). As expected, the percentages of apoptotic cells in both

virus-infected (i.e. HSA-positive) and bystander cells (HSA-

negative) were significantly reduced upon EFV treatment (data

not shown). To establish a link between DCIR expression and

apoptosis following HIV-1 infection, we carried out a series of

investigations with the broad-spectrum caspase inhibitor Z-VAD-

FMK [34]. As illustrated in Figure 4, the HIV-1-mediated DCIR

up-regulation was partially reduced in presence of Z-VAD-FMK,

thus suggesting that the virus-directed increased expression of

DCIR is associated with both caspase-dependent and -indepen-

dent apoptotic pathways.

To shed light on the nature of the caspase-independent death

mechanism, we studied the involvement of the apoptotic effector

protein AIF based on the previous report showing that HIV-1

Figure 2. DCIR is expressed in both virus-infected and bystander CD4+ T cells. Cells (16106) were either left (A) uninfected or (B) infected
with NL4-3-IRES-HSA reporter virus (100 ng of p24). Three days later, a double-stain flow cytometric method was performed to assess the
percentages of DCIR-expressing and HSA-positive cells. Data shown correspond to a single experiment representative of 3 independent experiments.
doi:10.1371/journal.ppat.1001188.g002

Table 1. HIV-1 induces DCIR expression in CD4+ T cellsa.

Cell surface marker Mock NL4-3-IRES-HSA

DCIR 1.060.2b 5.060.8

HSA 1.260.8 15.863.1

DCIR/HSA 0.660.5 2.360.2

aCD4+ T cells (16106) were either left uninfected (mock) or infected with NL4-3-
IRES-HSA (100 ng of p24). Three days later, a double-staining method was used
to estimate DCIR and HSA expression by flow cytometry.

bData shown correspond to the means6SD of triplicate samples from 3 distinct
donors.

doi:10.1371/journal.ppat.1001188.t001
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induces a mitochondrial-mediated but caspase-independent apop-

tosis controlled by AIF [35]. The possible contribution of AIF was

investigated through the use of the inhibitor of apoptosis N-acetyl-

L-cystein (NAC), which blocks nuclear translocation of AIF. Our

results demonstrate that the HIV-1-induced expression of DCIR

on the surface of human primary CD4+ T cells is inhibited but not

completely by a NAC treatment (i.e. 16.263.4% in HIV-1-

infected cells compared to 6.761.7% in virus-infected cells also

treated with NAC) (n = 3) (these three donors are depicted in

Figure 5). Experiments were performed also with both Z-VAD-

FMK and NAC to see if this double treatment can totally inhibit

the virus-mediated induction of DCIR expression. Unfortunately

the concomitant use of the two compounds is leading to cell

toxicity (data not shown). It should be noted that no toxicity is seen

when each compound are tested individually (data not shown).

Nevertheless, we provide evidence that there is a close connection

Figure 3. Soluble factors secreted by virus-infected cells promote DCIR expression. Cell-free supernatants from mock- and HIV-1-infected
cells were used to treat purified CD4+ T cells. DCIR expression was monitored 3 days later by flow cytometry. Expression of DCIR is shown as a dotted
line, whereas the continuous line represents staining obtained with an isotype-matched irrelevant control Ab. Data shown correspond to studies
performed with three distinct donors.
doi:10.1371/journal.ppat.1001188.g003
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between DCIR expression and apoptosis (through caspase-

dependent and -independent pathways) after acute infection of

CD4+ T cells with HIV-1.

HIV-1 infection of CD4+ T cells results in DCIR expression
partly due to a free radical, caspase-dependent apoptosis
pathway

In HIV-1-infected patients, the hyperactivation status is

accompanied by an increased production of free radicals (e.g.

superoxide anion, hydroxyl radical and hydrogen peroxide). This

excess of reactive oxygen species (ROS) damages cell membranes

and generates apoptosis [36]. To establish a putative relationship

between DCIR expression and apoptosis induced by free radicals

after HIV-1 infection, we performed a double staining with anti-

DCIR and FITC-VAD-FMK in virus-infected CD4+ T cells

treated with catalase because this enzyme is a known scavenger of

ROS (including hydrogen peroxide). Results depicted in Figure 6

suggest that free radicals are indeed playing a functional role in the

HIV-1-mediated induction of DCIR seen in apoptotic cells (i.e.

positive for both DCIR and FITC-VAD-FMK).

Hydrogen peroxide (H2O2), a representative ROS, has been

extensively used to study apoptosis following an oxidative stress

[37]. Thus, additional experiments were performed in human

primary CD4+ T cells using H2O2 as an inducer of an apoptotic-

like cell death. Exposure of mitogen-stimulated CD4+ T cells to

concentrations of H2O2 ranging from 20 to 60 mM led to a dose-

dependent increased in DCIR expression (Figure 7A). Cell

viability was reduced when using doses of H2O2 $45 mM (data

not shown). Consequently, the subsequent experiments were

performed using H2O2 at a final concentration of 30 mM. A

time-course analysis indicated that the H2O2-mediated expression

of DCIR is maximal at 16 h post-treatment and reached a plateau

at a longer time period (i.e. 32 h) (Figure 7B and data not shown).

The specificity of the relation between DCIR expression and

apoptosis was addressed by estimating surface expression of two

other HIV-1 receptors, namely DC-SIGN (used as a negative

control) and CD4. Our data demonstrate that both cell surface

molecules are not modulated upon induction of apoptosis by

H2O2 (data not shown). Importantly, DCIR was promoted as well

by staurosporine (data not shown), a well-known inducer of

apoptosis in a wide range of cell lines [38], which further confirms

the connection between DCIR and apoptosis.

Given that H2O2 induces also necrosis and mediates apoptosis

primarily via a caspase-dependent pathway [39,40], we performed

experiments with Z-VAD-FMK. A pre-treatment with Z-VAD-

FMK prevented DCIR expression in activated CD4+ T cells after

H2O2 stimulation (i.e. 21.463.4% in H2O2-treated cells compared

to 1.060.2% in cells treated with both H2O2 and Z-VAD-FMK)

(n = 3) (a representative donor is depicted in Figure 8A).

Experiments were repeated in quiescent CD4+ T cells and we

made similar observations (data not shown). Overall our results

indicate that the H2O2-driven induction of DCIR is not due to

necrosis and occurs through a caspase-mediated signal transduc-

tion pathway. Moreover, we estimated the percentages of

apoptotic cells that express DCIR following H2O2 treatment.

Figure 4. Virus-mediated induction of DCIR is partly prevented by a caspase inhibitor. Mitogen-activated CD4+ T cells (16106) were first
either left untreated or treated for 1 h with the caspase inhibitor Z-VAD-FMK (50 nM), after which HIV-1 was added (100 ng of p24), where indicated.
DCIR expression was monitored 3 days later by flow cytometry. Data shown represent the means 6 SD of triplicate samples from three independent
experiments. Asterisks denote statistically significant data (*, P,0.05; **, P,0.01).
doi:10.1371/journal.ppat.1001188.g004
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For this purpose, human primary CD4+ T cells were labelled with

FITC-VAD-FMK and anti-DCIR. We found that 12.263.2% of

apoptotic cells are also positive for DCIR (n = 3) (a representative

donor is depicted in Figure 8B), which confirms the relationship

between DCIR and apoptosis in CD4+ T cells.

HIV-1 binding/entry, infection and transfer processes are
all promoted by ROS-mediated induction of DCIR

Taken together, our findings demonstrated that the HIV-1-

mediated apoptosis promotes DCIR surface expression in CD4+ T

cells. Previous results indicate that DCIR can capture HIV-1 on

DCs, enhance de novo virus production by DCs (i.e. infection in cis),

and increase DC-mediated virus transmission to CD4+ T cells (i.e.

infection in trans) [3]. Experiments were thus carried out to define

first whether HIV-1 attachment/entry in CD4+ T cells can be

affected by the H2O2-dependent increase in DCIR expression. As

illustrated in Figure 9A, the early steps in the virus life cycle (i.e.

binding and entry) are enhanced in CD4+ T cells following

exposure to H2O2 (i.e. 12.561.8 versus 3.860.8 ng/ml of p24).

We next set out to determine whether acute HIV-1 infection was

also affected under these conditions. A statistically significant

increase in virus production was seen in cells treated with H2O2

(Figure 9B). Similarly, virus transfer was also enhanced when

DCIR-expressing CD4+ T cells are used as transmitter cells

(Figure 9C). To further strengthen the contribution of DCIR in

the virus trans-infection pathway, CD4+ T cells were first exposed

to H2O2 to induce DCIR expression. Thereafter, DCIR-negative

and DCIR-positive cells were isolated and used separately in HIV-

1 transfer experiments. Data shown in Figure 9D demonstrate that

HIV-1 transmission toward uninfected CD4+ T cells (i.e. recipient

cells) is augmented when using, as transmitter cells, DCIR-positive

CD4+ T cells. Finally, to substantiate the participation of DCIR in

HIV-1 replication, H2O2-treated/virus-infected CD4+ T cells

were subjected to a dual staining immunofluorescence method to

detect both intracellular HIV-1 p24 and surface DCIR. An

increase in virus binding/entry was detected in H2O2-treated cells

Figure 5. HIV-1-dependent DCIR induction is due also to a caspase-independent process involving AIF. Cells (16106) were first either
left untreated or treated for 1 h with NAC, after which HIV-1 (100 ng of p24) was added. DCIR expression was monitored 3 days later by flow
cytometry. Expression of DCIR is shown as a dotted line, whereas the continuous line represents staining obtained with an isotype-matched irrelevant
control Ab. Data shown correspond to 3 independent experiments performed with distinct healthy donors.
doi:10.1371/journal.ppat.1001188.g005
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expressing DCIR (Figure 9E). A similar augmentation in cells

expressing both DCIR and p24 was detected following acute virus

infection (Figure 9F).

Discussion

It has been already recognized that neutrophils, monocytes,

DCs, macrophages and B cells constitutively express a high level of

DCIR, as opposed to CD4+ T cells that are negative for DCIR [1].

However, data from a recent work suggest that this type II

membrane glycoprotein is expressed on CD4+ T cells in RA

patients and the level of DCIR surface expression is higher in the

rheumatic joint compared to peripheral blood [4]. Since DCIR

expression is reduced following a local corticosteroid treatment, it

was proposed that there is a potential connection between an

inflammatory state and DCIR expression [4]. We established

previously that DCIR can serve as an attachment factor for HIV-1

[3], which is the causative agent of AIDS, another disease

characterized by a chronic inflammatory state. Starting from these

initial intriguing observations, we monitored DCIR expression on

Figure 6. H2O2 produced by HIV-1-infected cells promotes DCIR expression. Mitogen-stimulated CD4+ T cells (16106) were either left
untreated or treated with catalase before HIV-1 infection. Three days after virus infection, DCIR expression was measured by flow cytometry. Data
shown represent the means 6 SD of triplicate samples from three independent experiments. Asterisks denote statistically significant data (**, P,0.01;
***, P,0.001).
doi:10.1371/journal.ppat.1001188.g006

Figure 7. H2O2 mediates both apoptosis and DCIR expression. Mitogen-stimulated CD4+ T cells (16106) were exposed to increasing
concentrations of H2O2 for 16 h (A) or treated with a constant dose of H2O2 (i.e. 30 mM) for the indicated time lengths (B). Next, DCIR expression was
assessed by flow cytometry. Data shown represent the ratio of DCIR expression over basal expression. The ratio is calculated from the means 6 SD of
triplicate samples from three independent experiments. Asterisks denote statistically significant data (*, P,0.05; **, P,0.01; ***, P,0.001).
doi:10.1371/journal.ppat.1001188.g007
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the surface of circulating CD4+ T cells isolated from HIV-1-

carrying patients. We report here that DCIR is expressed on

CD4+ T cells originating from aviremic/treated and viremic/

untreated seropositive patients, whereas, no expression was

detected in cells from healthy donors. These results suggest that

DCIR expression on the surface of circulating CD4+ T cells seems

to be a generalized phenomenon in the context of various

inflammatory diseases.

To acquire additional information about the ability of HIV-1 to

induce DCIR expression in a cell subpopulation that is infected

under physiological conditions, we performed in vitro experiments

where human primary CD4+ T cells were acutely infected with

X4- and R5-tropic virions and monitored DCIR expression. We

showed that HIV-1 drives DCIR expression in both infected and

bystander cells. Moreover, we monitored DCIR levels in the CD4+

T cell subpopulation following acute HIV-1 infection of

unseparated peripheral blood mononuclear cells. Unfortunately,

no conclusive data could be obtained because we detected a high

mortality rate probably due to the presence of CD8+ T cells. In

HIV-1 infection, disease progression correlates with elevated levels

of apoptosis [13]. Therefore, we defined whether expression of the

immunoreceptor DCIR on the surface of CD4+ T cells in the

context of HIV-1 infection could perhaps be considered as a

possible marker of apoptosis for these cells. We performed

experiments and discovered effectively that there is a certain

correlation between HIV-1 infection, DCIR expression and

induction of apoptosis. We provide evidence that there is a

connection between HIV-1-mediated induction of DCIR expres-

sion and apoptosis, the latter being caused by a caspase-dependent

pathway in response possibly to a mitochondrial H2O2 generation

by virus-infected cells and a caspase-independent process involving

AIF. Our data are in agreement with published reports since Vpr

has been shown to induce cell death via the mitochondrial caspase-

independent death effector AIF [35] and Vpr can also induce a

decrease of mitochondrial membrane potential along with the

release of cytochrome c [41].

HIV-1 infection induces prolonged immune system activation

that may cause local or systemic oxidative stress and thus result in

oxidative damage. Oxidative stress occurs when the balance of

antioxidant protection and the production of free radicals,

Figure 8. H2O2 treatment drives DCIR expression in both nonapoptotic and apoptotic cells. (A) Mitogen-activated CD4+ T cells (16106)
were first either left untreated or treated for 1 h with the caspase inhibitor Z-VAD-FMK (50 nM), after which H2O2 (30 mM) was added, where
indicated. DCIR expression was monitored 16 h later by flow cytometry. Expression of DCIR is shown as a dotted line, whereas the continuous line
represents staining obtained with an isotype-matched irrelevant control Ab. Data shown correspond to a single experiment representative of 3
independent experiments. (B) Mitogen-stimulated CD4+ T cells (16106) were first treated for 16 h with H2O2 (i.e. 30 mM). Thereafter, DCIR surface
expression and caspase activation were monitored by flow cytometric analysis using a double-staining method consisting of FITC-VAD-FMK followed
by the R-PE-conjugated anti-DCIR. Data shown correspond to a single experiment representative of 4 independent experiments.
doi:10.1371/journal.ppat.1001188.g008
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Figure 9. HIV-1 attachment/entry, replication and transfer processes are all promoted in H2O2-treated CD4+ T cells. Target CD4+ T
cells (16106) were treated for 16 h with H2O2 (30 mM) to induce surface expression of DCIR. (A) Cells were next exposed to NL4-3 (100 ng of p24) for
1 h at 37uC, extensively washed to remove unabsorbed virons before assessing the p24 content. (B) Cells were first incubated with NL4-3 (100 ng of
p24) for 2 h at 37uC, washed extensively to remove input virus and cultured in complete culture RPMI-1640 medium supplemented with rhIL-2 for the
indicated number of days. Cell-free supernatants were collected and assayed for the p24 content. (C) Cells were exposed to NL4-3 (100 ng of p24) for
2 h at 37uC, next washed extensively to remove input virus, and finally co-cultured with autologous CD4+ T cells in complete culture RPMI-1640
medium supplemented with rhIL-2 for the indicated number of days. Cell-free supernatants were collected and assayed for the p24 content. Virus
production at day 2 is depicted in the small inserts (panels B and C). (D) Cells were exposed to NL4-3 (100 ng of p24) for 2 h at 37uC, washed
extensively to remove input virus, and maintained in complete culture medium supplemented with rhIL-2 for 3 days. Next, DCIR-negative and -
positive cells (used as transmitter cells) were isolated with magnetic beads and co-cultured with uninfected CD4+ T cells (used as recipient cells). Cell-
free supernatants were collected at 3 days following initiation of the co-culture and assayed for the p24 content. (E) Cells were first exposed to NL4-3
for 2 h at 37uC. Cells were extensively washed to remove unabsorbed virions and half of the cells were used to estimate the percentage of cells
positive for surface DCIR and intracellular p24. (F) The other half was maintained for 3 days in culture before assessing both DCIR and p24. Data
shown represent the means6SD of triplicate samples and correspond to a single experiment representative of three independent experiments.
Asterisks denote statistically significant data (*, P,0.05; **, P,0.01; ***, P,0.001).
doi:10.1371/journal.ppat.1001188.g009
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primarily reactive oxygen and nitrogen molecules are disturbed

[42,43]. Some viral proteins play a role in the intracellular increase

of ROS (e.g. superoxide anion, hydroxyl radical and hydrogen

peroxide) which in turn influence the increase in the apoptotic

index causing a decrease of CD4+ T cells and more importantly

increase in HIV-1 replication secondary to free radicals overpro-

duction [42]. This excess of ROS damages cell membranes and

generates apoptosis [36]. This may account for the loss of CD4+ T

cells seen during progression of HIV-1 infection toward AIDS.

Oxygen radicals produced under circumstances that occur during

opportunistic infections mediate apoptosis and this effect is

reversed by oxygen radical scavengers [44]. We corroborated that

human primary CD4+ T cells are sensitive to apoptosis caused by

H2O2, a representative ROS that has been extensively used to

study apoptosis following an oxidative stress [37]. Based on this

information and the previous demonstration that free radicals are

actively produced by CD4+ T cells from HIV-1-carrying patients

[36], we showed here that H2O2 induces also DCIR expression.

The H2O2-mediated induction of apoptosis was not only detected

in human primary CD4+ T cells but also in Raji and 293T cells

(data not shown). No increase in DCIR expression was seen when

using a previously reported anti-Fas monoclonal antibody [45]

(data not shown), which is an effector of the extrinsic apoptosis

pathway [46]. These results indicate that the DCIR induction in

CD4+ T cells seen after HIV-1 infection is partly associated with a

caspase-dependent intrinsic apoptotic process.

An increased expression of DCIR was also observed in a

proportion of bystander cells undergoing apoptosis. Experiments

carried out with cell-free supernatants from HIV-1-infected cells

revealed that soluble factors are sufficient to drive not only apoptosis

but also DCIR expression. The phenomenon of bystander cell

apoptosis is well described in the literature. Indeed, numerous viral

proteins have been described as responsible for causing apoptosis in

bystander cells (e.g. Env, Nef, TAT and Vpr) [24]. Supernatants

from HIV-1-infected DCs contain several heat labile soluble factors

that cause cell death in bystander thymocytes [26] and soluble factors

were shown to induce apoptosis in bystander cells [27,28]. The

transactivating protein Tat is released in the surrounding microen-

vironment and can be taken up by neighbouring bystander cells,

which will ultimately undergo apoptosis [28,47]. Vpr has been

detected in sera and cerebrospinal fluid from HIV-1-infected

patients [48,49] and this protein of viral origin is recognized as a

potent inducer of cell death via a caspase-independent mitochondrial

pathway [24,35]. Recently, Lenassi and co-workers established that

Nef induces the release of exosomes from T cells, which transport

extracellular Nef and cause apoptosis of bystander CD4+ T cells

[50]. Surprisingly, studies with Nef- or Vpr-deleted mutants suggest

that these two viral genes are not involved in the HIV-1-mediated

induction of DCIR expression in CD4+ T cells. Therefore, it can be

proposed that the virus-directed induction of DCIR and apoptosis is

caused by a multifactorial phenomenon that needs to be identified.

More relevant to the pathogenesis of HIV-1 infection, we

demonstrated that the H2O2-mediated induction of DCIR and

apoptosis is coupled with an increased virus binding/entry and

higher replication of HIV-1 in CD4+ T cells. Additionally, the

noticed up-regulated DCIR expression is also leading to more

efficient virus propagation. It can be proposed that DCIR, once

expressed onto such CD4+ T cells, can participate actively to HIV-

1 propagation. Although it might seem irrational that apoptotic

cells would be more susceptible to productive HIV-1 infection, it

should be stated that the fluorochrome-labeled pan-caspase

inhibitor FITC-VAD-FMK, which was used to monitor the link

between HIV-1-mediated DCIR expression and apoptosis,

permits to identify the very early events of apoptosis (i.e. pre-

apoptotic cells). Thus it is possible that virus binding/entry and

replication processes can still occur during a certain time period in

CD4+ T cells that are in a pre-apoptotic state. It is known that

HIV-1 exploits different strategies to escape the immune response

including a rapid/high mutation rate, down-regulation of major

histocompatibility complex class-I molecules, broad coreceptor

usage and destruction of both CD4- and CD8-expressing T cells

[51]. We suggest that HIV-1 can utilize DCIR as another tactic for

escaping the immune system and/or increasing its infectivity.

Different hypotheses may be formulated with respect to the role(s)

played by DCIR once expressed on the surface of CD4+ T cells.

It can be hypothesized that induction of apoptosis increases

virus attachment/entry likely through DCIR expression on the

surface of CD4+ T cells (Figure 10). This theory is supported by

our results showing that the H2O2-mediated induction of apoptosis

in CD4+ T cells and DCIR expression are not accompanied by a

modulation of surface expression of two other attachment factors

for HIV-1, i.e. DC-SIGN and CD4. DCIR carries an immunor-

eceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic

tail that is thought to be responsible for the immunoregulatory role

played by this cell surface molecule. The intracellular ITIM motif

of DCIR is involved in SHP-1 recruitment [52], a tyrosine

phosphatase known for its important role in maintaining cellular

homeostasis [53]. The protein tyrosine phosphatase SHP-1 has

also been shown to regulate HIV-1 transcription [54] and inhibit

antigen-receptor-induced apoptosis [55]. Interestingly, DCIR-

expressing cells following acute HIV-1 infection display a cell

cycle arrest (data not shown), which might permit virus attachment

despite the appearance of a pre-apoptotic state. Studies are

currently performed to address this possibility. Thus, the life cycle

of HIV-1 can be affected in several ways by the newly expressed

DCIR and recruited SHP-1 molecules.

It can also be postulated that DCIR expression may lead to

phagocytosis by macrophages and DCs of apoptotic CD4+ T cells

also infected with HIV-1, thereby promoting viral propagation

and infection of such antigen-presenting cells. It is well established

that macrophages play a central role in the pathogenesis of HIV-1

infection, functioning as stable viral reservoir due to their ability to

resist HIV-1-mediated cytopathicity. Of importance to note is the

previous report showing that phagocytosis of apoptotic cells

induced an increase in HIV-1 replication in macrophages [56].

Similarly, we observed that HIV-1 replication in macrophages is

enhanced when such cells are co-cultured with DCIR-positive

apoptotic CD4+ T cells treated with H2O2 (data not shown).

Additionally, instead of inducing an inflammatory immune

response, phagocytosis of DCIR-expressing apoptotic cells might

promote the generation of suppressor macrophages as described

previously for bacterial infections [57] and tumor cells [58]. This

would allow microorganisms such as HIV-1 to escape the immune

system. Alternatively, it is possible that DCIR is induced after

HIV-1 infection because it acts as a death signal for the cell and/or

as a sign to promote phagocytosis. It can also be proposed that

DCIR facilitates HIV-1 attachment before cell death, a process

leading to more extensive virus dissemination across the organism.

Supplementary experiments are warranted to validate these non-

mutually exclusive hypotheses.

Together, our work represents the first evidence that DCIR can

serve as a marker for apoptosis in the context of an HIV-1

infection. Additional studies are needed to define more firmly

whether there is a connection between the chronic inflammatory

state seen in HIV-1-infected persons and DCIR expression in

CD4+ T cells. Importantly, the exact contribution of the

immunoreceptor DCIR to HIV-1 pathogenesis needs to be

delineated because it might provide novel therapeutic avenues.
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Materials and Methods

Reagents
Recombinant human interleukin-2 (rhIL-2) and the non-nucleo-

side reverse transcriptase inhibitor EFV were obtained from the

AIDS Repository Reagent Program (Germantown, MD). The

mitogenic agent phytohemagglutinin-L (PHA-L) was purchased from

Sigma (St-Louis, MO). The culture medium for human primary

CD4+ T cells consisted of RPMI-1640 supplemented with 10% foetal

bovine serum (FBS), penicillin G (100 U/ml), streptomycin (100 U/

ml), glutamine (2 mM), which were all purchased from Wisent (St-

Bruno, QC), and primocine, obtained from Amaxa Biosystems

(Gaithersburg, MD). The culture medium for 293T cells was made of

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% FBS and penicillin G (100 U/ml), streptomycin (100 U/ml),

and glutamine (2 mM) (Invitrogen, Burlington, Canada).

Antibodies
R-Phycoerythrin (R-PE)-conjugated and fluorescein isothiocya-

nate (FITC)-labelled anti-DCIR monoclonal antibodies (clone

216110) and the corresponding isotype-matched irrelevant control

antibody (Ab) were purchased from R&D Systems (Minneapolis,

MN). The FITC-labelled anti-DC-SIGN monoclonal antibody (Ab)

(clone eB-h209) and the appropriate control Ab were purchased

from eBioscience (San Diego, CA). R-PE-labelled anti-HSA Ab

(clone M1/69) was purchased from Invitrogen (Burlington, USA),

whereas biotin-tagged anti-HSA (clone M1/69) was purchased from

BD Biosciences (Mississauga, ON). PE-Cy5 anti-streptavidin Ab

was obtained from eBioscience and the FITC-conjugated anti-p24

from Beckman Coulter (Mississauga, ON).

Production of viral stocks
Virions were produced upon transient transfection of human

embryonic kidney 293T cells as previously described [59]. The

infectious molecular clones used in this study included pNL4-3/

Balenv (R5-tropic), pNL4-3 (X4-tropic) and its derivative pNL4-3-

IRES-HSA (X4-tropic). The pNL4-3-IRES-HSA molecular con-

struct was obtained by replacing the enhanced green fluorescent

protein (eGFP) gene in the NLENG1-IRES vector (kindly supplied

by D.N. Levy, New York University College of Dentistry, New

York, NY) [60] with the coding sequence for mouse heat stable

antigen (HSA) [29]. Experiments were also carried out with NL4-

3-based mutant deleted in Nef (kindly supplied by S. Venkatesan,

National Institute of Allergy and Infectious Diseases, Bethesda,

MD) or Vpr (kindly provided by E.A. Cohen, Institut de

Recherches Cliniques de Montréal, Montréal, QC). The virus-

containing supernatants were filtered through a 0.22 mm cellulose

acetate syringe filter, ultracentrifugated and normalized for virion

content using an in-house sensitive double-antibody sandwich

enzyme-linked immunosorbent assay (ELISA) specific for the viral

p24 protein [61].

Cell culture
Purified human primary CD4+ T cells were isolated from

peripheral blood mononuclear cells (PBMCs) using a negative

selection kit according to the manufacturer’s instructions (Stem-

Cell Technologies, Vancouver, BC). Cells were obtained from

anonymous and paid, healthy volunteer donors that were

specifically solicited for provision of these samples. Healthy

subjects signed an informed consent approved by the Centre

Hospitalier de l’Université Laval Institutional Review Board.

These cells were either left untreated (to obtain quiescent cells) or

activated with PHA-L (1 mg/ml) for 3 days prior their use (to

obtain mitogen-stimulated cells) and maintained in complete

RPMI-1640 culture medium supplemented with rhIL-2 (30 U/ml)

at a density of 26106 cells/ml. Experiments were performed with

cell preparations containing a minimal amount of contaminants as

demonstrated previously (i.e. CD4+ T cells: purity .98%) [62].

Figure 10. Proposed working models for DCIR involvement in HIV-1 infection. DCIR expression is promoted not only in cells productively
infected with HIV-1 but also in bystander cells via both a mitochondrial (intrinsic) caspase-dependent apoptotic pathway and a caspase-independent
apoptotic process relying on AIF. The resulting DCIR induction on the surface of CD4+ T cells can affect virus replication by various means. For
example, virus binding can be increased through DCIR, a process leading to a more efficient HIV-1 propagation. Moreover, the cell cycle arrest seen in
DCIR-expressing cells can also promote virus attachment and the ensuing HIV-1 transmission despite apoptosis induction because of the association
between DCIR and SHP-1. It can also be postulated that DCIR expression on the surface of apoptotic CD4+ T cells also infected with HIV-1 might
facilitate phagocytosis by macrophages and DCs, thereby favoring infection of such antigen-presenting cells and viral propagation.
doi:10.1371/journal.ppat.1001188.g010
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CD4+ T cells from HIV-1 patients
Patient samples were obtained from two aviremic HIV-1-

infected patients that were undergoing antiretroviral therapy

(kindly provided by Dr. Rafick-Pierre Sékaly, Université de

Montréal, Montréal, QC) and also from three additional viremic

and treatment-naive patients (kindly supplied by Dr. Jean-Pierre

Routy at McGill University through the FRSQ - Réseau SIDA et

Maladies Infectieuses) [63]. Purification of CD4+ T cells was

achieved using magnetic beads as described above. The first

aviremic donor had a CD4+ T cell count of 463/mm3 and was

undergoing a combined antiretroviral therapy consisting of 3TC,

EFV and abacavir. The second aviremic donor had a CD4+ T cell

count of 499/mm3 and was treated with D4T and atazanavir. In

both individuals, the viral load was undetectable (i.e. ,50 copies/

ml). The CD4+ T cell counts for viremic/untreated patients A, B

and C were 290/mm3, 520/mm3 and 420/mm3 respectively,

whereas their respective plasma viral loads were 2246103,

1726103 and 836103 HIV-1 RNA per ml.

Ethics statement
Cells were obtained from anonymous and paid, healthy

volunteer donors that were specifically solicited for provision of

these samples. Healthy subjects signed an informed consent

approved by the Centre Hospitalier de l’Université Laval

Institutional Review Board. Patient samples were obtained from

peripheral blood in accordance with the guidelines of the

Institutional Bioethics Committee. All subjects signed an ethics

board-approved informed consent form.

HIV-1 infection of CD4+ T cells
In some experiments, purified CD4+ T cells (16106) were

incubated for 2 h with NL4-3, Nef-deleted NL4-3, Vpr-deleted

NL4-3, or NL4-3/Balenv (100 ng of p24). After three extensive

washes with phosphate-buffered saline (PBS), the cells were

cultured for 3 days in complete RPMI-1640 culture medium

supplemented with rhIL-2 (30 U/ml), before staining and flow

cytometry analysis. For other infection studies, CD4+ T cells were

incubated for 2 or 3 days with NL4-3-IRES-HSA (100 ng p24/106

cells), in the absence or presence of EFV (50 nM). Mock-infected

cells were used as negative controls.

Studies with cell-free supernatants
Purified CD4+ T cells (16106) were initially infected for 3 days

with NL4-3. Next, supernatants from cells acutely infected with

HIV-1 were filtrated and ultracentrifugated to eliminate cellular

debris. Finally, cells were incubated with such cell-free superna-

tants and DCIR expression and apoptosis were monitored by flow

cytometry. Controls consisted of cells incubated with cell-free

supernatants from mock-infected cells.

Flow cytometric analyses
Purified cells (16106) were incubated for 45 min at 4uC with

a combination of antibodies made of either FITC-anti-DCIR

(0.25 mg) and R-PE-anti-HSA (1 mg), R-PE-anti-DCIR (0.25 mg)

and FITC-VAD-FMK (0.5 mg), or R-PE-anti-HSA (1 mg) and

FITC-VAD-FMK (0.5 mg). Non-specific staining was assessed by

using an isotype-matched irrelevant control Ab for DCIR (i.e. FITC-

or R-PE-labeled IgG1) or mock-infected cells for HSA. Cells were

then washed twice with PBS and 0.5% bovine serum albumin. Cells

were fixed in 2% paraformaldehyde for 30 min at 4uC. Cell surface

expression of DCIR and HSA was monitored using an Epics ELITE

ESP apparatus (Coulter Electronics, Burlington, ON). Single stained

cells were used as controls for compensation adjustments.

Catalase assay
Purified CD4+ T cells (16106) were first pretreated with PEG-

catalase (200 U/ml) (Sigma) for 10 min at 37uC. Next, cells were

infected with NL4-3-IRES-HSA virions (100 ng of p24) and PEG-

catalase was added to the culture medium every day. Flow

cytometry analyses were performed to assess the percentage of cells

positive for DCIR and FITC-VAD-FMK.

Apoptosis studies
Apoptosis was induced by incubating resting or PHA-activated

CD4+ T cells (16106 cells/ml) with different concentrations of

H2O2 for increasing time lengths. Where indicated, apoptosis was

induced by a treatment for 16 h at 37uC with the protein kinase C

inhibitor staurosporine (1 mg/ml). The cell-permeable, FITC-

conjugated, pan-caspase inhibitor FITC-VAD-FMK (R&D Sys-

tems) was used to detect activated caspases in CD4+ T cells by flow

cytometry. Briefly, in a 24-well culture plate, cells (16106) in a

final volume of 1 ml were stained directly with 10 ml of FITC-

VAD-FMK and left at 37uC in the dark during the last 30 min of

the apoptosis induction period. Cells were washed once in PBS to

remove unbound reagent and fixed with paraformaldehyde or

labeled with another Ab before flow cytometry analysis. Inhibition

of apoptosis was achieved by pre-treating cells with Z-VAD-FMK

(50 mM) (R&D Systems) for 1 h before H2O2 stimulation or HIV-

1 pulsing. It is known that Z-VAD-FMK is an irreversible caspase

inhibitor that binds to the active site of activated proteases and

displays low cytotoxicity. Experiments aimed at studying the

contribution of caspase-independent apoptotic pathway were

performed using NAC (5 mM) from Sigma because this

compound prevents nuclear translocation of AIF [64].

HIV-1 binding/entry, infection and transfer experiments
Purified CD4+ T cells were treated with H2O2 (30 mM) during

16 h before performing the following experimental procedures. For

the binding/entry assay, cells (16106) were incubated for 60 min at

37uC with NL4-3 (100 ng of p24). After three extensive washes with

PBS to remove unabsorbed viruses, HIV-1 binding/entry was

quantified by estimating the p24 content. For the infection assay,

CD4+ T cells (16106) were incubated with NL4-3 (100 ng of p24) for

2 h. After three extensive washes with PBS, the cells were cultured in

complete RPMI-1640 culture medium supplemented with rhIL-2

(30 U/ml). Virus production was estimated by assessing the p24

levels in cell-free culture supernatants. For the transfer study, CD4+

T cells (16106) were incubated with NL4-3 (100 ng of p24) for 2 h

and after washes, autologous activated CD4+ T cells (16106) were

added (ratio 1:1) in complete RPMI-1640 culture medium

supplemented with rhIL-2 (30 U/ml). Every two days, half of the

medium was removed and kept frozen at 220uC and fresh medium

was added to the culture. Virus production was estimated by

measuring the p24 levels in cell-free culture supernatants. Virus

transmission was also assessed using purified DCIR-negative and -

positive cells. In brief, CD4+ T cells were first exposed to H2O2 to

induce DCIR expression. Next, DCIR-negative and DCIR-positive

cells were isolated and used separately in HIV-1 transfer experiments

as described above. Cell isolation was achieved using the EasySep

Biotin Selection kit according to the manufacturer’s instructions with

slight modifications (StemCell Technologies Inc., Vancouver, BC).

The biotinylated anti-DCIR antibody (clone 216110 from R&D

Systems) was used at a final concentration of 3 mg/ml. In some

experiments, a dual staining technique was used to estimate the

percentage of cells expressing surface DCIR and intracellular p24 by

flow cytometry. Staining of the intracellular viral p24 core protein

was achieved using the BD Cytofix/Cytoperm kit (BD Biosciences)

and the monoclonal KC57 anti-p24 Ab (Beckman Coulter).
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Statistical analyses
Statistical analyses were carried out according to the methods

outlined in Zar [65] and Sokal and Rohlf [66]. Means were

compared using Student’s t test. P values of less than 0.05 were

deemed statistically significant. Calculations were performed with

the GraphPad Prism software.
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assistance in writing this paper. We express gratitude to Wilfried Moreira

for critical and constructive comments for this study. We appreciate the

excellent technical contribution of Odette Simard, Renaud Tremblay,
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