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Abstract

Precise control of gene expression is fundamental to cell function and development. Although 

ultimately gene expression relies on DNA-binding transcription factors to guide the activity 

of the transcription machinery to genes, it has also become clear that chromatin and histone 

post-translational modification have fundamental roles in gene regulation. Polycomb repressive 

complexes represent a paradigm of chromatin-based gene regulation in animals. The Polycomb 

repressive system comprises two central protein complexes, Polycomb repressive complex 1 

(PRC1) and PRC2, which are essential for normal gene regulation and development. Our early 

understanding of Polycomb function relied on studies in simple model organisms, but more 

recently it has become apparent that this system has expanded and diverged in mammals. Detailed 

studies are now uncovering the molecular mechanisms that enable mammalian PRC1 and PRC2 to 

identify their target sites in the genome, communicate through feedback mechanisms to create 

Polycomb chromatin domains, and control transcription to regulate gene expression. In this 

Review, we discuss and contextualise the emerging principles that define how this fascinating 

chromatin-based system regulates gene expression in mammals.

Introduction

The development of multicellular organisms relies on cells and tissues establishing unique 

gene expression programmes. To achieve this, signalling pathways converge on DNA­

binding transcription factors, which guide the binding and activity of RNA polymerase 

II (Pol II) at gene promoters1. However, through studying these mechanisms it has become 

apparent that chromatin, and histone post-translational modification, can also profoundly 

influence transcription and gene expression.

The importance of chromatin modifying complexes in controlling development is 

exemplified by the Polycomb repressive system. Polycomb genes were initially discovered 

in Drosophila melanogaster, where they are required for repression of homeotic (Hox) genes 
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and thus for body plan specification2. Polycomb genes were subsequently shown to have 

mammalian orthologues that have important roles in controlling gene expression throughout 

development3.

Since these initial discoveries, biochemical analyses have shown that Polycomb proteins 

typically assemble into one of two large multi-protein complexes that post-translationally 

modify histones. Polycomb repressive complex 1 (PRC1) mono-ubiquitylates histone H2A 

at Lys119 (H2AK119ub1)4,5, whereas PRC2 mono-, di- and tri-methylates histone H3 at 

Lys27 (H3K27me1, H3K27me2 and H3K27me3, respectively)6-9. Importantly, PRC1 and 

PRC2 tend to spatially converge on the same sites in the genome to form Polycomb 

chromatin domains, which are uniquely enriched in H2AK119ub1, H3K27me3 and 

Polycomb complexes10-14. Polycomb chromatin domains are then thought to counteract 

transcription, though the mechanisms that enable this remain incompletely defined.

Although early genetic and biochemical investigations of Polycomb proteins were focussed 

on D. melanogaster, detailed studies over the past decade have revealed that the Polycomb 

system has expanded in mammals and that some key molecular principles that define its 

function have diverged from D. melanogaster. Based on these discoveries, we have gained 

a new understanding of how mammalian Polycomb complexes identify their target sites to 

form Polycomb chromatin domains and ultimately control gene expression. Several Reviews 

have recently discussed the general features and functions of Polycomb systems across 

phyla, and in mammalian development and disease2,3,15–18. In this Review we discuss 

and contextualise our emerging understanding of the molecular principles that enable the 

functions of mammalian Polycomb complexes in gene regulation. We first introduce the 

diverse complement of mammalian Polycomb repressive complexes and describe their 

enzymatic activities. We examine how Polycomb repressive complexes identify their 

target sites in the genome and communicate with each other to initiate the formation 

of Polycomb chromatin domains. We then discuss the regulation of Polycomb chromatin 

domain formation and ultimately how this is integrated with and regulates gene expression. 

Finally, we conclude by considering future avenues of research that will provide further 

mechanistic understanding of the principles of Polycomb biology in health and disease.

The wide repertoire of mammalian PRCs

The rapid progress in understanding mammalian Polycomb biology has relied on detailed 

and systematic biochemical interrogation of Polycomb repressive complexes and their 

histone modifying activities. This work has shown that Polycomb complexes comprise 

catalytic cores, which bind auxiliary proteins to create distinct PRC1 and PRC2 assemblies. 

In this section we introduce the composition, structure and enzymatic activity of the 

different Polycomb complexes, as a prerequisite for examining how these complexes 

underpin the functions of mammalian Polycomb complexes in gene regulation.

Polycomb repressive complex 1 and its E3 ubiquitin ligase activity—The 

catalytic core of PRC1 is composed of RING1B or its paralogue RING1A, and one of 

six Polycomb group ring finger (PCGF) proteins (PCGF1, 2, 3, 4, 5, or 6; Figure 1A)19. 

RING1 and PCGF proteins have similar domain architecture, including an N-terminal 
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RING domain and C-terminal RING-finger and WD40-associated ubiquitin-like (RAWUL) 

domain. The RING1 protein and the PCGF protein dimerise through their RING domains, 

which facilitates their interaction with an E2 conjugating enzyme to enable histone 

ubiquitylation20-22. Their RAWUL domains bind to a range of auxiliary subunits, which 

regulate the catalytic activity of PRC1 and target it to specific sites in the genome23,24. 

Importantly, the PCGF components dictate which auxiliary subunits are incorporated into 

specific PRC1 complexes. These complexes are generally categorised as either canonical 

PRC1 (cPRC1) or variant PRC1 (vPRC1; Figure 1A), a nomenclature that reflects the 

order in which these complexes were initially identifed19,23. cPRC1 complexes, which were 

the first to be isolated25,26, assemble around either PCGF2 or PCGF4 and include one of 

five chromodomain-containing paralogues (CBX2, 4, 6, 7 or 8) and a Polyhomeotic (PHC) 

subunit (PHC1, 2 or 3). By contrast, vPRC1 complexes, which were identified later19,27, can 

assemble around any of the six PCGF proteins (PCGF1–6) and include RING1 and YY1­

binding protein (RYBP), or its paralogue YAF2, and various additional subunits depending 

on the PCGF component present in the complex.

A key function of PRC1 complexes is to mono-ubiquitylate histone H2A. Given that E3 

ubiquitin ligases are notoriously promiscuous, and that histones have a high density of 

potential Lys acceptor residues, it was initially puzzling how mammalian PRC1 could 

preferentially target Lys119 of H2A. The solution to this problem was provided by a 

landmark study detailing the atomic structure of a RING1B–PCGF4 RING domain dimer 

bound to an E2 ubiquitin conjugating enzyme and the nucleosome28. This structure revealed 

extensive contacts between PRC1 and the nucleosome acidic patch, which is a binding 

surface used by many nucleosome-interacting factors29. Furthermore, the E2 enzyme 

contacts the N-terminus of RING1B and DNA at the nucleosome dyad, thereby orienting 

itself to transfer ubiquitin to H2AK119 and explaining the substrate specificity of PRC1.

Although all six mammalian PCGF proteins have highly similar RING domains, the 

ubiquitin ligase activity of the PRC1 complexes they form differ considerably. Notably, 

vPRC1 complexes are much more active on nucleosome substrates than their cPRC1 

counterparts19,30,31. Although these catalytic differences stem in part from the identity of 

the PCGF component directly influencing the activity of the core complex, incorporation 

of the vPRC1-specific auxiliary subunit RYBP also dramatically stimulates E3 ligase 

activity19,30,32. By contrast, incorporation of CBX proteins into cPRC1 complexes has a 

far less pronounced stimulatory effect and cPRC1 complexes are thus far less active than 

vPRC1 complexes.

Polycomb repressive complex 2 and its methyltransferase activity—PRC2 

complexes form around a tetrameric core complex consisting of EZH2 or its paralogue 

EZH1, EED, SUZ12, and RBBP4 or RBBP7 (Figure 1B). Biochemical and structural 

analyses of PRC2 have largely focused on EZH2-containing complexes, which contribute 

more prominently to H3K27 methylation in most contexts and are essential for early 

development33. Cryo-EM structures have revealed that PRC2 forms two distinct lobes: a 

catalytic lobe and a targeting and regulatory lobe, which are bridged by SUZ1234-36. Within 

the catalytic lobe, EED and the VEFS (VRN2-EMF2-FIS2-SUZ12) domain of SUZ12 

interact with EZH1 or EZH2, causing its SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) 
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domain to transition from an autoinhibitory conformation into an active one that supports 

methyltransferase activity34,37-41. Also important for the catalytic activity of PRC2 is the 

CXC domain of EZH2, which engages with nucleosomal DNA, and a patch of residues 

on the surface of EZH2, which interacts with the N-terminal portion of the H3 tail42,43. 

Together, these interactions position the N-terminal tail of H3 such that Lys27 is adjacent to 

the active site of PRC2, to enable its methylation.

The targeting and regulatory lobe of PRC2 includes the N-terminal portion of SUZ12, 

which binds to RBBP4 or RBBP7 and interacts with various additional auxiliary factors in 

a mutually exclusive manner44, giving rise to PRC2 assemblies with distinct biochemical 

properties (Figure 1B). PRC2.1 complexes contain a Polycomblike (PCL) protein (PCL1, 

2, or 3) and either PRC2-associated LCOR isoform 1 (PALI1), PALI2 or Elongin BC 

and Polycomb repressive complex 2-associated protein (EPOP)45-47. By contrast, PRC2.2 

complexes contain JARID2 and AEBP2. Importantly, PRC2.1-specific and PRC2.2-specific 

subunits also affect PRC2 methyltransferase activity48. For example, within PRC2.2, 

AEBP2 contains a patch of basic amino acids that contribute to nucleosome binding 

and stimulate H3K27 methylation49. Similarly, incorporation of either EPOP or PALI1 

into PRC2.1 supports its methyltransferase activity through an undefined mechanism47,50. 

Interestingly, a protein that is predominantly expressed in germ-cells, EZH inhibitory 

protein (EZHIP), was recently shown to interact with the core PRC2 complex and inhibit 

its methyltransferase activity while also blocking interactions with PRC2.1-specific and 

PRC2.2-specific subunits51-54. This function suggests that context-specific regulators of 

PRC2 activity have important roles during development.

Target site identification

Despite an intrinsic capacity to engage with nucleosomes, genome-wide studies have 

shown that Polycomb complexes are enriched at gene promoters and other gene regulatory 

elements10,11,55-63, indicating that more specific mechanisms must dictate the observed 

binding patterns. In the following sections, we examine emerging evidence that primary 

mechanisms of Polycomb complex targeting in mammals rely on a complement of 

sequence-specific DNA-binding factors, RNA-dependent mechanisms and binding to CpG 

islands (CGIs).

Target site recognition through sequence-specific DNA-binding factors—In D. 
Melanogaster, targeting of Polycomb complexes is thought to rely primarily on sequence­

specific DNA-binding factors. However, many of these factors lack clear mammalian 

orthologues, or if they are present in mammals, do not target Polycomb complexes to 

chromatin64-66. This difference has brought into question whether these mechanisms are also 

important for mammalian Polycomb target site identification. In beginning to address this 

important question, it has recently been shown that the PCGF6-vPRC1 complex, which is 

absent in D. Melanogaster, stably incorporates auxiliary subunits that function as sequence­

specific DNA-binding domains (Figure 2A)19,23,67-69. For example, the subunit MAX gene­

associated protein (MGA) contains bHLH and T-box DNA-binding domains70. Studying 

these domains has revealed that MGA dimerises with MYC-associated factor X (MAX) to 

bind E-box motifs (5’-CACGTG-3’), and that it can also use its T-box domain to recognise 
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longer T-box motifs (5’-TCACACCT-3’)67,71-73. These domains are important for PCGF6­

vPRC1 occupancy at a subset of its target sites, which in somatic cells includes a number 

of germline-specific genes67,74,75. In addition, E2F6–DP-1 (or DP-2) heterodimers also 

associate with PCGF6-vPRC1 and provide the complex with distinct target-site specificity 

in other contexts71,72. Together, these findings demonstrate that PCGF6-vPRC1 utilises 

sequence-specific DNA-binding activities to identify a subset of its target sites in the 

genome (Figure 2A), and provide clear and direct evidence for sequence-specific targeting in 

mammals.

Other mammalian Polycomb repressive complexes do not stably incorporate proteins with 

sequence-specific DNA-binding domains. Nevertheless, certain Polycomb complexes can 

engage in more transient interactions with DNA-binding factors and this engagement 

appears to be important for target-site recognition in certain contexts. For example, 

PCGF3-vPRC1 recognises some of its target sites in embryonic stem cells (ESCs) by 

interacting with the transcription factors upstream stimulatory factor 1 (USF1) and USF272. 

Other DNA-binding factors including REST, RUNX1 and SNAIL1 have been proposed to 

contribute to PRC1 or PRC2 targeting in certain cell types76-79. Despite these reports, in 

most cases direct interactions between DNA-binding factors and Polycomb complexes have 

not been unequivocally demonstrated, and they often only account for a subset of Polycomb 

complex binding events in a limited number of developmental contexts. Therefore, it appears 

unlikely that sequence-specific DNA-binding factors alone can explain how Polycomb 

complexes recognise their target sites in mammals.

Target site identification through chromatin-associated RNA—As an alternative 

to DNA-binding transcription factors, it was suggested that targeting of Polycomb 

complexes could be achieved through long non-coding RNA (lncRNAs) that associate 

with defined sites in chromatin80. Mammalian X chromosome inactivation (XCI), which 

is mediated by the lncRNA X inactive specific transcript (XIST), involves Polycomb 

repressive complexes. During XCI, XIST is expressed from one of the two female X 

chromosomes and spreads in cis to drive mono-allelic chromosomal gene silencing. Detailed 

characterization of this process has revealed that the PCGF3/5-vPRC1 complex interacts 

with the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNPK), which 

recognises XIST, leading to PCGF3/5-vPRC1 enrichment on the inactive X chromosome 

(Figure 2B)81-84. However, this example is somewhat atypical for Polycomb complex 

targeting, in that XIST leads to enrichment of PCGF3/5-vPRC1 across the entire inactivated 

X chromosome, whereas on autosomes Polycomb complex enrichment is typically more 

restricted to gene regulatory elements.

Based on early observations made in XIST studies, numerous other lncRNAs have been 

proposed to target Polycomb complexes to sites in autosomes. Notably, the lncRNA HOX 

transcript antisense RNA (HOTAIR) was reported to function as a trans-acting repressor 

of the HOXD locus by physically interacting with and recruiting PRC285-87. However, 

recent work has demonstrated that transcription repression by HOTAIR is independent of 

PRC2, and that PRC2 recruitment to the HOXD locus occurs primarily in response to gene 

silencing, not through direct targeting by HOTAIR 88. These findings highlight the need 

for caution when interpreting how lncRNAs influence gene expression and the recruitment 
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of Polycomb complexes80,89,90. However, consistent with a potential role for lncRNAs in 

targeting the Polycomb complexes to chromatin, the lncRNAs Airn and Kcnq1ot1 promote 

mono-allelic expression of autosomal genes in mouse trophoblast stem cells through a 

mechanism that appears to be highly analogous to XCI (Figure 2B)91-93. Like XIST, 

Airn and Kcnq1ot1 associate with target sites in chromatin and utilise hnRNPK to form 

megabase-sized transcriptionally repressed genomic domains that are enriched for Polycomb 

complexes. In light of these findings, it is tempting to speculate that some lncRNAs have 

co-opted the Polycomb system as a mechanism to achieve mono-allelic gene regulation94.

In addition to lncRNAs, recent studies have suggested that RNA–DNA hybrid structures 

known as R-loops may also support Polycomb target-site recognition. R-loops were found 

to occur at a number of Polycomb target genes and their enzymatic resolution perturbed 

Polycomb complex targeting at some sites95. By contrast, in other contexts, R-loops were 

reported to negatively affect PRC2 binding and activity96. Although there appears to 

be a connection between Polycomb complexes and R-loops, the underlying biochemical 

mechanisms are unknown and the extent to which R-loops mediate Polycomb complex 

targeting to chromatin remains to be elucidated.

Targeting to CpG islands—Polycomb complexes appear to recognise some of their 

target sites using sequence-specific DNA-binding factors or through associating with 

lncRNAs. However, these mechanisms alone cannot explain all Polycomb complex binding 

observed in mammalian genomes, suggesting that additional targeting mechanisms exist. 

Early genome-wide studies revealed that Polycomb complexes associate primarily with 

CGIs61,97. CGIs are short (1–2 kb) regions of CpG-rich DNA that are associated with 

approximately 70% of mammalian gene promoters98,99. In CGIs, CpG dinucleotides 

remain free of DNA methylation, whereas elsewhere in the genome they are heavily 

methylated and function to maintain heterochromatin and repress the expression of parasitic 

DNA elements100,101. CGIs are absent in non-vertebrate model organisms, including D. 
melanogaster, which lacks DNA methylation. This led to speculation that CGIs may be used 

by Polycomb complexes to identify target gene promoters and other regulatory elements in 

mammals61,102.

Molecular evidence that CGI recognition may be important for Polycomb complex targeting 

first came from biochemical purifications of mammalian PRC1 complexes, in which the 

PCGF1-vPRC1 complex was shown to stably integrate lysine-specific demethylase 2B 

(KDM2B)103,104. KDM2B contains a zinc finger-CxxC domain that specifically binds to 

non-methylated CpG dinucleotides105,106. Consistent with this specificity, KDM2B can 

target the PCGF1-vPRC1 complex to CGIs (Figure 2C)107-110. PCL proteins in PRC2.1 

complexes were also recently shown to bind to non-methylated CpG-containing DNA 

through a winged-helix domain that has a preference for certain sequences and is also 

influenced by the helical properties of DNA (Figure 2C)111,112. Consistent with in vitro 
evidence that PRC2 may function in some cases as a dimer113, it was recently proposed 

that a PRC2.1 dimer could stabilise binding to CpG-rich DNA, possibly by enabling 

simultaneous engagement with multiple non-methylated CpGs114. Although the precise 

contribution of dimerization to PRC2.1 function in vivo remains to be elucidated, the 
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winged-helix domains of PCL proteins are crucial for PRC2.1 targeting, indicating that CGI 

binding is also central to target-site identification by PRC2112.

The Polycomb chromatin domain

Once Polycomb complexes engage with target sites, this primary targeting must then be 

converted into the formation of repressive Polycomb chromatin domains, which can extend 

up to tens of kilobases and have extremely high levels of H2AK119ub1, H3K27me3, and 

Polycomb complex occupancy. In the following sections, we describe an intricate series of 

feedback and communication mechanisms that link the activity of Polycomb complexes on 

chromatin to enable the formation and maintenance of Polycomb chromatin domains.

H2AK119ub1 is recognised by PRC2.2 and vPRC1—The complex regulation of 

mammalian gene promoters and the diversity of Polycomb targeting mechanisms have 

made it challenging to study the formation of Polycomb chromatin domains. To circumvent 

this difficulty, tethering experiments have been employed, in which specific Polycomb 

complexes can be artificially nucleated at an ectopic site in the genome and their capacity to 

communicate with other Polycomb components and to form Polycomb chromatin domains 

can be examined. Such experiments revealed that tethering of PRC1 was sufficient to drive 

de novo enrichment of PRC2, accumulation of H3K27me3 and the formation of a Polycomb 

chromatin domain that spread several kilobases from the primary engagement site32,107,115. 

Interestingly, this activity was exclusive to vPRC1 complexes and relied on their capacity 

to ubiquitylate H2AK119 (Ref.30) (Figure 3A). Subsequently, a biochemical link between 

H2AK119ub1 and PRC2 was narrowed down to the JARID2 subunit of PRC2.2, which 

can directly bind to H2AK119ub1 through a ubiquitin binding motif116; this interaction 

also stimulates the methyltransferase activity of PRC2117 (Figure 3B). The structural basis 

of this interaction was recently elucidated in a cryo-EM model of PRC2.2 bound to an 

H2AK119ub1-containing mono-nucleosome, which showed JARID2 interacts with mono­

ubiquitylated H2A on one face of the nucleosome through its ubiquitin binding motif118. 

Interestingly, AEBP2 interacts with a second mono-ubiquitylated H2A on the opposite face 

of the nucleosome through tandem C2H2 zinc fingers. This indicates that auxiliary subunits 

in PRC2.2 have a specialised role in binding to H2AK119ub1-containing nucleosomes 

to tri-methylate H3K27, which is consistent with earlier biochemical work116,117. The 

importance of H2AK119ub1-mediated vPRC1 communication with PRC2 in the formation 

of Polycomb chromatin domains has also been shown through detailed genetic perturbation 

studies in mouse ESCs. Disruption of vPRC1 complexes caused major reductions in PRC2 

occupancy and H3K27 tri-methylation in Polycomb chromatin domains, and this relied on 

their E3 ligase activity, consistent with ectopic tethering experiments and recent work in the 

developing mouse and zebrafish embryo12,30,72,107,115,119-125.

In addition to its influence on PRC2.2, H2AK119ub1 also reinforces chromatin binding 

and modification by vPRC1 through a zinc finger in RYBP, which can directly bind 

H2AK119ub1 (Figure 3A)32,117,126. This interaction forms the basis of a feedback 

mechanism that supports spreading of H2AK119ub1 onto neighbouring nucleosomes in 

a manner that appears to be aided by histone H1 (Ref.32). Together, these data demonstrate 

that once Polycomb target sites are identified through the primary targeting of vPRC1, 
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feedback mechanisms inherent to vPRC1 complexes and H2AK119ub1 (Figure 3A), 

coupled with their capacity to communicate with PRC2.2 (Figure 3B), are essential for 

the formation and spreading of Polycomb chromatin domains.

H3K27me3 stimulates PRC2 activity and is recognised by cPRC1—Although 

H3K27me3 and the occupancy of PRC2.2 in Polycomb chromatin domains relies on 

PRC1 and H2AK119ub1, primary targeting modalities also enable PRC2 to identify target 

sites and catalyse H3K27 tri-methylation. PRC2 can then bind the product of its own 

catalysis, H3K27me3, through a WD40-repeat domain in EED, causing allosteric activation 

of its methyltransferase activity39,127,128 (Figure 3C). PRC2 activation creates a feedback 

mechanism that enables spreading of H3K27me3 along chromatin129. A recently elucidated 

cryo-EM model of PRC2 bound to a dinucleosome revealed that EED engages with one 

H3K27me3-containing nucleosome and positions the SET domain of EZH2 to methylate 

an unmodified H3 tail on an adjacent nucleosome 43. The geometry of this interaction 

also revealed that a short length of DNA linker between nucleosomes is important for 

optimal methyltransferase activity, which is consistent with evidence that PRC2 prefers 

more compact chromatin substrates130.

H3K27me3 is also recognised by a chromodomain in the CBX subunit of cPRC1 

complexes, suggesting that PRC2 can communicate with cPRC1 through H3K27me3 

(Figure 3D)6,8,131,132. In agreement with this possibility, early functional experiments 

showed that PRC2 activity was required for cPRC1 occupancy in Polycomb chromatin 

domains10. However, consistent with the fact that cPRC1 complexes have extremely low 

E3 ligase activity in vitro 30, PRC2 and cPRC1 contribute only minimally to H2AK119ub1 

levels in vivo 12,27,125,133. Furthermore, ectopic tethering of PRC2 or cPRC1 to chromatin 

in ESCs did not lead to elevated H2AK119ub1 levels, indicating that these complexes are 

incapable of efficiently driving de novo Polycomb chromatin domain formation in this 

context107. Therefore, in contrast to vPRC1 complexes, which communicate effectively 

with PRC2.2 to drive H3K27 tri-methylation, PRC2 appears to work much less efficiently 

through cPRC1 to reinforce H2AK119 ubiquitylation. Nevertheless, overexpression of the 

cPRC1 subunit CBX7 was recently shown to support H3K27me3-dependent maintenance of 

H2AK119ub1 at an artificial target gene promoter134, suggesting that in some circumstances 

PRC2 may support this process more efficiently. In summary, while primary targeting 

modalities and recognition of H2AK119ub1 are important for nucleation of PRC2 at target 

sites, H3K27me3 deposition is necessary to reinforce PRC2 binding, support spreading of 

PRC2 and H3K27me3, and stabilise cPRC1 occupancy during Polycomb chromatin domain 

formation.

cPRC1 supports the organization of Polycomb chromatin domains in the 
nucleus—Although cPRC1 complexes contribute minimally to H2AK119 ubiquitylation, 

they have evolved additional biochemical features that enable them to control the spatial 

organisation of Polycomb chromatin domains in the nucleus. Imaging and chromatin 

conformation capture-based approaches have demonstrated that even when separated by 

up to several megabases across a chromosome, distinct Polycomb chromatin domains 

can interact in three-dimensional space135-142 (Figure 4A). In imaging experiments, these 
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interactions appear as focal accumulations of Polycomb proteins, which are often referred 

to as Polycomb bodies143-145. The formation of these interactions relies on PHC proteins 

in cPRC1 complexes, which at least in vitro can utilise their sterile alpha motif (SAM) to 

polymerise in a head-to-tail orientation and form long filaments146-150 (Figure 4B). How 

these filaments support three-dimensional chromatin interactions remains poorly understood, 

but one could envisage cPRC1 filaments bridging distinct Polycomb chromatin domains. 

Although Polycomb chromatin domains form prominent interactions in three-dimensional 

space, they are not static structural entities151. Instead, binding of Polycomb proteins at 

these sites is highly dynamic144,152-155 and cohesin, which dynamically extrudes chromatin 

loops, counteracts interactions between Polycomb chromatin domain139,156,157.

In addition to supporting long-range interactions between Polycomb chromatin domains, 

components of cPRC1 complexes can undergo liquid–liquid phase separation in vitro and 

form nuclear condensates in vivo, which appear similar to Polycomb bodies158,159 (Figure 

4C). The capacity for liquid–liquid phase separation resides with CBX2, which contains 

a positively charged disordered region, and with the SAM of PHC proteins through a 

mechanism that is enhanced by, but not strictly dependent upon, the capacity of PHC 

to polymerise 158-161. Condensates can enhance cellular processes by sequestering or 

excluding macromolecules162. In line with this concept, condensates formed by CBX2 or the 

PHC SAM domain were shown to concentrate nucleosomes and nucleic acids, while also 

permitting entry of other Polycomb complexes, suggesting that condensates could augment 

Polycomb activities on chromatin161 or limit the access of other factors to Polycomb 

chromatin domains. However, quantitative imaging has also shown that concentrations of 

cPRC1 components inside Polycomb bodies are in some contexts below what is thought 

to be required to support liquid–liquid phase separation, bringing into question whether 

Polycomb bodies are formed by this process152,163. Further study of Polycomb protein 

condensates and their relevance to Polycomb functions is therefore required.

The maintenance of Polycomb chromatin domains following DNA replication
—The integrity of Polycomb chromatin domains is challenged by passage of the 

replication machinery which displaces parental nucleosomes from DNA and necessitates 

the incorporation of new unmodified histones and the reincorporation of modified 

parental histones into the replicated daughter strands164,165. Communication and feedback 

mechanisms inherent to Polycomb complexes32,127 could in theory support copying and 

epigenetic maintenance of Polycomb chromatin domains, but this would rely on modified 

parental nucleosomes being deposited in the same location on daughter strands. Elegant 

experiments examining the kinetics of histone deposition during DNA replication have 

recently shown that H3K27me3-containing nucleosomes are incorporated into daughter 

DNA strands almost precisely where they originated from in the parental DNA 166,167, 

providing a potential conduit for maintaining the identity of Polycomb chromatin 

domains168,169.

Interestingly, however, a considerable lag exists between DNA replication and the 

establishment of H3K27me3 on the newly incorporated, unmodified histone H3, despite 

reports that Polycomb repressive complexes can travel with the replication machinery169-171. 

Furthermore, H3K27me3 profiles can be re-established de novo following complete 
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erasure of H3K27me3129,172 and work in D. melanogaster has shown that long-term 

maintenance of H3K27me3 in Polycomb chromatin domains relies on the underlying DNA 

sequence173,174. Together, these observations have brought into question the extent to which 

epigenetic maintenance through feedback mechanisms in Polycomb chromatin domains 

contributes to their re-establishment following DNA replication. It will be important 

to understand in more detail the kinetics of re-establishment of Polycomb chromatin 

domains following replication, including whether parental H2AK119ub1 is also faithfully 

redeposited. Understanding these basic principles will be essential for defining whether 

epigenetic maintenance is important for the function of Polycomb chromatin domains in 

actively dividing cells.

Controlling Polycomb chromatin domains

It is often posited that chromatin modifying complexes are recruited to defined target 

sites in the genome, where they modify histones to drive gene activation or repression175. 

However, these simple instructive models appear for the most part to be incompatible with 

our evolving understanding of where and how Polycomb chromatin domains form and 

function. If instructive processes dictated Polycomb chromatin domain formation (Figure 

5A), one would expect that all sites in the genome where primary targeting mechanisms 

allow Polycomb complexes to engage would acquire repressive Polycomb chromatin 

domains. However, genome-wide studies have shown that only a small subset of sites 

where Polycomb complex binding can be detected ultimately go on to form Polycomb 

chromatin domains that have high levels of H2AK119ub1, H3K27me3 and Polycomb 

complex occupancy12,133,176,177. For example, the PCGF1-vPRC1 complex is detected at 

most CGIs in the genome, albeit at low levels12,108-110. Yet, despite the inherent de novo 
Polycomb chromatin domain-forming activity of PCGF1-vPRC1107, only ~20% of CGIs 

in a given cell type will acquire a domain108,112, indicating that this process must be 

highly regulated. In this section we discuss the emerging principles that regulate Polycomb 

chromatin domain formation and how this is related to transcription.

Transcription regulates susceptibility to Polycomb chromatin domain 
formation—A unifying feature of target sites that form Polycomb chromatin domains 

is extremely low or non-detectable levels of transcription, raising the possibility that 

transcription itself limits the activity of Polycomb complexes. In agreement with this 

notion, treating cells with transcription inhibitors can stabilise PRC2 binding and increase 

H3K27me3 levels at thousands of previously active CGI-associated gene promoters178. 

When a polyadenylation signal, which promotes transcription termination, was inserted 

adjacent to an active CGI-associated promoter, this had a similar effect179. These findings 

are consistent with experiments showing that synthetic CpG-rich non-methylated DNA can 

recruit Polycomb complexes and lead to the apparent formation of Polycomb chromatin 

domains, but only when these sites lack binding of transcription activators or are not in close 

proximity to enhancer elements56,180,181. Furthermore, experiments examining the kinetics 

of Polycomb chromatin domain formation during cellular-state transitions demonstrated that 

this primarily occurs following transcription cessation130,182. Together, these observations 

indicate that despite Polycomb complexes broadly engaging with regulatory elements 
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via targeting modalities such as CGI recognition, transcription potently counteracts the 

formation of Polycomb chromatin domains.

Nascent RNA regulates the activity of Polycomb repressive complex 2—The 

realisation that gene activity appears to be incompatible with Polycomb chromatin domain 

formation has led to a concerted effort to understand the mechanisms that regulate this 

process. Although some lncRNAs appear to target Polycomb complexes to specific sites, 

an overwhelming body of evidence now also indicates that PRC2 binds promiscuously 

to nascent RNA113,183-189. Several studies have reported that nascent RNA competes for 

PRC2 binding and displaces it from chromatin, while also inhibiting its methyltransferase 

activity179,190-193, both of which would antagonise the formation of Polycomb chromatin 

domains at actively transcribed sites. However, other studies have contradicted this view and 

proposed that interaction with nascent RNA, either directly by PRC2 (Ref.194) or through 

the pre-mRNA splicing factor RBFOX2 (Ref.195), supports PRC2 occupancy at target sites.

To reconcile these seemingly contradictory effects, an ‘RNA-bridging model’ has been 

proposed194. In this model, nascent transcripts from very lowly transcribed genes help 

bring PRC2 into proximity with promoter elements to support chromatin binding and 

tri-methylation of H3K27. However, at more highly transcribed genes, elevated levels of 

nascent transcripts would compete with PRC2 for chromatin binding and decrease H3K27 

tri-methylation. Although the molecular details of this model remain to be fully tested, it 

appears that PRC2 is highly attuned to sensing transcript levels and using this information to 

regulate the formation of Polycomb chromatin domains.

The influence of transcription-associated chromatin features—In addition to 

producing nascent RNA, transcription also profoundly influences the chromatin environment 

at transcribed genes. For example, during transcription initiation, histone methyltransferases 

tri-methylate H3K4 at gene promoters, whereas elongation is associated with H3K36 

tri-methylation in gene bodies97,196. Importantly, in vitro studies have demonstrated 

that the methyltransferase activity of PRC2 is inhibited by the presence of H3K4me3, 

H3K36me2 or H3K36me3 (Ref.42,197-202), and disruption of H3K4 methyltransferase 

activity in vivo can lead to enhanced Polycomb chromatin domain formation203. In addition, 

histone demethylases act as part of transcription co-activator complexes to remove H3K27 

methylation204-209, and transcription-associated H3K27, H4K16 and H4K20 acetylation 

counteracts PRC2 activity210-215. Similarly, the H2AK119ub1-specific deubiquitylases 

USP16 and 2A-DUB (also known as MYSM1) have been shown to associate with promoters 

of actively transcribed genes and counteract H2AK119 ubiquitylation216,217.

In addition to histone modification-dependent effects, the chromatin remodelling ATPase 

BRG1 can actively evict PRC1 from promoters of transcribed target genes218-220. This 

activity was reported to target RYBP-containing vPRC1 complexes, suggesting that 

promoter-associated chromatin remodelling activities can displace vPRC1 complexes and 

limit H2AK119 ubiquitylation221. Together, these findings suggest that although primary 

targeting activities may enable Polycomb complexes to engage with a wide range of 

gene promoters, transcription-associated histone modifications and chromatin remodelling 
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activities at regulatory elements can limit the catalysis and feedback mechanisms required 

for efficient formation of Polycomb chromatin domains.

Target sampling and a responsive model of Polycomb chromatin domain 
formation—Our growing understanding of Polycomb complex targeting and the 

mechanisms that control Polycomb chromatin domain formation appear to be consistent 

with a dynamic sampling mode of action that is responsive to transcription222 (Figure 

5B). According to this model, DNA-binding activities associated with Polycomb complexes 

would provide a mechanism to dynamically engage with, or sample, potential target 

sites. Central to this process would be PCGF1-vPRC1 and PRC2.1, which can recognise 

non-methylated DNA in CGI-elements that are associated with most mammalian gene 

promoters108-112. Sampling could allow Polycomb complexes to constantly interrogate a 

wide range of potential target sites, with only those that are lowly or not transcribed being 

susceptible to Polycomb-mediated histone modification, which is necessary to initiate the 

feedback and communication mechanisms required for efficient formation and spreading of 

Polycomb chromatin domains.

A responsive mode of Polycomb function based on target site sampling would in 

theory provide a generic mechanism to form Polycomb chromatin domains at non- or 

lowly transcribed genes without the need to evolve complex cell-type specific targeting 

mechanisms. As such, the Polycomb system could function to protect inactive genes 

against low-level or inappropriate transcription activation signals and help to maintain gene 

repression in many, if not all, cell types. This model is also consistent with early genetic 

experiments in fruit flies and mammals, in which Polycomb proteins were observed to 

maintain, rather than initiate, gene repression3,223-225. Nevertheless, more work is required 

to test the validity of a sampling-based model for the formation and function of Polycomb 

chromatin domains in different biological contexts.

Polycomb-mediated gene regulation

After receptive target sites establish Polycomb chromatin domains, these then have an 

important role in controlling gene expression. In this section we examine the mechanisms 

of Polycomb chromatin domain-mediated gene repression, discuss atypical cases of gene 

activation by Polycomb complexes, and consider how CGIs might utilise Polycomb 

complexes to create bistable chromatin states that shape gene expression during cell 

differentiation.

Transcription repression by Polycomb chromatin domains—Early models 

posited that the Polycomb system may repress transcription through cPRC1 binding 

to H3K27me3 and compacting chromatin to limit access to gene regulatory 

elements137,149,150,158,159,226,227. Although this mechanism may contribute to Polycomb­

mediated gene repression in some contexts, mice deficient for cPRC1 components often 

have milder phenotypes than mice in which vPRC1 components are perturbed, and cPRC1­

deficient ESCs exhibit relatively few gene expression changes12,67,81,107,148,225,228-230. 

Furthermore, chromatin accessibility does not always change when Polycomb systems are 

disrupted231,232. Together, these findings indicate that, at least during early development and 
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in ESCs, Polycomb chromatin domain features distinct from H3K27me3 and cPRC1 must 

contribute centrally to transcription repression.

In line with this possibility, recent studies have pointed towards a central role for 

H2AK119ub1 and vPRC1 in gene repression. This is evident in ESCs, where disruption 

of PRC1 resulted in increased expression of thousands of Polycomb target genes, effects 

which were almost entirely dependent on PCGF1/3/5/6-vPRC1 complexes12. Importantly, 

disruption of the catalytic activity of PRC1 recapitulated these gene expression defects 

despite vPRC1 binding being retained at target sites, suggesting that gene repression by 

PRC1 in this context is mediated by H2AK119 ubiquitylation119,121. H2AK119ub1 having 

a central role in gene repression is consistent with PRC1 binding to chromatin being highly 

dynamic and displaying extremely low target site occupancy152,154. Although the precise 

mechanism(s) by which H2AK119ub1 affects transcription remain to be determined (Figure 

6A), it does not appear to rely on PRC2 occupancy233. Furthermore, although H2AK119ub1 

reader proteins, including RYBP and the chromatin remodelling factor RSF1, have been 

linked with transcription repression30,32,126,234, their activities appear insufficient to account 

for PRC1-mediated gene repression. An alternative possibility is that the addition of a bulky 

ubiquitin moiety to H2A could more directly counteract the function of the transcription 

machinery235,236. Consistent with this possibility, acute disruption of PRC1 and loss of 

H2AK119ub1 caused rapid new binding of Pol II and elevated the frequency of transcription 

bursts, suggesting PRC1 and H2AK119ub1 affect transcription initiation233, which is in 

agreement with previous reports that PRC1 might antagonise the assembly or activity of 

the transcription pre-initiation complex237,238. Other reports have suggested that PRC1 

limits transcription by constraining a post-initiation, promoter-proximal poised form of Pol 

II239,240. More detailed biochemical work is required to define the mechanisms by which 

H2AK119ub1 influences transcription.

Consistent with the catalytic activity of PRC1 being required for Polycomb-mediated 

gene repression in ESCs, an essential role for H2AK119ub1 in Polycomb target gene 

repression was recently demonstrated by examining the early stages of neuronal cell 

fate restriction241. However, this requirement was less pronounced at later stages of 

neuronal differentiation, when a shift towards H2AK119ub1-independent gene repression 

was observed. These findings suggest that H2AK119ub1 could possibly confer a form of 

repression in stem cells that can be overcome in response to appropriate developmental 

gene expression cues. By contrast, as cells commit to particular lineages and subsets 

of genes will no longer be expressed, the Polycomb system may employ additional 

mechanisms, perhaps involving structural changes to chromatin, that enable long-term and 

robust maintenance of repression. This possibility has been supported by studies examining 

the contribution of the catalytic activity of PRC1 to mouse development, which reported 

that PRC1 uses a combination of H2AK119ub1-dependent and H2AK119ub1-independent 

mechanisms to control gene expression119,123,133,137,241. However, it has subsequently 

been shown that PRC1 catalytic mutations used in these studies do not fully eliminate 

H2AK119 ubiquitylation119,241. Nevertheless, in some cases in D. melanogaster, the 

repression of Hox genes and other Polycomb target genes can be maintained by PRC1 

independently of H2AK119 ubiquitylation242. Clearly more work is required to define 
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the contribution H2AK119ub1-dependent and H2AK119ub1-independent mechanisms to 

Polycomb-mediated gene repression in different cell types and developmental stages.

PRC2 also has important roles in Polycomb-mediated gene repression, yet its disruption in 

mammals typically has less severe effects on gene expression and development than removal 

of PRC110,124,125,243-248. Studies in D. melanogaster have suggested that PRC2-mediated 

repression relies on H3K27 methylation, as a histone H3 Lys27-substitution mutation that 

renders this residue refractory to methylation largely phenocopies the gene expression and 

developmental defects observed when PRC2 is disrupted249. Conversely, a hyperactive form 

of EZH2, which causes increased levels of H3K27me3, drives inappropriate repression 

of target genes250. Consistent with these findings, chemical inhibitors that limit the 

methyltransferase activity of PRC2 and cause a reduction in H3K27 methylation, are 

associated with derepression of Polycomb target genes in mammals251,252, as is replication­

mediated dilution of H3K27me3 (Ref.252). Recently, an evolutionarily-conserved bromo 

adjacent homology (BAH) domain in BAHD1 and BAHCC1 was shown to specifically 

recognise H3K27me3 and contribute to gene repression, possibly by recruiting histone 

deacetylases, which are known to counteract gene expression253-255 (Figure 6A). PRC2 also 

methylates non-histone substrates, including the transcription factors GATA4 and Elongin A, 

possibly as an alternative mechanism of counteracting transcription256,257.

PRC1 and PRC2 collaborate in Polycomb chromatin domains to repress 
transcription—As we understand more about the mechanisms used by Polycomb 

complexes to counteract transcription, it is becoming increasingly clear that PRC1 and 

PRC2 have independent gene repression activities, despite being linked by feedback 

mechanisms in Polycomb chromatin domains258. For example, in mouse ESCs or the 

developing epidermis, disruption of either PRC1 or PRC2 caused increased expression 

of a largely overlapping set of target genes231,259,260. However, removal of both PRC1 

and PRC2 together caused a more pronounced derepression of target genes, and in the 

case of the developing epidermis, catastrophic morphological defects. These observations 

are consistent with the idea that the convergence of Polycomb complexes at target sites 

provides an opportunity for feedback mechanisms to create more expansive Polycomb 

chromatin domains in which the independent repressive activities of PRC1 and PRC2 

can synergise to create a robust barrier against inappropriate transcription (Figure 6A). 

These properties may be particularly well suited to protecting gene expression programmes 

over developmental timescales, where the Polycomb system is known to have important 

roles10,133,241,243-245,261. The abundance and composition of individual Polycomb repressive 

complexes can change considerably over development33,176,262-265. This feature may 

provide an opportunity to regulate the repressive nature of Polycomb chromatin domains 

in different cellular and developmental contexts, for example by altering the relative 

contribution of PRC1-dependent and PRC2-dependent repression mechanisms.

Pervasive effects of Polycomb-mediated histone modification on gene 
expression—Although H2AK119ub1 and H3K27me3 levels are highly elevated in 

Polycomb chromatin domains, they are also found elsewhere in the genome, and there is 

mounting evidence that these alternative pools of H2AK119ub1 and H3K27me can affect 
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gene expression in various contexts. The PCGF3/5-vPRC1 complexes deposit a ‘blanket’ 

of H2AK119ub1 across the genome, with approximately 10% of H2A molecules being 

modified 12,266. The extent of this pervasive pool of H2AK119ub1 is suppressed by 

the deubiquitylase BAP1267,268, the absence of which elevates H2AK119ub1 levels and 

constrains the expression of thousands of genes that are not normally influenced by PRC1 

(Ref.269-271). This suggests that pervasive H2AK119 ubiquitylation may function like a 

rheostat to control the transcriptional potential of the genome.

PRC2 also acts pervasively throughout the genome: approximately 70% of H3K27 residues 

undergo mono-methylation or di-methylation and up to 15% undergo tri-methylation272-275. 

Although the mechanisms that control H3K27 methylation outside of Polycomb chromatin 

domains remain poorly understood, this pervasive activity primarily relies on the core 

complex and not on PRC2.1-specific and PRC2.2-specific subunits274. Importantly, there 

is evidence that these alternative pools of H3K27me can broadly antagonise transcription, 

possibly by counteracting H3K27 acetylation and limiting the activity of enhancers272,276. 

Therefore, it is clear that Polycomb complexes can also influence gene expression by 

functioning outside of Polycomb chromatin domains and it has recently been suggested that 

these activities may be particularly relevant in germ cells and in very early developmental 

stages-124,125,277,278.

Gene activation by Polycomb complexes—Although Polycomb complexes appear to 

primarily support transcription repression, there is increasing evidence that in some contexts, 

Polycomb complexes can potentiate gene expression133,246,279-282. For example, a PCGF5­

vPRC1 complex that contains AUTS2 and casein kinase 2 and inefficiently ubiquitylates 

H2AK119, was shown to potentiate transcription by recruiting the histone acetyltransferase 

P300 (Ref.279). Alternatively, the H2AK119ub1-specific reader ZRF1 (also known as 

DNAJC2) was linked to activation of Polycomb-repressed genes during differentiation283. 

These effects are in agreement with earlier reports of PRC1 supporting gene expression in 

resting B cells and T cells280.

It has also been suggested in some instances that Polycomb chromatin domains can support 

gene expression by forming chromatin topologies that aid gene induction57,58,284-286. 

Specifically, it has been proposed that, by supporting long-range chromatin interactions, 

cPRC1 can bring into close proximity enhancers that are poised for activation and 

their target promoters, thereby enabling rapid induction of transcription in response to 

activation signals during cell differentiation58,284,285 (Figure 6B). This idea is consistent 

with observations that cPRC1 is associated with enhancer function in breast cancer cells and 

with activation of genes during cardiac differentiation59,287. The precise mechanisms and 

extent to which Polycomb complexes potentiate gene expression is an exciting area of active 

investigation.

Chromatin bistability and transitions in gene expression—During cellular 

differentiation, Polycomb target genes can be activated to support new cellular 

functions288,289. This activation is accompanied by loss of the Polycomb chromatin domain 

and acquisition of an new type of chromatin domain formed through the function of 

Trithorax group chromatin modifying complexes, which include myeloid/lymphoid or 
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mixed-lineage leukaemia protein 1 (MLL1; also known as KMT2A)–MLL2 (KMT2D) 

and SETD1A–SETD1B290. Interestingly, some Trithorax group complexes can also sample 

CGIs through zinc finger-CxxC DNA binding domains, but in contrast to the Polycomb 

complexes, they initiate the formation and spreading of transcription-permissive, H3K4me3­

containing Trithorax chromatin domains through communication and feedback mechanisms 

linked to active transcription291-296. Antagonism between the Polycomb and Trithorax 

complexes helps to ensure that at most gene promoters, either a transcriptionally repressive 

or a transcriptionally permissive chromatin state predominates.

Based on these feedback mechanisms and antagonism between the Polycomb and Trithorax 

systems, CGIs have been proposed to support the formation of bistable chromatin states 

at gene promoters to regulate gene expression99,222,297-300 (Figure 7A). In defined cell 

types, the capacity to form either Polycomb or Trithorax chromatin domains could 

provide memory of gene expression programmes and buffer against low-level or spurious 

transcription activation signals that could be detrimental to cell identity. However, the 

convergence of these systems on CGIs might also shape gene expression transitions 

during differentiation. For example, Polycomb chromatin domains maintained by feedback 

mechanisms at inactive genes could constrain gene activation signals until an appropriate 

induction threshold is reached301 (Figure 7A). By contrast, following productive initiation 

of transcription, formation of permissive Trithorax chromatin domains could potentiate 

transcription while also blocking Polycomb activity. A rapid switch between chromatin 

states might influence transcription by converting graded gene activation signals into binary 

gene expression outputs (Figure 7B). In support of this possibility, the Polycomb system has 

been shown to impart switch-like effects on gene expression in Arabidopsis thaliana 302,303, 

and there is some evidence that this gene expression switch also occurs in mammals304. 

We envisage that switch-like transitions in the expression of master regulators of cell fate 

could help to ensure decisive cell fate decisions, and Polycomb and Trithorax complexes 

are known to have important roles in regulating these types of genes during mammalian 

development3. Furthermore, once individual genes acquire defined chromatin states, this 

could provide hysteresis of their current transcription status to help maintain cell identify in 

the face of inherently stochastic and pulsatile transcription signals.

Recent mathematical models incorporating the known activities of Polycomb and Trithorax 

systems have provided theoretical evidence to support the existence of bistable chromatin 

states at gene regulatory elements297,298,303. Importantly, interrogation of these models 

also suggests that bivalent chromatin states, which are characterised by the combined 

presence of both H3K4me3 and H3K27me3 and previously proposed to define an alternative 

poised transcriptional state60,305, are unlikely to be stable and may instead correspond to 

the transition between Polycomb and Trithorax chromatin states. Although many of the 

underlying biochemical activities of Polycomb and Trithorax systems are consistent with 

the possibility that bistable chromatin states could be created at their target sites, a major 

challenge for our research field will be to directly test these models and their relevance to the 

kinetics of gene expression during cell differentiation.
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Conclusion and future perspective

Detailed biochemical and structural characterisation has revealed that the Polycomb system 

comprises a diverse array of multi-protein complexes that are highly specialised in 

how they engage with nucleosomes, catalyse histone modifications and function through 

communication and feedback mechanisms to form Polycomb chromatin domains. Our 

understanding of the mechanics that underpin these processes has advanced rapidly in 

recent years, but it still remains poorly understood at the mechanistic level how, once 

formed, Polycomb chromatin domains influence the transcription machinery to enable 

gene repression. This represents a central unresolved question in our field. Given the 

complexity of gene regulatory elements in vivo, we anticipate that addressing this important 

question will require a reductionist approach leveraging in vitro transcription reactions on 

reconstituted chromatin templates, and single-molecule approaches that can capture the 

behaviour of the transcription machinery306,307.

Building on these biochemical underpinnings, the molecular study of how Polycomb 

systems function in vivo has indicated they are more dynamic than originally anticipated 

and, somewhat counterintuitively, appear to respond to transcription in forming Polycomb 

chromatin domains. This is forcing us to rethink how the Polycomb system both influences, 

and is related to, gene transcription. In this Review, we have discussed some emerging 

molecular principles that could explain these dynamic behaviours. However, the static and 

ensemble experimental approaches that our field has relied on until now are largely unsuited 

to exploring the relevance of these concepts. Instead, this will require live, single-cell, and 

quantitative measurements. These approaches will be of particular relevance in determining 

whether the Polycomb system enables chromatin bistablity, how it shapes the kinetics 

of gene-expression transitions during cell differentiation and development, and how the 

functions of Polycomb complexes are disrupted in human disease.

Finally, much of our understanding of the mammalian Polycomb system has come from 

studies in stem cells and in early developmental contexts. Although the ideas and models 

discussed in this Review primarily draw on this body of work, it is becoming increasingly 

clear that the mechanisms that guide Polycomb function in specific tissues and at later 

developmental stages are likely to vary considerably. Therefore, moving forward, a central 

objective remains to uncover the complement of mechanisms and principles that define 

mammalian Polycomb-mediated gene regulation in diverse cellular and developmental 

contexts.

As our field ventures into testing the relevance of new and emerging concepts in Polycomb 

biology, the coming years will inevitably be a fast-paced and exciting period in the 

ongoing quest to uncover the molecular principles that define gene regulation by Polycomb 

repressive complexes.
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Figure 1. A diverse repertoire of mammalian Polycomb repressive complexes
(A) The core of Polycomb repressive complex 1 (PRC1) comprises a RING1A or RING1B 

protein (RING1A/B) and one of six Polycomb group RING finger (PGCF) proteins 

(PCGF1–6). RING1 and PCGF proteins dimerise through their RING domains to form 

the catalytic core of PRC1, while the RING finger and WD40-associated ubiquitin-like 

(RAWUL) domains of both proteins interact with a range of auxiliary subunits, giving 

rise to biochemically distinct PRC1 complexes. Canonical PRC1 (cPRC1) complexes (top) 

assemble around PCGF2 or PCGF4, and include a chromobox protein (CBX2, 4, 6, 7 or 

8) and Polyhomeotic (PHC) protein (PHC1, 2 or 3). In some cases, cPRC1 complexes also 

contain an SCM protein (SCML1 or 2 or SCMH1). By contrast, variant PRC1 (vPRC1) 

complexes (bottom) can assemble around all six PCGFs and contain RING and YY1 binding 

protein (RYBP) or YY1-associated factor 2 (YAF2). The identity of the PCGF protein 

dictates the incorporation of other auxiliary subunits, resulting in a number of distinct 

vPRC1 complexes.

(B) The catalytic lobe of PRC2 is formed by a SET (Su(var)3-9, Enhancer-of-zeste and 

Trithorax)-domain containing enhancer of zeste 1 (EZH1) or EZH2 protein, together 

with embryonic ectoderm development (EED) and the VEFS (VRN2-EMF2-FIS2-SUZ12) 
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domain of suppressor of zeste 12 (SUZ12). The N-terminal part of SUZ12 forms a 

distinct regulatory lobe that interacts with retinoblastoma-binding protein 4 (RBBP4) or 

RBBP7 and with other, auxiliary subunits that give rise to distinct PRC2.1 (top) and 

PRC2.2 (bottom) complexes. PRC2.1 complexes contain a Polycomblike (PCL) subunit 

(PCL1/2/3) and Elongin BC and Polycomb repressive complex 2-associated protein (EPOP) 

or PRC2-associated LCOR isoform 1 (PALI1) or PALI2, whereas PRC2.2 complexes 

contain adipocyte enhancer binding protein 2 (AEBP2) and Jumanji and AT-rich interaction 

domain containing 2 (JARID2). Protein domains are italicised. AUTS2, autism susceptibility 

protein 2; BCOR, BCL6 corepressor; CK2, casein kinase 2; DP-1, dimerization partner 1 

(also known as transcription factor Dp-1); E2F6, transcription factor E2F6; FBRS, fibrosin; 

HDAC1, histone deacetylase 1; KDM2B, lysine-specific demethylase 2B; L3MBTL2, 

lethal(3)malignant brain tumour-like protein 2; MAX, MYC-associated factor X; MGA, 

MAX gene-associated; SCMH1, sex combs on midleg homolog 1; SCML1, SCM like 1; 

SKP1, S-phase kinase-associated protein 1; USP7, ubiquitin carboxyl-terminal hydrolase 7.
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Figure 2. Primary mechanisms of Polycomb target-site identification
(A) Sequence-specific DNA-binding factors in the Polycomb group RING finger 6 

(PCGF6)-containing variant Polycomb repressive complex 1 (vPRC1) complex recognise 

DNA sequence motifs at target sites. These DNA-binding factors include MAX gene­

associated (MGA)–MYC-associated factor X (MAX) and E2F6–dimerization partner 1 or 2 

(DP-1/2) dimers, which bind to different DNA sequence motifs and contribute to sequence­

specific PCGF6-vPRC1 targeting in different contexts.
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(B) Polycomb complexes can identify chromosomal binding sites during X chromosome 

inactivation through the long-noncoding RNA (lncRNA) X inactivation specific transcript 

(XIST); in autosomal imprinted regions mono-allelic gene repression is achieved through 

the lncRNAs Airn and Kcnq1ot1. In these regulatory contexts, the adaptor protein 

heterogeneous nuclear ribonucleoprotein K (hnRNPK) is thought to interact with the 

lncRNA and recruit the PCGF3/5-vPRC1 complex. These mono-allelic targeting cases are 

atypical in that they nucleate the binding of Polycomb complexes at large chromosomal 

regions, whereas Polycomb complex targeting to the majority of genomic sites is more 

punctate and associated with gene regulatory elements (see parts A and C).

(C) Both PCGF1-vPRC1 and PRC2.1 are targeted to CpG islands. The lysine-specific 

demethylase 2B (KDM2B) subunit of PCGF1-vPRC1 contains a zinc finger-CxxC (ZF­

CxxC) domain that binds specifically to non-methylated CpG dinucleotides. In PRC2.1, the 

Polycomb-like 1 (PCL1), PCL2 or PCL3 subunit contains a winged-helix domain that binds 

non-methylated CpG dinucleotides in certain sequence-contexts.
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Figure 3. Formation and spreading of Polycomb chromatin domains
Primary targeting of Polycomb repressive complex 1 (PRC1) and PRC2 is followed by 

feedback and communication mechanisms that enable the formation and spreading of 

Polycomb chromatin domains, which are characterised by elevated Polycomb complex 

occupancy and high levels of mono-ubiquitylated histone H2A Lys119 (H2AK119ub1) and 

tri-methylated histone H3 Lys27 (H3K27me3).

(A) H2AK119ub1 is recognised by the RING and YY1 binding protein (RYBP) subunit 

(or by the YY1-associated factor 2 (YAF2) subunit; not shown) of variant PRC1 (vPRC1) 

complexes. This creates a feedback mechanism, supported by histone H1, that reinforces 

vPRC1 binding and amplifies H2AK119 ubiquitylation, thereby enabling spreading of 

vPRC1 and H2AK119ub1 away from the primary vPRC1 targeting site.

(B) PRC1 complexes ubiquitylate H2AK119, which is recognised by the Jumanji and AT­

rich interaction domain containing 2 (JARID2) and adipocyte enhancer binding protein 2 
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(AEBP2) subunits of PRC2.2. This causes elevated PRC2 occupancy and stimulates the tri­

methylation of H3K27. Therefore, H2AK119ub1 facilitates communication between PRC1 

and PRC2 in Polycomb chromatin domains.

(C) H3K27me3 is recognised by the embryonic ectoderm development (EED) subunit of 

PRC2, which allosterically activates its methyltransferase activity. H3K27me3 creates a 

feedback mechanism that reinforces PRC2 binding and amplifies H3K27 tri-methylation, 

thereby enabling spreading of PRC2 and H3K27me3 away from the primary targeting site.

(D) H3K27me3 is also recognised by the chromobox (CBX) subunit (CBX2, 4, 6, 7 or 8) 

of canonical PRC1 (cPRC1) complexes. Although cPRC1 complexes are less catalytically 

active than vPRC1 complexes (as indicated by the dotted arrow), in some contexts 

their activity may lead to H2AK119 ubiquitylation. Therefore, H3K27me3 can facilitate 

communication between PRC2 and PRC1 in Polycomb chromatin domains.
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Figure 4. Polycomb bodies, long-range interactions, and phase separation.
(A) Distinct Polycomb chromatin domains can interact in three dimensional space, even 

when separated by very large distances across the genome. In high-throughput chromosome 

conformation capture (Hi-C), these interactions correspond to regions of high contact 

frequency (left). In imaging experiments, they correspond to foci of Polycomb complex 

components, mono-ubiquitylated histone H2A Lys119 (H2AK119ub1) and tri-methylated 

histone H3 Lys27 (H3K27me3), which are often referred to as Polycomb bodies (right).

(B) Long-range interactions between Polycomb chromatin domains require the 

Polyhomeotic (PHC) subunit (PHC1, 2 or 3) of canonical Polycomb repressive complex 

1 (cPRC1), which can polymerise through its sterile alpha motif (SAM).

(C) Components of cPRC1, including chromobox 2 (CBX2) and the SAM domain of PHC1, 

2 or 3, can undergo liquid–liquid phase separation in vitro and form nuclear condensates 

in vivo, which share similarities with Polycomb bodies. These condensates could possibly 

augment Polycomb complex activities and may reinforce long-range interactions between 

Polycomb chromatin domains.
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Figure 5. Models of Polycomb chromatin domain formation and gene regulation
(A) An instructive model, in which Polycomb complexes are recruited to target sites (left), 

where they initiate the formation of Polycomb chromatin domains (right) and drive the 

repression of transcribed genes.

(B) A responsive model, in which Polycomb complexes dynamically ‘sample’ potential 

target sites for susceptibility to Polycomb chromatin domain formation. In particular, 

the Polycomb group RING finger 1 (PCGF1)-containing variant Polycomb repressive 

complex 1 (vPRC1) and PRC2.2 complex, through their capacity to bind CpG islands 

(not shown), could dynamically engage with approximately 70% of gene promoters. 

At lowly or untranscribed genes (left), these complexes could potentially sense and 

respond to the (near) absence of transcription by ubiquitylating histone H2A Lys119 

(H2AK119ub1) and tri-methylating histone H3 Lys27 (H3K27me3) to initiate the formation 

and spreading of Polycomb chromatin domains, which could help counteract low-level or 

inappropriate transcription and maintain an inactive chromatin state to protect cell identity. 

However, at expressed genes (right), transcription-associated features including H3K4me3 

and H3K36me3, high levels of nascent transcripts, BRG1-mediated chromatin remodelling, 

and deubiquitylase (DUB) and demethylase (DME) activities, counteract H2AK119 and 

H3K27 modification, thereby blocking Polycomb chromatin domain formation and limiting 

Polycomb function at these genes.

Pol II, RNA polymerase II.
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Figure 6. Mechanisms of Polycomb-mediated gene regulation
(A) Despite the integration of their activities in Polycomb chromatin domains, the 

mechanisms that enable Polycomb repressive complex 1 (PRC1) and PRC2 to counteract 

transcription appear to be distinct. PRC1-mediated gene repression is driven by 

ubiquitylation of histone H2A Lys119 (H2AK119ub1), possibly mediated by the activity 

of H2AK119ub1-reader proteins or, more directly, by the installation of the bulky 

ubiquitin moiety into chromatin and thus antagonising some aspect of transcription (left). 

PRC2-mediated repression appears to involve readers of tri-methylated histone H3 Lys27 

(H3K27me3) or methylation of non-histone substrates (right). Importantly, although PRC1 

and PRC2 can independently counteract transcription, the communication and feedback 

between PRC1 and PRC2, which support the formation of Polycomb chromatin domains, 

appear in some contexts to synergise the repressive activities of PRC1 and PRC2 at target 

genes (centre), thereby providing a robust barrier against inappropriate gene expression.

(B) In some contexts, Polycomb complexes can activate genes. Canonical PRC1 (cPRC1) 

mediates the formation of chromatin topologies that can bring poised enhancers (En) and 

their target promoters into close proximity (left). Once activation signals are received at the 

enhancer through transcription factor (TF) binding, this could support rapid induction of 

transcription (right).

PCGF2/4, Polycomb group ring finger 2 or 4; Pol II, RNA polymerase II.
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Figure 7. CpG islands and chromatin bistability
(A) A schematic illustrating how chromatin bistablity could form at CpG islands (CGIs). 

When transcription activation signals are low or absent, communication and feedback 

between Polycomb repressive complex 1 (PRC1) and PRC2 could drive the formation of 

repressive Polycomb chromatin domains that antagonise Trithorax (Trx) complexes and 

RNA polymerase II (Pol II) activity (left). When activation signals are high and persistent, 

communication and feedback between Trithorax complexes and Pol II could drive the 

formation of transcription-permissive Trithorax chromatin domains that antagonise PRC1 

and PRC2 (right). The capacity of both Polycomb and Trithorax systems to sample CGIs 

coupled with the feedback and antagonistic mechanisms inherent to the formation of each 

chromatin state, would provide the opportunity to switch between predominantly Polycomb 

or predominantly Trithorax chromatin states as gene activation signals increase or decrease. 

We speculate that this mode of gene regulation could help to shape gene expression 

transitions (see part B) and also provide a chromatin-encoded hysteresis of the current 

transcriptional state of the gene in the face of inherently stochastic and pulsatile transcription 

initiation induced from single gene promoters.

(B) If transitions between gene expression states, for example gene induction during 

cellular differentiation, scaled linearly with its activation signal, then one would predict 

graded expression output (left). However, if CGIs help to create bistable chromatin at 

gene promoters, this could shape binary, switch-like, gene expression transitions in which 

Polycomb chromatin domains constrain activation signals until appropriate activation 

thresholds are reached, at which point transcription initiation would precipitate a rapid 
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switch into a Trithorax chromatin state and potentiate transcription. In the context of such 

a system, one might predict CGIs could help to convert graded gene activation signals 

into binary switch-like gene expression outputs through chromatin bistability. This could be 

particularly useful in supporting decisive gene expression transitions during development.

Adapted with permission from REF. 290, Elsevier.
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