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  ABSTRACT 

 Heparin has been shown to antagonize myotoxic effects of crotaline venoms. Here a very low heparin 
concentration (LHC) was examined in its ability to antagonize the neurotoxic/myotoxic effects of  Bothrops 
jararacussu  venom and its phospholipase A 

2
  myotoxin, bothropstoxin-I (BthTX-I), in an  in vitro  nerve-

muscle preparation and in mice gastrocnemius. Normalization of results was done by assays with commercial 
antibothropic antivenom (CBA). LHC (1 IU/ml) added to the incubation bath reduced by 4- and 4.5-fold 
( vs  2.8- and 2.5-fold by CBA) the neuromuscular paralysis, by 5.4 and 4.4-fold ( vs  2.5- and 13.3-fold by CBA) 
the percentage of fi bers damaged and by 6- and 1.7-fold ( vs  30- and 1.6-fold by CBA) the CK activity induced by 
 B. jararacussu  and BthTX-I, respectively. Protamine sulphate added 15 min after the incubation of the prepara-
tion with LHC+venom, avoided the LHC neutralizing effect against venom neurotoxicity. This strongly attests 
that given the polycationic nature of protamine, it probably complexed with the polyanionic heparin making it 
unattainable for binding to basic components of venom, reducing toxicity. Since heparin antagonism is gener-
ally stronger against venom effects than is myotoxin we discuss that other venom components than the BthTX-I 
are likely target for the antagonism promoted by the polyanionic heparin.  

 KEYWORDS:  Antagonism ,  neuromuscular   junction ,  neutralization ,  protamine    

   INTRODUCTION 

  Bothrops jararacussu  snake venom has been studied since 
the early 1900s ( Brazil, 1909 ) and its myotoxic action has 
been well documented. The notion that the venom presents 
also neurotoxic activity has come from frog nerve-muscle 
 in vitro  studies done over 25 years ago ( Rodrigues-
Simioni et al, 1983 ). Bothropstoxin-I (BthTX-I), a Lys49 
PLA 

2
  (lysine in position 49) from  B. jararacussu  venom 

(Homsi-Brandeburo et al, 1988), considered its major toxin 

reproduces the myotoxic and neurotoxic effects of the venom 
( Rodrigues-Simioni et al, 1983 ; Homsi-Brandeburo et al, 
1988), and both actions are probably partners in producing 
the severe effects of  B. jararacussu  envenoming ( Milani-
Junior et al, 1997 ;  Ribeiro and Jorge, 1997 ). 

 Strategies for minimizing the severe tissue damage at the 
snakebite site, in which antivenom therapy has been unsuc-
cessful, have been hastened in recent years ( Kanashiro et al, 
2002 ;  Soares et al, 2004 ;  Doin-Silva et al, 2008 ). Heparin is 
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  Animals 
 Male Swiss white mice (25-30 gm) were supplied by the 
Animal Services Unit of the State University of Campinas 
(UNICAMP). The animals were housed at 25 ± 3  o  C on a 12 hr 
light/dark cycle and had access to food and water  ad libi-
tum . This work was approved by the University Committee 
for Ethics in Animal Experimentation (CEEA/Institute of 
Biology, UNICAMP, Protocol 792-1) and the experiments 
were done in accordance with the guidelines established by 
the Brazilian College for Animal Experimentation (COBEA).  

  Evaluation of neurotoxicity 
 Phrenic nerve-diaphragm preparations ( Bülbring, 1946 ) 
(PND) were obtained from mice anesthetized with halotan 
(Cristália, Campinas, SP, Brazil) and killed by exsanguina-
tion. The diaphragm was removed and mounted under a 
tension of 5 gm in a 5 ml organ bath containing Tyrode solu-
tion (pH 7.4, 37°C) with the following composition (mM): 
NaCl 137; KCl 2.7; CaCl 

2
  1.8; MgCl 

2
  0.49; NaH 

2
 PO 

4
  0.42; 

NaHCO 
3
  11.9 and glucose 11.1, aerated with 95% (v/v) 

O 
2
  and 5% (v/v) CO 

2
 . Supramaximal stimuli (4x thresh-

olds, 0.1 Hz, 0.2 ms) delivered from a Grass S48 stimulator 
(Astro-Med Inc, W Warwick, RI, USA) were applied to the 
nerve through bipolar electrodes. Isometric muscle tension 
was recorded by a force displacement transducer (Load Cell 
BG-10 GM, Kulite Semiconductor Products Inc, NJ, USA) 
coupled to a physiograph (Gould, Model RS 3400) via a 
Gould universal amplifi er (both from Gould Inc, Recording 
Systems Division, Cleveland, OH, USA). The preparations 
were allowed to stabilize for at least 20 min before addition 
of either 40 µg/ml Bjssu, 2.9 µM BthTX-I, LHC, 5 IU/ml, 
CAB, 120 µl/ml, or with a mixture of venom:LHC (40 µg/ml:
5 IU/ml) or BthTX-I:LHC (2.9 µM:5 IU/ml), and venom:CBA 
(40 µg/ml:120 µl/ml), BthTX-I:CBA (2.9 µM:120 µl/ml), 
and observed for 120 min. Preparations using the mixtures 
venom/toxin plus LHC/CBA were preincubated at 37 o C for 
30 min before the onset of experiments. Control experiments 
were done with Tyrode solution alone. Some protocols aim-
ing to evaluate the venom- or toxin-heparin binding were 
carried out using protamine sulfate (0.8 IU/ml), a heparin-
antagonist, 15 min after addition to bath of a preincubated 
(30 min at 37ºC) venom:LHC (40 µg/ml:5 IU/ml) mixture.  

  Evaluation of myotoxicity 
  Histological and morphometric analysis 
 At the end of each experiment, the mouse phrenic nerve-
diaphragm muscle preparation was rapidly removed from the 
bath and fi xed in Bouin’s fl uid for 24-48 hr. After washing 
in distilled water, ethanol series dehydration and Historesin 
embedding (Leica Instruments Gmbh, Nubloch/Heidelberg, 
Germany) sections 2 µm thick were obtained (Leika RM 
2035 microtome) and stained with 0.5% (w/v) toluidine blue 
(Vetec, SP, Brazil) in 5% (w/v) borax (Quimesp, SP, Brazil) 
for examination by light microscopy (LM). The extension 
of muscle damage was assessed by counting the number of 
fi bers with alterations (edema, darkening, sarcolemmal dis-
ruption and myofi brils lysis) and the fi gures were expressed 
as percentage of the total number of cells counted in 
three non-overlapping, non-adjacent areas of each muscle 
( Oshima-Franco et al, 2001 ). The formula for calculating the 
% of damaged fi bers was %F = [(%f x 100)/Tf) - 100, where 
%f is the number of fi bers affected by venom or toxin and 
Tf is the total number of fi bers (affected and non-affected) 

a natural anticoagulant molecule whose acidic nature poten-
tially allows its interaction with basic phospholipases A 

2
 .  

In vivo  study demonstrated that pre-incubation of heparin 
with two crotalid venoms (from  Agkistrodon contortrix 
laticinctus  and  Crotalus viridis viridis  snakes) or their 
myotoxins antagonizes signifi cantly the myotoxicity of 
them ( Melo and Ownby, 1999 ). Other studies have shown 
that heparin is able to antagonize  in vitro  the release of 
creatine kinase (CK) and lactodehydrogenase (LDH) from 
muscle incubated with  Bothrops jararacussu  snake venom 
or its major myotoxin, bothropstoxin-I (BthTX-I) ( Melo 
and Suarez-Kurtz, 1988a ;  Melo et al, 1993 ) resulting in 
reduction of the myotoxic effects. Previously,  Oshima-
Franco et al (2001)  reported that heparin at a concentra-
tion of 60 IU/ml was not able to signifi cantly antagonize the 
myotoxic effect of BthTX-I, but produced a 100% protec-
tion against neuromuscular blockade. Whether the antago-
nizing action of heparin against myotoxicity reported in 
literature and interpreted as is due to acid-basic complexes 
formation is also unclear. 

 In this study, these two open questions were revisited. In 
this context, the concentration of heparin was drastically 
reduced to 1 IU/ml to avoid the facilitatory effect which had 
been observed with 60 IU/ml ( Oshima-Franco et al, 2001 ). 
By using this approach, we investigated if the heparin anti-
neurotoxic effect still persisted and/or if the anti-myotoxic 
effect reported by other authors became apparent; further-
more, we used protamine sulfate, which like heparin is an 
anticoagulant drug, but that differently is cationic in nature 
instead of anionic like heparin is. By using this approach 
we evaluated whether the benefi ts brought about by heparin 
were due to formation of acid-basic complexes (heparin + 
basic venom components) or not. 

 For comparative purposes the antibothropic natural effect 
of heparin was assessed in parallel with the one produced 
by the commercial antibothropic serum against the myo-
toxicity induced by  B. jararacussu  venom and BthTX-I in 
mouse phrenic nerve-diaphragm preparation ( in vitro  study) 
or after intramuscular injection in mouse gastrocnemius 
( in vivo  study).  

  MATERIALS AND METHODS 

  Materials 
  B. jararacussu  venom (Bjssu) was provided by Insti-
tuto Butantan (São Paulo, SP, Brazil); BthTX-I was 
purifi ed from  B. jararacussu  venom as described 
by  Homsi-Brandeburgo et al (1988) , and modifi ed by 
Cintra et al (1993). Briefl y, crude venom was gel fi ltered 
on Sephadex G-75 and the catalytic active fraction SIII 
was re-chromatographed on SP-Sephadex C-25. BthTX-I 
(a Lys49-PLA 

2
  analogue, catalytically inactive, last 

eluting fraction) was dialyzed and lyophilized. Heparin - 
Liquemine® (25000 IU/ml – B1019) and Protamine 
1000® (lot 701811 151) were purchased from Roche (Rio 
de Janeiro, RJ, Brazil); Commercial Bothropic Antivenom 
(CBA) (FUNED – lot 030611-12) was kindly donated by 
the Escritório Regional de Saúde (ERSA) from Piracicaba 
(SP, Brazil); Creatine kinase (CK) CK-NAC Bioclin kit 
(lot 099) was purchased from Quibasa Química Básica Ltd 
(Belo Horizonte, MG, Brazil).  



56

©The Authors | Journal of Venom Research | 2010 | Vol 1 | 54-60 | OPEN ACCESS

incubation (120 min). The neutralization assays ( Figure 1B  
and  1C ) showed that the neuromuscular paralysis induced 
by venom and toxin were signifi cantly attenuated ( P  < 0.05) 
changing to 20 ± 6% (n = 6) and 21 ± 7% (n = 8), respectively, 
if incubated with LHC and to 32 ± 6% (n = 6) and 38 ± 6% 
(n = 6), respectively, if incubated with CBA at the end of the 
120 min incubation. 

   Protamine abolished neutralization of neuromuscular 
blockade promoted by heparin 

  Figure 1D  shows that 20 µl protamine (corresponding 
to 0.8 IU/ml) added 15 min after incubation of PND with 
Bjssu:LHC mixture prevented the antagonistic action of 
heparin against the neuromuscular blockade induced by 
Bjssu, which persisted even after washing the prepara-
tion. No signifi cant difference was seen in the time elapsed 
to achieve neuromuscular paralysis caused Bjssu alone 
(88 ± 2%; n = 6) and when protamine was prior added to the 
bath containing the mixture Bjssu+heparin (94 ± 4%; n = 6)  

  Heparin neutralized the morphological changes 
produced by Bjssu and BthTX-I in the diaphragm 
  Figure 2  shows light micrographs of diaphragm incubated 
with Tyrode solution,  B. jararacussu  venom or BthTX-I 
and with pre-incubation either with heparin or commercial 
antibothropic serum. In all set of experiments fi bers in dif-
ferent stages of necrosis as well normal fi bers were present. 
Swollen darkened fi bers predominated but fi bers contain-
ing densely clumped myofi brils, or compacted masses of 
myofi brils intermingled with diffuse amorphous areas of 
sarcoplasm were present. The percentage of fi bers with mor-
phological alterations was: Tyrode control (8%), LHC alone 
(7%), CBA alone (7%), Bjssu (27%) and BthTX-I (40%), 
( P  < 0.05). Pre-incubation of LHC or CBA with venom or 
BthTX-I signifi cantly reduced the percentage of affected 
fi bers in such a way that there was no statistic difference in 
relation to preparations incubated with Tyrode solution or 
with either LHC or CBA alone. Heparin reduced to a greater 
degree the percentage of fi bers affected by venom than did 

in the section. This procedure was used in all experiments 
(controls and treated preparations, n = 3/each).  

  Measurement of CK release 
 Since CK release can not be measured in hemidiaphragm 
preparations, matched- in vivo  groups of animals as for 
 in vitro  protocols of venom [(40 µg/ml), toxin (2.9 µM), 
venom:LHC (40 µg/ml:5 IU/ml), toxin:LHC (2.9 µM:5 IU/ml), 
venom:antivenom (40 µg/ml:120 µl/ml), and toxin:antivenom 
(2.9 µM:120 µl/ml)] were utilized to measure the plasma 
CK levels after injection in mouse gastrocnemius muscle. 
Two hours after injection, animals blood was collected from 
tail vein, stored in heparinized capillary tubes, centrifuged 
(3000xg, 3 min), and the plasma CK levels were determined 
using a diagnostic kit (CK-NAC Bioclin®). The CK activity 
was expressed as international units per liter (IU/L), where 
1 unit is the amount of enzyme which catalyses the trans-
formation of 1 µmol of creatine/min at 37 o C.  

  Statistical analysis 
 Each experimental protocol was repeated from three to eight 
times and the results reported as the mean ± SEM were 
used for statistical comparison using ANOVA (Repeated 
Measures) followed by post-hoc Tukey test with a value of  
P  < 0.05 indicating signifi cance.    

  RESULTS 

  Heparin neutralized the neuromuscular blockade 
induced by Bjssu and BthTX-I 
 The graphic profi les of the preparations treated with 
Tyrode solution (control, n = 4), LHC (5 IU/ml, n = 6) and 
CBA (120 µl/ml, n = 6) are represented in  Figure 1A . Only 
the preparation treated with CBA alone showed an initial 
and marked facilitatory response represented by increased 
twitch-tension in all experiments, which was signifi cantly 
different from Tyrode control ( P  < 0.05).  Figures 1B  and  1C  
show the preparations treated with 40 µg/ml Bjssu or 2.9 µM 
BthTX-I, which presented 88 ± 2% (n = 6) and 95 ± 1.3% 
(n = 8), respectively, of neuromuscular blockade at the end of 

   Figure 1.      A.  Controls of Tyrode solu-
tion, LHC and CBA on mouse phrenic 
nerve-diaphragm preparations, indirectly 
stimulated.  B  and  C.  Bjssu and BthTX-I 
neuromuscular action and its neutrali-
zation by LHC or CBA, respectively. 
 D . Neuromuscular effects induced by 
protamine: Its neutralizing effect on 
venom:LHC mixture was likely due to 
complexation of protamine and heparin, 
therefore leaving Bjssu free for induc-
ing its characteristic neuromuscular 
blockade. LHC, low heparin concen-
tration; Bjssu,  Bothrops jararacussu  
venom; BthTX-I, bothropstoxin-I. The 
points represent the mean ± SEM of 
the number of experiments indicated in 
parentheses. (* P  < 0.05, when compared 
to control).     
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venom:CBA mixtures showed a signifi cant shift of CK 
activity which dropped to 236 ± 40 (n = 6) and 47 ± 5 (n = 6,  
P  < 0.05 compared to control), respectively. Interestingly, 
both the heparin and commercial antiserum were not as 
effi cient in reducing the CK released by the Lys49 PLA 

2
  

myotoxin (BthTX-I) as they were for the venom. Pre-
incubation with LHC or CBA reduced to 900 ± 149 (n = 5) 
and 935 ± 135 (n = 5), respectively, the plasma CK levels 
in comparison to the observed with BthTX-I alone (1531 ± 
166). However, these values were signifi cantly different 
from those obtained with BthTX-I alone ( P  < 0.05). 

          DISCUSSION 

  Neurotoxicity 
 The present fi ndings showed that when 1 IU/mL heparin 
is added to the venom- or bothropstoxin-containing bath 
the paralyzing effect was reduced by 4- and 4.5-fold, 
respectively. In comparison, when CBA is added to bath 

the commercial antiserum, as follows, 5% of fi bers affected 
in Bjssu:LHC mixture and 11% in Bjssu:CBA mixture; 
a lesser effi ciency had heparin in protecting against the pure 
myotoxin,  i.e. , 9% of affected fi bers incubated in BthTX-I:
LHC mixture and 3% in BthTX-I:CBA mixture ( P  > 0.05). 

       Heparin neutralized the CK release from mouse 
gastrocnemius injected with Bjssu or BthTX-I 

 To co-validate the antagonizing effect of heparin and antise-
rum against venom-and pure myotoxin serum CK release 
was measured at 120 min after being injected in gastrocne-
mius.  Figure 3  shows the serum CK activity (CK release). 
The basal CK activity (IU/l) was 104 ±10 (n = 6) for saline 
control 119 ± 6 for LHC and 150 ± 13 for CBA, which were 
signifi cantly different from the elevated 1454 ± 185 (n = 6) 
and 1531 ± 166 (n = 5) levels seen after Bjssu and BthTX-I 
injection, respectively. In contrast, the animals that received 
intramuscular (im) injection, either with venom:LHC or 

  Figure 3.    Measurement of plasmatic CK 
release, 120 min after saline, Bjssu, BthTX-I 
or Bjssu+LHC; BthTX-I+LHC; Bjssu+CBA, 
or BthTX-I+CBA injection in mouse 
gastrocnemius. CK, creatine kinase; LHC, 
low heparin concentration; CBA, commercial 
bothropic antivenom; Bjssu,  Bothrops jara-
racussu  venom; BthTX-I, bothropstoxin-I. 
(* P  < 0.05 = signifi cant difference in relation 
to saline control, **signifi cant difference in 
relation to Bjssu and BthTX-I). The values 
represent the mean ± SEM of the number of 
experiments (n = 5). 

  Figure 2.     Light micrograph show-
ing the histological appearance of 
diaphragm preparation after 120 min 
of indirect electrical stimulation and 
incubation in: ( A ) Tyrode Solution, 
( B ) LHC 1 IU/ml, ( C ) CBA 120 µl/ml, 
( D ) Bjssu 40 µg/ml, ( E ) Bjssu:LHC, 
( F ) Bjssu:CBA, ( G ) BthTX-I 2.9 µM, 
( H ) BthTX-I:LHC and ( I ) BthTX-
I:CBA. Note the protection promoted by 
LHC and CBA against the myotoxicity 
induced by Bjssu and BthTX-I. LHC, 
low heparin concentration; CBA, 
commercial bothropic antivenom; 
Bjssu,  Bothrops jararacussu  venom; 
BthTX-I, bothropstoxin-I.  



58

©The Authors | Journal of Venom Research | 2010 | Vol 1 | 54-60 | OPEN ACCESS

evidences on the existence of some pre-synaptic action of  
B. jararacussu  venom ( Rodrigues-Simioni et al, 1983 ). 

 This study does not give a clear explanation on how and 
why only low concentration of heparin (1 IU/ml) was able 
to antagonize the neuromuscular blocking effect evoked by 
Bjssu or BthTX-I. However, since heparin has a large thera-
peutic use in numerous disease conditions, such possibility 
should not be neglected. We can speculate that the highly-
negative charge density of heparin contributes to attract 
positively-charged counterions of synaptic molecules, 
including that of AChE (through its collagen tail ColQ), 
thus promoting the neuro-protection. Either another possi-
ble explanation would be the heparin binding to components 
of venom and/or myotoxin, so neutralizing the expression 
of venom/toxin neurotoxicity. This latter possibility has 
been suggested to explain the heparin antagonism against 
myotoxicity of crotalid venoms, and was attributed to the 
anionic  vs.  cationic character of heparin  vs.  venom/toxin, 
respectively ( Melo and Suarez-Kurtz, 1988b ;  Melo et al, 
1993 ;  Melo and Ownby, 1999 ).  

  Myotoxicity 
 In this regard, the mechanisms behind the anti-myotoxic 
effect of heparin have been stated as ought to: 1) the forma-
tion of acid-base complexes with basic myotoxins present 
in  Bothrops  venoms ( Melo and Suarez-Kurtz, 1988a ;  Melo 
and Suarez-Kurtz, 1988b ;  Melo et al, 1993 ;  Lomonte et al, 
1994a ;  Lomonte et al, 1994b ;  Angulo et al, 2001 ) and/or to 
2) the infl uence of heparin on PLA 

2
  present in many snake 

venoms ( Lomonte et al, 1994b ;  Gutiérrez and Lomonte, 
2003 ), affecting ( Diccianini et al, 1990 ) or not ( Condreas 
and Vries, 1964 ), the enzymatic activity of these proteins. 
In the present study, we demonstrated that differently from 
high concentration of heparin (60 IU/ml) ( Oshima-Franco 
et al, 2001 ), a very low concentration (1 IU/ml) shows capac-
ity to antagonize the myotoxicity caused by  B. jararacussu  
venom and its main myotoxin in  in vitro  (morphometry 
of muscle damage) and  in vivo  (CK release) experiments. 
Thus, heparin is more effective in its antagonizing myotoxic 
effect against venom than against the myotoxin we can sug-
gest that other venom components than the BthTX-I basic 
PLA 

2
  are likely target for the antagonism promoted by the 

polyanionic heparin. 

 In fact, besides phospholipases A 
2
 
,
 other venom com-

ponents, such as metalloproteinases, serino proteases, 
among others ( Gutiérrez and Lomonte, 1995 ;  Gutiérrez and 
Rucavado, 2000 ) contribute to muscle damage, and could also 
be target for heparin neutralization. Damage is initiated as a 
consequence of loss of fi ber sarcolemma integrity, followed 
by calcium infl ux and the forthcoming degenerative incomes 
comprising myofi lament hypercontraction, mitochondrial 
alterations, activation of endogenous phospholipases and 
calcium-dependent proteases which amplify the muscle-
damaging process ( Gutiérrez and Lomonte, 2003 ). Concomi-
tantly, it is launched an infl ammatory response with release 
and activation of pro-infl ammatory cytokines and other 
mediators, including nitric oxide, which could contribute to 
worsening the envenoming picture ( Zamuner et al, 2005 ). 

 Heparin is a member of the glycosaminoglycan (GAG) 
family of carbohydrates, which includes the closely-related 

the paralyzing effect is reduced in 2.8- and 2.5-fold, respec-
tively. There was not neurotransmission facilitation with this 
heparin concentration, differently from the fi ndings with 
60 IU/ml ( Oshima-Franco et al, 2001 ). In a different way, 
the CBA produced an initial 30% increase on the twitch 
tension in the fi rst 10 min incubation which progressively 
returned to baseline by 40 min. This facilitatory effect in 
cholinergic neurotransmission produced by CBA had been 
already shown in isolated preparation ( Oshima-Franco et al, 
2000 ), alone or in venom:CBA or toxin:CBA mixtures, in 
agreement with the present fi ndings. Recent study reported 
that the minimal concentration of heparin still able to pro-
duce facilitation on cholinergic neurotransmission (twitch 
tension increase) was 30 IU/ml, and that this concentration 
maintained the original ability to antagonize the neurotoxic 
effect of BthTX-I ( Rodrigues et al, 2004 ). In the current 
study, a concentration 30-fold-lower (1 IU/ml) sustained 
such capacity of minimizing the neurotoxic effect, not 
causing any facilitation, as required for the purpose of the 
present study. 

 However, the heparin protection against bothropic venom 
effects seems to be reversible at least  in vitro . In the current 
study, we showed that addition of protamine sulfate to the 
incubation bath containing Bjssu plus heparin completely 
inhibits the LHC antagonism. On the other hand, when 
protamine sulfate is incubated with Bjssu alone a total and 
irreversible blockade of muscle twitch tension is installed 
(data not shown). These fi ndings give strong evidence that 
protamine forms a complex when in the bath with heparin. 
In contrast, when heparin is absent from bath protamine 
alone does not impede the neurotoxicity of Bjssu. Pro-
tamine, given its polycationic nature ( Ando et al, 1973 ), is 
able to form stable inactive complexes with heparin, there-
fore it has been used as a specifi c antidote for neutralizing 
the heparin anticoagulant effect ( Majerus et al, 1991 ). 

 Although accidents caused by  B. jararacussu  show no visi-
ble clinical signs of neurotoxicity, experimentally a number 
of  in vivo  or  in vitro  studies have shown that motor nerve 
fi bers or nerve terminals can be affected by its venom. It 
abolishes contractions caused by direct and indirect elec-
trical stimulation of skeletal muscle in mouse ( Vital Brazil, 
1966 ;  Heluany et al, 1992 ;  Oshima-Franco et al, 2000 ), 
chick ( Heluany et al, 1992 ) and frog ( Rodrigues-Simioni 
et al, 1983 ) neuromuscular preparations. These effects 
are reproduced by BthTX-I, a myotoxin which represents 
around 15% of total the venom ( Homsi-Brandeburgo et al, 
1988 ). A neurotoxic effect of Bjssu, also reproduced by 
a subfraction (13-15,000 Da) isolated from venom was 
detected in frog cutaneous pectoris nerve-muscle prepara-
tions, although the authors have concluded that the nerve 
terminal was not the prime site of action of the venom/
subfraction ( Rodrigues-Simioni et al, 1983 ). Agreeing with 
this, subsequent studies have given consistently focused on 
the preponderant myotoxic action of Bjssu and its major 
Lys-49 PLA 

2
  myotoxin (BthTX-I) ( Melo and Suarez-Kurtz, 

1988a ;  Melo and Suarez-Kurtz, 1988b ;  Oshima-Franco et al, 
2000 ;  Oshima-Franco et al, 2001 ;  Randazzo-Moura et al, 
2006 ). It was only when a concentration of BthTX-I, low 
enough that the neurotoxic effect cannot be concealed by 
the muscular one, that a pre-synaptic effect became evi-
dent ( Oshima-Franco et al, 2004 ), then reassuring previous 
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molecule heparan sulfate. All of them participate in impor-
tant biological processes. The interaction of GAGs with a 
bulk of cell and interstitial proteins, such as, growth factors, 
cytokines, cell adhesion molecules ( Gandhi and Mancera, 
2008 ), gives the dimension of their importance ( Conrad, 
1998 ). For instance, heparin is able to bind to extracellular 
matrix proteins, such as fi bronectin or vitronectin ( Lane 
and Adams, 1993 ;  Lomonte et al, 1994b ;  Melo and Suarez-
Kurtz, 1988b ), leading to intracellular signalization triggered 
by ACh at the synaptic cleft and stability to tissue against 
toxic agents, among which could be candidates some com-
ponents of snake venoms. 

 In summary, this work showed that heparin, when used a 
low concentration has greater effi ciency than the commer-
cial bothropic antivenom (CBA) to neutralize the neuro-
toxic activity of the  Bothrops jararacussu  venom and its 
major toxin .  Low heparin concentration (LHC) paralleled 
in effi ciency to CBA against the tissue damage caused 
by venom but was lesser effi cient in relation to the toxin. 
Also, heparin paralleled to CBA in antagonizing the release 
of CK promoted by the toxin, but was less effective in 
antagoni zing against the crude venom. The highest negative 
charge density of any known biological molecule ( Cox and 
Lenninger, 2004 ) endows heparin binding to a high number of 
positively-charged molecules. Our study showed a novel 
fi nding, the principal myotoxin of  B. jararacussu  venom, 
the basic Lys-49 PLA 

2
  BthTX-I, is not the only target for 

heparin antagonism. Possible interactions of heparin with 
synaptic molecules and basic proteins of the extra cellular 
matrix of the endomysium are discussed. Some of the 
differences seen in heparin effects whether used in low or 
high concentration are unclear.   
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