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Abstract

Studies have suggested that somatic events in tumors can depend on an individual’s constitutional genotype. We used
squamous cell carcinomas (SCC) of the skin, which arise in high multiplicity in organ transplant recipients, as a model to
compare the pattern of somatic alterations within and across individuals. Specifically, we performed array comparative
genomic hybridization on 104 tumors from 25 unrelated individuals who each had three or more independently arisen SCCs
and compared the profiles occurring within patients to profiles of tumors across a larger set of 135 patients. In general,
chromosomal aberrations in SCCs were more similar within than across individuals (two-sided exact-test p-value
v1|10{7), consistent with the notion that the genetic background was affecting the pattern of somatic changes. To
further test this possibility, we performed allele-specific imbalance studies using microsatellite markers mapping to 14
frequently aberrant regions of multiple independent tumors from 65 patients. We identified nine loci which show evidence
of preferential allelic imbalance. One of these loci, 8q24, corresponded to a region in which multiple single nucleotide
polymorphisms have been associated with increased cancer risk in genome-wide association studies (GWAS). We tested
three implicated variants and identified one, rs13281615, with evidence of allele-specific imbalance (p-value = 0.012). The
finding of an independently identified cancer susceptibility allele with allele-specific imbalance in a genomic region affected
by recurrent DNA copy number changes suggest that it may also harbor risk alleles for SCC. Together these data provide
strong evidence that the genetic background is a key driver of somatic events in cancer, opening an opportunity to expand
this approach to identify cancer risk alleles.
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Introduction

Human solid cancers are characterized by the presence of

numerous genetic alterations that accumulate during the

evolution of the disease. While the mutation spectrum within

biologically related cancer subtypes often shows similarities with

regards to the patterns of genetic alteration, each individual

cancer has a unique combination of alterations. The forces that

shape the genomic landscape of individual cancers are in part

determined by the nature of the initiating oncogenic alterations

and the sequence in which they occur. However, the constitu-

tional genotype of the cell acquiring the first pathogenetically

relevant mutation is likely to play a role in influencing which

somatic alterations will undergo positive or negative selection.

The influence of inherited alterations on the pattern of somatic

mutations found in evolved cancers has been demonstrated in

several cancer types. In breast cancers from individuals with

inherited BRCA1 mutations one finds more frequent losses on 4p,

4q, 5q, Xp and Xq and gains of 10p and 16q compared to breast

tumors from individuals without BRCA1 mutations [1,2]. In

melanoma, patients with germline variations in MC1R have a

higher frequency of somatic BRAF mutations in their melanomas

than patients without MC1R variants [3,4]. These examples of

interactions between predisposing germline alterations and

acquired mutations in the tumor occur between different genes

(trans-effects). Several studies have also identified cis-effects, in
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which somatic alterations affect specific inherited variants.

Examples include two genes identified through mouse mapping

studies: AURKA, which shows allele-specific gains of the T91A

allele in human colon tumors [5,6] and PTPRJ, which shows

allele-specific losses of the A1176C allele in human colon tumors

[7]. In addition, rs6983267, a SNP on 8q24 found through

several genome-wide association studies to be associated with

susceptibility to colorectal cancer, shows allele-specific imbalance

[8].

Together these data suggest that inherited variation as well as

somatic mutations arising early in progression help shape the

pattern of somatic changes that occur subsequently during tumor

evolution. One way to more systematically assess the effect of the

constitutional genotype on the pattern of somatic alterations is to

compare cancers of the same type that arose independently on the

common genetic background of a single individual. Only a few

cancer types arise frequently enough to render such analysis

practical. Basal cell carcinoma and squamous cell carcinoma

(SCC) of the skin often develop in multiplicity. Furthermore, the

incidence of SCC in particular is dramatically increased in

immunosuppressed patients. Specifically, in organ transplant

recipients (OTRs) the risk of SCC is 65 to 250 fold increased

compared to the general population [9]. As a consequence, some

patients develop dozens of separate primary carcinomas. In this

study, we exploited the unique property of the OTR population to

test the hypothesis that tumors arising on a common genetic

background will have somatic alterations that are more similar to

each other than to those found in similar tumors that developed in

different individuals and whether this scenario can be exploited to

discover predisposing genetic factors.

Results

We obtained copy number profiles as measured by array

comparative genomic hybridization (aCGH) from tumors arising

in individuals with multiple independent cutaneous squamous cell

carcinomas (SCCs) or keratocanthomas (KAs) (intra-group) and

copy number profiles of SCCs and KAs of separate individuals

(inter-group). 305 independent tumor samples from 181 patients

were included in this initial study (Figure 1). As previously reported

[10,11], focal genomic aberrations were rare in these tumors and

DNA copy number aberrations consisted mostly of the loss or gain

of whole chromosome arms. As the resolution of copy number

changes using aCGH is around 1Mb, it is possible that we missed

focal amplifications or deletions in this study.

Author Summary

Tumors exhibit DNA copy number gains and losses, many
of which alter the dosage of genes that promote or
suppress tumorigenesis. Evidence from familial cancer
syndromes and animal models have shown that DNA copy
number changes acquired somatically during tumor
progression can be controlled by the constitutional
genotype. The genetic heterogeneity among humans
makes it difficult to systematically assess the extent of
this effect. We used a unique clinical scenario of squamous
cell carcinoma (SCC), which can arise in high multiplicity
within patients, to compare the pattern of somatic
alterations on a homogeneous genetic background. We
examined the genome-wide pattern of DNA copy number
changes of tumors from individuals who had three or more
independent SCCs. We identified multiple chromosomal
regions that showed higher frequency of change in SCCs
within patients than across patients, suggesting that the
genetic background of the individual is important in
driving these changes. We further confirmed this by
identifying eight regions with strong evidence for a
selection of loss or gain of a particular allele within
patients. Together these data demonstrate that the
genetic background of an individual influences the pattern
of somatic alterations in tumors, offering a novel approach
to map susceptibility alleles.

Figure 1. Frequency of aCGH aberrations in skin tumors. A frequency plot of somatic aberrations identified in 305 skin tumors by aCGH is
shown. Each line is an individual BAC clone. Green indicates gain and red indicates loss. Clones are ordered from chromosome 1 through 22. Tumors
profiled are from 181 patients with one or more independent SCCs and/or KAs.
doi:10.1371/journal.pgen.1001136.g001

Genetic Background Drives Tumor Somatic Events
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We compared aCGH profiles between the three types of skin

tumors in our study, SCC, SCC in situ (Bowen’s Disease) and

keratocanthoma. There were no statistically significant differences

in frequency of clone loss or gain between the SCC and

keratocanthoma profiles; however there were several loci which

showed differences between the SCC in situ profiles and profiles

from the other two tumor types (data not shown). Because of this,

we focused our comparative analysis on SCCs only. Our data set

included 222 SCCs from 135 individuals. From 25 of those

individuals, three or more SCCs (median = 4.2; range 3–6) were

analyzed to compare the intra-group and inter-group similarities

of DNA copy number changes.

We found a significantly higher concordance of chromosomal

aberrations in SCCs within than between patients [two-sided T-

test p-values: 6.9761028](Figure 2). Interestingly, certain chro-

mosomal regions (4q, 11q, and 17q) were preferentially affected by

this concordance (individual arm p-values,0.05; Table 1). The

intra-group correlation coefficients (ICC) for the array elements of

these regions were compared but did not allow narrowing the

genomic region to specific loci within these regions. This is not

unexpected, considering that most of the tumors showed copy

number changes affecting large genomic regions, such as entire

chromosomal arms or chromosomes.

We rationalized that any inherited variants that promote cancer

in an allele-specific manner would result in allele-specific DNA

copy number changes reflected by preferential loss or gain of one

specific chromosome in the tumors of an individual patient. By

contrast, dosage events affecting genes that promote cancer in

allele-independent manner, e.g. loss of CDKN2A or gain of MYC,

were expected to display random somatic alterations of either

allele [12]. To determine the presence of allele-specific changes

occurring within tumors of individual patients, we performed loss

of heterozygosity analyses of 45 microsatellite markers covering 14

chromosomal regions that were chosen based on the frequency of

aberration as measured by aCGH and without prior knowledge of

regions showing more similarity within versus across patients. 270

tumors from 65 individuals with a minimum of three independent

tumors were included in this analysis. The constitutional genotype

was determined from DNA extracted from blood leukocytes of

each patient. Allelic imbalance was defined as a tumor to normal

DNA allelic ratio of greater than 1.5 or less than 0.67. Statistical

analyses for preferential imbalance were conducted for individuals

who were heterozygous for a given marker and had two or more

tumors showing imbalance; two examples are illustrated in

Figure 3. Thirteen markers representing eight different genomic

regions showed significant skewing towards one allele as

Figure 2. aCGH profiles of independent tumors from two individuals. aCGH profiles of three independent tumors from two individuals, A
and B, are shown. Each dot represents a different BAC clone. The X-axis for each profile shows the BAC clones ordered from chromosomes 1 through
22. Chromosome boundaries are indicated by vertical lines and dotted lines indicate centromeres. The Y-axis is the log2ratio of the tumor genomic
DNA compared to reference DNA. Blue lines indicate regions showing concordance for loss and orange lines indicate regions showing concordance
for gain across tumors.
doi:10.1371/journal.pgen.1001136.g002
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determined by a Bayesian/frequentist approach (Text S1).

Markers demonstrating significant preferential allelic imbalance

mapped to chromosomal locations 3p24, 3q21-26, 5q23, 7p12-21,

7q31, 8q24, 9p21, 11q24, and 18q22 (Table 2, Figure 3). These

data indicate that the increased similarity of copy number changes

within individuals is at least in part due to inherited variation

within the same region as the copy number change.

The next question we addressed was whether variations in any

known tumor susceptibility genes were driving allele-specific

imbalance at the loci identified through our studies. Several

genome-wide association studies (GWAS) have been performed for

multiple cancers including breast, prostate, colon, and melanoma

[13–15]. Variants at 8q24 identified via GWAS have been

associated for cancer risk for multiple cancer types [8,13,16–21].

To determine if any of these were candidates for the observed

allele-specific imbalances at 8q24, we tested three variants,

rs13281615, rs1447295, and rs6983267, for allele-specific imbal-

ances in matched normal and tumor DNAs from individuals with

SCC. Of these, only rs13281615 showed statistically significant

evidence of allelic skewing (Table 3). Of 35 heterozygous tumors

showing imbalance for rs13281615, 28 of them showed an

imbalance in favor of the A allele while only 7 showed an

imbalance favoring the G allele (p-value 0.012). A second SNP,

rs6983267, showed a similar trend that did not reach statistical

significance (p-value 0.157). These data raise the possibility that

rs13291615 may be a candidate susceptibility allele for SCC. Our

results suggest that the use of preferential allelic imbalance may be

an efficient approach to map susceptibility variants in specific

clinical settings.

Discussion

In summary, our finding of an increased concordance of DNA

copy number changes together with the presence of allelic-specific

imbalance within separate cancers of individuals strongly suggests

that the somatic changes occurring in tumors are in part affected

by underlying characteristics of the individual host. An in depth

comparison of allele-specific genomic changes occurring in

multiple tumors of individual patients may offer a unique route

to uncover cancer susceptibility loci.

The allele-specific LOH data from both microsatellite

analysis and from SNP analysis indicate that the increased

similarity of copy number changes within individuals is at least

in part due to inherited variation within the same region as the

copy number change. By contrast, not all loci that were

frequently affected by concordant aberrations within individuals

showed evidence of preferential allelic imbalance. This could be

due to trans-effects between inherited variants elsewhere in the

genome and a cancer gene in the region affected by the copy

number alteration. For example, 13q12-q21, containing the Rb

tumor suppressor gene, showed frequent loss in SCCs and a

high intra-group concordance but did not show evidence of

preferential imbalance.

There are some alternative explanations for the greater

similarity of changes in tumors within versus between individuals.

In our study we defined tumors as being independent based on

arising in different anatomical sites. This should reduce the

probability that tumors are related via a shared clonal origin. It is

unlikely, but not impossible that tumors arising on different sites

might have a common precursor which would explain the results

of this study. It also remains possible that other pathogenetic

factors such as ultraviolet light exposure or the presence of

human papilloma virus may also influence the similarity of

somatic alterations of tumors arising within an individual that do

not show allele-specific imbalance. Finally, different immunosup-

pressive drugs may result in specific mutations occurring in

tumors which might manifest as similar copy number patterns in

tumors from within an individual. Another explanation of our

results is that environmental exposures may result in differential

selection between alleles which could result in allele-specific

imbalances. Despite these possibilities, our study strongly

supports the notion that the constitutional genotype of an

individual exerts a strong influence on the somatic alterations

that arise in cancer. Genetic analyses of cancer that arise at high

multiplicity may offer a novel route to the discovery of cancer

susceptibility genes.

Table 1. Comparison of somatic changes within versus across individuals.

Region Frequency Gains Frequency Losses
Mean Correlation Coefficient
Value Within Patients

Mean Correlation Coefficient
Value Between Patients P-value*

1p 6% 3% 0.25 0.16 0.2

1q 8% 2% 0.25 0.08 0.22

2q 1% 6% 0.30 0.14 0.22

3p 1% 32% 0.36 0.27 0.31

4q 3% 12% 0.29 0.1 0.003

5q 1% 14% 0.03 0.15 0.30

8p 4% 15% 0.27 0.18 0.31

8q 12% 1% 0.33 0.20 0.25

10q 1% 9% 0.15 0.04 0.27

11q 5% 9% 0.41 0.23 0.02

13q 7% 15% 0.15 0.04 0.30

14q 6% 2% 0.14 0.18 0.93

17q 4% 9% 0.30 0.09 0.008

20q 7% 1% 0.23 0.19 0.93

*Holm’s adjusted t-test for unequal variance (with Welch’s approximation) p-value.
doi:10.1371/journal.pgen.1001136.t001

Genetic Background Drives Tumor Somatic Events
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Figure 3. Loci with and without evidence of preferential allelic imbalance. (A) Microsatellite marker showing evidence of preferential allelic
imbalance. Four tumors from one individual were typed for microsatellite marker D3S3045. Compared to blood DNA, all four tumors showed
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Methods

Human samples
All study participants signed informed consent and the study was

approved by University of California San Francisco (UCSF) and

Ohio State University (OSU) Institutional Review Boards. Partic-

ipants were eligible if they had available SCC and normal tissue

available for study. To reduce the possibility that tumors from the

same individual might be related clonally, we chose tumors from

different anatomical locations when they were excised on the same

day. Tumors excised on different dates also needed to be excised

from different anatomical locations. Re-excisions were not included

in the study. Tumor DNA was microdissected from formalin-fixed

paraffin embedded tissue sections containing at least 70% tumor

cells and the concentration was measured using TaqMan analysis

[22]. Blood DNA was used as a source of normal reference DNA for

loss of heterozygosity analyses.

aCGH
We obtained aCGH profiles from a total of 305 tumors from

181 patients and these consisted of one actinic keratosis, 37

Bowen’s disease, 45 KAs and 222 SCCs. We focused our

subsequent analyses on 222 SCCs from 135 individuals. The

cohort included 25 patients who had 3 or more independent

tumors that were examined by aCGH (number of tumors,

n = 104). Tumor genomic DNA (1000ng) and reference DNA

(600ng) (Promega) was labeled with Cy3 and Cy5, respectively

using random primers essentially as previously described [23,24].

The labeled tumor and reference DNA was pooled and applied to

Hum3.2 BAC arrays for 48 hours. The arrays contained 2464

BAC clones with an average resolution of 100 Mb. Analysis of the

arrays was carried out using R/Bioconductor software [25,26].

Prior to analysis the data was normalized with respect to GC

content and geometrical position on the arrays [27]. Regions of

equal copy number were defined by segmenting the data using

circular binary segmentation (CBS) [28]. The scaled median

absolute deviation (MAD) of the difference between the observed

and segmented values was used to estimate the sample-specific

experimental variation; samples with a MAD of greater than 0.2

(n = 18) were considered unsuitable for inclusion in the study. The

gain and loss status for each probe was defined using the merged

level procedure [29].

Statistical analyses
For each autosomal arm, correlation coefficients based on log2

ratio values were computed for each pair of samples for those

patients who had at least three independent SCC samples. Only

those sample pairs were considered where at least one of the

samples had 20% of clones with absolute value greater than 2

times sample MAD and another 20% below 2 times MAD. This

ensured that the correlation was not driven by a flat sample profile.

Only those arms were considered where there were at least 40

clones with non-missing values and at least 20 sample pairs in each

of intra and inter groups; arms excluded from analyses include 2p,

3q, 4p, 5p, 6p, 6q, 7p, 7q, 9p, 9q, 10p, 10q, 11p, 12p, 12q, 15q,

16p, 16q, 17p, 18p, 18q, 19p, 19q, 20p, 21q and 22q. Two-sided,

two sample t-tests were performed comparing the intra and inter

patient groups for each of those arms where there was no

significant difference in group variances. Brown-Forsythe version

of the Levene-type test [30] was used to test for unequal group

variances. The t-test p-values were then adjusted for multiple

testing by Holm’s method. Since a number of arms had unequal

group variances, t-tests with Welch’s approximation were also

performed on each arm. Theoretical p-values were then adjusted

by Holm’s method. Genome-wide p-value was similarly computed

by considering clones from all autosomes. There was no difference

in group variances when considering whole genome. The

correlation coefficients when considering individual arms and also

whole genome had near normal distributions.

We identified clones having high within vs. between patient

effects by estimating intraclass correlation coefficient (ICC) which

captured the within-patient similarity. A random effects model

Yij = m + ai + eij, where the response variable is the CBS value with

original log2ratio if a clone is an outlier in that segment, j and i

represent the tumor and patient respectively, m is an unobserved

overall mean, ai is an unobserved random effect shared by all

tumors in patient i, and eij is an unobserved noise term, was fit for

each clone and ICC calculated as sa
2/(sa

2+se
2) where sa

2 and

se
2 are the variances of ai and eij respectively.

Microsatellite LOH analyses
Matched normal and tumor DNAs from 65 individuals were

genotyped for 45 microsatellite markers mapping to regions of

common chromosomal loss or gain. A total of 270 skin tumors

were studied for microsatellite LOH analyses. For allelotyping, we

chose microsatellite markers with a high degree of heterozygosity

that can be readily quantified. To allow efficient amplification

from fixed tissue we selected microsatellite markers with PCR

product sizes less than 200 bp [12]. Fluorescently labeled,

multiplexed PCR products were analyzed on an ABI 377 DNA

sequencer using GeneMapper v3.7 (Applied Biosystems) in the

OSU Comprehensive Cancer Center Nucleic Acids Shared

Resource. An allelic imbalance ratio (R) in each tumor sample

for each marker was calculated using a standard protocol:

R = (TA/TB)/(NA/NB), where TA is a peak height from tumor

DNA of the larger sized allele, TB is the peak height area from

tumor DNA of the smaller sized allele, NA is the peak height area

from normal DNA of the larger allele, and NB is the peak height

area from normal DNA of the smaller allele. As described by

others, when R was greater than 1.5 or less than 0.66, the sample

was considered to have allelic imbalance [31,32]. When R was

between 1.25 and 0.85 the sample was considered to have no

imbalance. Other values for R were treated as uncertain.

Preferential imbalance analyses of microsatellite
genotypes

Allelic imbalance data using microsatellite markers cannot simply

be compiled across individuals, due to the heterozygosity of allele

sizes across individuals each individual is likely to have a different

combination of genotypes. We used a Bayesian/frequentist

approach which we developed specifically for these data to

determine if any given marker showed preferential allelic imbalance

within and across patients (Text S1). In brief, we evaluated patient-

specific odds of preferential imbalance as an indicator of randomness

in a given individual using a Bayesian method. We then combined

these odds into a sample to assess the evidence in favor of

preferential imbalance in the general population using a frequentist

method. A Wilcoxon rank sum test was then performed and all loci

respective loss of the 182 bp allele. A pattern of preferential allelic imbalance was observed in 8 of 9 informative individuals for this marker. (B)
Microsatellite marker showing random allelic imbalance. Four tumors from one individual were typed for microsatellite marker D11S4463. Compared
to the matched blood DNA, two tumors showed relative loss of the 118 bp allele and two tumors showed relative loss of the 122 bp allele.
doi:10.1371/journal.pgen.1001136.g003

Genetic Background Drives Tumor Somatic Events
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Table 2. Preferential allelic imbalance studies.

Locus Marker Number of patients p-value

Heterozygous
Multiple tumors with LOH
(tumor number)

Preferential
imbalance*

1p35.1-1p34.3 D1S3720 27 5 (12) 2 0.63

1p35.1-p34.3 D1S3721 28 4 (11) 1 0.25

3p26.1 D3S4545 35 12 (39) 11 0.008

3p24 D3S3038 34 15 (58) 11 0.007

3p21.2-p14 D3S1766 37 16 (73) 12 0.007

3p21.2-p14 D3S3644 43 14 (49) 10 0.10

3p21.2-p14 D3S4529 10 7 (18) 6 0.03

3q21-3q29 D3S3045 51 9 (34) 8 0.02

3q21-q29 D3S1746 44 19 (62) 11 0.37

3q21-q29 D3S1311 41 14 (49) 9 0.45

5q23 D5S2501 21 14 (41) 11 0.05

5q23 D5S1505 26 17 (51) 5 0.10

5q23 D5S816 25 18 (66) 9 0.73

7p21.1 D7S638 19 4 (11) 1 0.25

7p21.1-p15.3 D7S503 27 7 (24) 6 0.05

7p12 D7S1818 26 10 (39) 9 0.04

7p21.11-p21.12 D7S644 12 1 (12) 1 1.00

7q22.1 D7S1799 13 1 (3) 1 1.00

7q22.3 D7S2420 16 4 (9) 4 0.13

7q31.1 D7S2418 25 7 (29) 7 0.02

7q31.2 D7486 24 7 (23) 4 0.47

7q31.33 D7S1873 25 15 (38) 9 0.39

8p12 D8S1048 22 10 (38) 5 0.13

8p12 D8S1477 33 15 (45) 11 0.15

8q22-q24 D8S1132 45 8 (32) 7 0.02

8q24.1 D8S1128 40 11 (31) 6 0.82

8q24.3 D8S373 39 11 (26) 7 0.94

9p21 D9S925 44 25 (71) 20 0.02

9p21 D9S1118 35 10 (30) 5 1.00

9q D9S934 30 10 (28) 8 0.12

9q D9S1825 32 8 (23) 5 0.48

9q D9S2157 8 2 (4) 2 0.5

9q D9S1838 34 17 (44) 6 0.54

11q23-q25 D11S1986 39 20 (50) 14 0.03

11q23-q25 D11S4463 27 12 (16) 9 0.17

11q23-q25 D11S969 22 13 (23) 9 0.18

13q12-q21 D13S1493 31 20 (72) 13 0.85

13q14.1 D13S155 21 12 (36) 5 0.34

13q12-q21 D13S800 20 14 (42) 8 0.85

13q12-q21 D13S796 32 15 (45) 8 0.18

13q12-q21 D13S285 32 25 (66) 12 0.80

17p13.1 D17S974 18 11 (28) 9 0.12

18q22-q23 D18S1364 24 14 (44) 5 0.52

18q22-q23 ATA82B02 24 18 (64) 12 0.01

18q22-q23 D18S1390 16 8 (27) 2 0.67

*ln Oj,21.5.
doi:10.1371/journal.pgen.1001136.t002
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that rejected the null hypothesis at a 5% level of significance were

deemed to show preferential imbalance.

Allele-specific imbalance studies
We conducted quantitative genotyping of matched normal and

SCC tumor DNA pairs using Sequenom MassARRAY Iplex gold

genotyping technology. It is highly quantitative and is extremely

sensitive for detection of allelic gains or losses in tumors and has

been used for allelic imbalance studies [33]. All genotypes of

poorer quality (aggressive calls) and those for whom a water

sample had a strong call were eliminated from further analysis.

Genotypes were also discarded from analysis if one of the two

paired normal/tumor DNAs did not work resulting in genotypes

included in analysis from 299 SCCs from 130 individuals for

rs13281615, 110 SCCs for 70 individuals for rs1447295, and 175

SCCs from 84 individuals for rs6983267. Genotypes and peak area

data for each allele were analyzed to identify regions of genomic

imbalance between each matched normal and tumor DNA. An

allelic imbalance ratio (R) to measure imbalance in each tumor

sample for each SNP was calculated as described for the

microsatellite LOH studies. Duplicate SNPs were included for

quality control and two control samples and two no template

controls were used. Chi-squared analyses were used to determine

significance of observed allelic imbalances compared to expected

50:50 imbalances indicative of random allelic imbalance.

Supporting Information

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1001136.s001 (0.05 MB

DOC)
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