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A B S T R A C T

In this study, we developed a dynamic mathematical model of E. coli cell-free protein synthesis (CFPS). Model
parameters were estimated from a dataset consisting of glucose, organic acids, energy species, amino acids, and
protein product, chloramphenicol acetyltransferase (CAT) measurements. The model was successfully trained to
simulate these measurements, especially those of the central carbon metabolism. We then used the trained model
to evaluate the performance, e.g., the yield and rates of protein production. CAT was produced with an energy
efficiency of 12%, suggesting that the process could be further optimized. Reaction group knockouts showed that
protein productivity was most sensitive to the oxidative phosphorylation and glycolysis/gluconeogenesis path-
ways. Amino acid biosynthesis was also important for productivity, while overflow metabolism and TCA cycle
affected the overall system state. In addition, translation was more important to productivity than transcription.
Finally, CAT production was robust to allosteric control, as were most of the predicted metabolite concentrations;
the exceptions to this were the concentrations of succinate and malate, and to a lesser extent pyruvate and acetate,
which varied from the measured values when allosteric control was removed. This study is the first to use kinetic
modeling to predict dynamic protein production in a cell-free E. coli system, and could provide a foundation for
genome scale, dynamic modeling of cell-free E. coli protein synthesis.
Nomenclature.

GLC alpha-D-Glucose
G6P
 Glucose 6-phosphate

F6P
 Fructose 6-phosphate

FBP
 Fructose 1,6-diphosphate

T3P
 Dihydroxyacetone phosphate

13DPG
 1,3-bis-Phosphoglycerate

3PG
 3-Phosphoglycerate

2PG
 2-Phosphoglycerate

PEP
 Phosphoenolpyruvate

PYR
 Pyruvate

LAC
 D-Lactate

6PG
 6-Phospho-D-glucono-1,5-lactone; 6-Phospho-D-gluconate

RU5P
 D-Ribulose 5-phosphate

XU5P
 D-Xylulose 5-phosphate

R5P
 Ribose 5-phosphate

S7P
 sedo-Heptulose 7-phosphate

G3P
 Glyceraldehyde 3-phosphate

E4P
 Erythrose 4-phosphate
(continued on next column)
.

orm 15 October 2019; Accepted
half of International Metabolic E
(continued )
19
ng
GLC
November 2019
ineering Society. This is
alpha-D-Glucose
2DDG6P
 2-Dehydro-3-deoxy-D-gluconate 6-phosphate

COA
 Coenzyme A

ACCOA
 Acetyl coenzyme A

AC
 Acetate

CIT
 Citrate

ICIT
 Isocitrate

AKG
 alpha-Ketoglutarate

SUCCOA
 Succinyl coenzyme A

SUCC
 Succinate

FUM
 Fumarate

MAL
 Malate

OAA
 Oxaloacetate

FOR
 Formate

PROP
 Propanoate

ALA
 Alanine

ARG
 Arginine

ASP
 Aspartate

ASN
 Asparagine
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(continued )
GLC
 alpha-D-Glucose
CYS
 Cysteine

GLU
 Glutamate

GLN
 Glutamine

GLY
 Glycine

HIS
 Histidine

ILE
 Isoleucine

LEU
 Leucine

LYS
 L-Lysine

MET
 Methionine

PHE
 Phenylalanine

PRO
 Proline

SER
 Serine

THR
 Threonine

TRP
 Tryptophan

TYR
 Tyrosine

VAL
 Valine

AA
 Amino acid

AA tRNA
 Aminoacyl tRNA

ATP
 Adenosine triphosphate

ADP
 Adenosine diphosphate

AMP
 Adenosine monophosphate

CTP
 Cytidine triphosphate

CDP
 Cytidine diphosphate

CMP
 Cytidine monophosphate

GTP
 Guanosine triphosphate

GDP
 Guanosine diphosphate

GMP
 Guanosine monophosphate

UTP
 Uridine triphosphate

UDP
 Uridine diphosphate

UMP
 Uridine monophosphate

CAT
 Chloramphenicol acetyltransferase
1. Introduction

Cell-free protein expression is a widely used tool in systems and
synthetic biology, and a promising technology for personalized point of
use biotechnology (Pardee et al., 2016). Cell-free systems offer many
advantages for the study, manipulation and modeling of metabolism
compared to in vivo processes. Central amongst these advantages is direct
access to metabolites and the biosynthetic machinery without the inter-
ference of a cell wall, or the complications associated with cell growth.
Thus, we can interrogate (and potentially manipulate) the chemical
microenvironment while the biosynthetic machinery is operating,
possibly at a fine time resolution. Cell-free protein synthesis (CFPS) is
arguably the most prominent example of a cell-free system used today
(Jewett et al., 2008). However, CFPS is not new; CFPS in crude E. coli
extracts has been used since the 1960s to explore fundamental biological
mechanisms. For example, Matthaei and Nirenberg used E. coli cell-free
extracts in ground-breaking experiments to decipher the sequencing of
the genetic code (Matthaei and Nirenberg, 1961; Nirenberg and Mat-
thaei, 1961). Spirin and coworkers later improved protein production in
cell-free extracts by continuously exchanging reactants and products;
however, while these extracts could run for tens of hours, they could only
synthesize a single product and were energy limited (Spirin et al., 1988).
More recently, energy and cofactor regeneration in CFPS has been
significantly improved; for example, ATP can be regenerated using
substrate-level phosphorylation (Kim and Swartz, 2001) or even oxida-
tive phosphorylation (Jewett et al., 2008). While it was once debated
whether oxidative phosphorylation occurred in cell-free systems, Jewett
and coworkers demonstrated its existence definitively in the Cytomim
system by inhibiting it using electron transport chain and F1FO-ATPase
inhibitors, as well as membrane gradient uncouplers, and observing a
significantly lower protein yield (Jewett et al., 2008). They hypothesized
respiration was occurring in inverted membrane vesicles created during
cell lysis. Today, cell-free systems are used in a variety of applications
ranging from therapeutic protein production (Lu et al., 2014) to synthetic
biology (Hodgman and Jewett, 2012; Hu et al., 2015; Pardee et al.,
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2016). Moreover, there are also several CFPS technology platforms, such
as the PANOx-SP and Cytomim platforms developed by Swartz and co-
workers (Jewett and Swartz, 2004a; Jewett et al., 2008), the TXTL
platform of Noireaux (Garamella et al., 2016) or the PURE system
developed by Shimizu et al. (2001). However, for point of use cell-free
manufacturing to become a mainstream technology, we must first un-
derstand the system performance, and eventually optimize important
metrics such as yield and productivity. A critical tool towards this goal is
mathematical modeling. We previously developed a constraint-based
model of CFPS which integrated the expression of the protein product
with the supply of metabolic precursors and energy (Vilkhovoy et al.,
2018).

Dynamic mathematical modeling has long contributed to our under-
standing of metabolism (Wayman and Varner, 2013). Decades before the
genomics revolution, mechanistically structured metabolic models arose
from the desire to predict microbial phenotypes resulting from changes in
intracellular or extracellular states (Fredrickson, 1976). The single cell
E. coli models of Shuler and coworkers pioneered the construction of
large-scale, dynamic metabolic models that incorporated multiple regu-
lated catabolic and anabolic pathways constrained by experimentally
determined kinetic parameters (Domach et al., 1984). Shuler and co-
workers generated many single cell kinetic models, including single cell
models of eukaryotes (Steinmeyer and Shuler, 1989; Wu et al., 1992),
minimal cell architectures (Castellanos et al., 2004), and DNA sequence
based whole-cell models of E. coli (Atlas et al., 2008). More recent studies
have extended the approach, from integrating disparate models of
cellular processes in M. genitalium (Karr et al., 2012), to describing
dozens of mutant strains in E. coli with a single partially kinetic model
(Khodayari and Maranas, 2016), to identifying industrially useful target
enzymes in E. coli for improved 1,4-butanediol production (Andreozzi
et al., 2016). Taken together, mathematical modeling of metabolism has
proven useful for applications across systems biology. However, dynamic
metabolic model development is often time consuming, and model
identification and validation requires significant experimental
information.

Parameter identification is a challenge to the development of pre-
dictive dynamic metabolic models. Sethna identified parameter sloppi-
ness as a common feature of systems biology models; the eigenvalues of
the network sensitivity were distributed across wide ranges, and were not
generally aligned with single parameters (Brown and Sethna, 2003;
Gutenkunst et al., 2007). This leads to parameter values being unknown
despite comprehensive metabolite information. Furthermore, if direct
parameter measurements were attempted, they had to be precise and
exhaustive to yield reliable model predictions. Surprisingly, despite this,
models often still accurately predict multiple phenotypes via collective
parameter fitting. Liao and coworkers constructed an ensemble of models
across a wide range of kinetic parameters that satisfied thermodynamic
constraints and steady state flux distributions, and selected from within
the ensemble those models that described enzyme overexpression data-
sets (Tran et al., 2008). In this way, specific parameter identification was
bypassed, and multiple relevant phenotypes could be described. Mean-
while, Hatzimanikatis and coworkers employed machine learning to
simplify the parameter estimation problem (Andreozzi et al., 2007). They
segregated the feasible-solution parameter space into N-dimensional
boxes, via a binary decision tree which determined the values of pa-
rameters. This subsequently allowed for uniform, non-asymptotic sam-
pling within the subregions; a convenient byproduct of this approach was
a simple estimation of the volume of the solution space. Taken together,
large-scale, descriptive models of prokaryotic metabolism can be con-
structed and trained to predict diverse biological behaviors with uncer-
tain parameter information.

In this study, we developed an ensemble of kinetic cell-free protein
synthesis (CFPS) models using dynamic metabolite measurements from
an early glucose powered Cytomim E. coli cell-free extract. While cell-free
technology has evolved considerably since this data set was generated,
developing a model using a previous generation CFPS platform offers



Fig. 1. Schematic of the core portion of the cell-free E. coli metabolic network.
Metabolites of glycolysis, pentose phosphate pathway, Entner-Doudoroff
pathway, and TCA cycle are shown. Metabolites of oxidative phosphorylation,
amino acid biosynthesis and degradation, transcription/translation, chorismate
metabolism, and energy metabolism are not shown.
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several unique opportunities. First and foremost, is the ability to directly
compare the different improvements established by purely experimental
means, to those estimated using a dynamic mathematical model. The
CFPS model equations were formulated using the hybrid cell-free
modeling framework of Wayman and coworkers (Wayman et al.,
2015), which integrates traditional kinetic modeling with a logical
rule-based description of allosteric regulation. Model parameters were
estimated from measurements of glucose, organic acids, energy species,
amino acids, and the protein product, chloramphenicol acetyltransferase
(CAT) over the course of a 3 h protein synthesis reaction. A constrained
Markov Chain Monte Carlo (MCMC) approach was used to minimize the
squared difference between model simulations and experimental mea-
surements, where a plausible range for each kinetic parameter was
established from BioNumbers (Milo et al., 2009). The ensemble of
parameter sets described the training data with a median cost greater
than two orders of magnitude smaller than a population of random
parameter sets constructed using the same literature parameter con-
straints. We then used the ensemble of kinetic models to analyze the
performance of the CFPS system, and to estimate the pathways most
important to protein production. We calculated that CAT was produced
with an energy efficiency of 12%, suggesting that much of the energy
resources for protein synthesis were diverted to non-productive path-
ways. By simulating the knockout of metabolic enzyme groups (this was
not actually done experimentally), we showed that metabolism and
protein production in particular depended upon oxidative phosphoryla-
tion and glycolysis/gluconeogenesis. In addition, translation was more
important to productivity than transcription. Lastly, CAT production was
robust to allosteric control, as was most of the network, with the
exception of the organic acid trajectories in central carbon metabolism.
Taken together, this study provides a foundation for sequence specific
genome scale, dynamic modeling of cell-free E. coli protein synthesis.

2. Results

The cell-free E. coli metabolic network was constructed by removing
growth-associated reactions from the iAF1260 reconstruction of K-12
MG1655 E. coli (Feist et al., 2007), and by adding reactions describing
chloramphenicol acetyltransferase (CAT) biosynthesis (Fig. 1). In addi-
tion, reactions that were knocked out in the host strain used to prepare
the extract were removed from the network (ΔspeA, ΔtnaA, ΔsdaA,
ΔsdaB, ΔgshA, ΔtonA, ΔendA). Lastly, we added transcription and
translation processes for the synthesis of the CAT protein. These pro-
cesses were based on the transcription and translation template reactions
from the earlier work done of Allen and Palsson (2003) and more
recently Vilkhovoy et al. (2018). The metabolic network, which con-
tained 148 metabolites and 204 reactions, is available in the supple-
mental materials. Model equations followed the hybrid modeling
framework of Wayman and coworkers (Wayman et al., 2015), combining
multiple saturation kinetics with a rule-based model of allosteric regu-
lation. An ensemble of 100 model parameter sets was estimated from
measurements of glucose, CAT, organic acids, energy species, and 18 of
the 20 proteinogenic amino acids (Vilkhovoy et al., 2018) using a con-
strained Markov Chain Monte Carlo (MCMC) approach. The organic
acids measured included pyruvate, lactate, acetate, succinate, and ma-
late. The energy species included three phosphorylation states each of the
four ribonucleosides: ATP, ADP, AMP, GTP, GDP, GMP, CTP, CDP, CMP,
UTP, UDP, and UMP. Nicotinamide adenine dinucleotide (NAD(H)) and
nicotinamide adenine dinucleotide phosphate (NADP(H)), while present
in the model, were not measured in the dataset. The model equations and
parameter sets, as well as the experimental dataset, are available under
an MIT open source software license from the Varnerlab website
(Varnerlab).

The MCMC algorithm minimized the squared difference (residual)
between the training data and model simulations starting from an initial
parameter set assembled from literature and inspection. Bounds on
permissible parameter values were established using studies from the
3

BioNumbers database (Milo et al., 2009). For each newly generated
parameter set, the balance equations were re-solved and the cost function
re-calculated; all sets with a lower cost (and some with higher cost) were
accepted into the ensemble. Parameter sets were also required to meet
strict ordinary differential equation solver tolerances, to ensure numer-
ical stability. Approximately 3000 parameter sets were accepted into an
initial ensemble; each set contained 204 maximum reaction rates, 204
enzyme activity decay constants, 548 saturation constants, and 34 con-
trol parameters, for a total of 815 parameters in each set. Of these 3000
accepted parameter sets, we selected a final ensemble of 100 sets (based
upon training error) for the model analysis studies. The final ensemble
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(despite being close in overall error) had a mean Pearson correlation
coefficient of 0.78; this suggested parameter sets were not over-sampled
in the region of a local minimum. The median maximum reaction rate
(Vmax) across the ensemble was 11.6 mM/h, assuming a total cell-free
enzyme concentration of approximately 170 nM. This Vmax, which cor-
responded to a median catalytic rate of 19 s�1 across the ensemble, was in
relative agreement with the 13.7 s�1 median catalytic rate found by Milo
and coworkers (Bar-Even et al., 2011). The median enzyme activity
decay constant was 0.0045 h�1, corresponding to an enzyme activity half
life of approximately 6 days. The median saturation constant was 1.0
mM; this was within one order of magnitude of the 130 μM reported by
Milo and coworkers. Lastly, both the median control gain and order pa-
rameters, which appeared in the allosteric control functions, were on
order 1. While the maximum reaction rates of the ensemble were
distributed evenly across the allowed range (Fig. S1A), the saturation
constants were clustered around the upper and lower bounds (Fig. S1B)
of the parameter search. Taken together, the constrained MCMC
approach estimated a numerically stable ensemble of model parameters
that was on aggregate consistent with literature values. Next, we exam-
ined the model fit to the experimental training data.

The ensemble of kinetic CFPS models captured the time evolution of
protein biosynthesis, and the consumption and production of organic
acid, amino acid and energy species. The time evolution of central carbon
metabolites (Fig. 2, top), amino acids (Fig. 3), and energy species (Fig. 4)
were captured by the ensemble and the best-fit parameter set. The con-
strained MCMC approach estimated parameter sets with a median error
more than two orders of magnitude less than random parameter sets
generated within the same parameter bounds established from literature
(Fig. 5). For 29 of the 37 measurements in the training dataset, the mean
Akaike information criterion (AIC) of the predicted ensemble was lower
than that of the random sets, signifying a better fit of the data (Table 3).
For the remaining eight measurements, the AIC score of the random
ensemble was lower than that of the predicted ensemble, but the
Fig. 2. Central carbon metabolism in the presence (top) and absence (bottom) of allos
well as total concentration of energy species. Best-fit parameter set (orange line) ve
region) over the ensemble of 100 sets. (For interpretation of the references to color
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difference was within the standard deviation of the AIC score (with the
exception of isoleucine: σRandAIC ¼ 4.8, μRandAIC � μEnsAIC ¼ � 5.0). Taken
together, these results suggested that the predicted ensemble modeled
cell-free metabolism and protein production, significantly better than the
random ensemble, not just overall but for the majority of individual
metabolite and protein measurements. Next, we analyzed the important
features of the cell-free protein synthesis timecourse.

The predicted ensemble of models captured the biphasic time course
of CAT production. During the first hour, glucose powered protein pro-
duction, and CAT was produced at 8 μM/h; subsequently, pyruvate and
lactate reserves were consumed to power metabolism, and CAT was
produced at 5 μM/h. Allosteric control was important to central carbon
metabolism, especially for pyruvate, acetate, and succinate (Fig. 2, bot-
tom). However, CAT production was robust to the removal of allosteric
control. The difference between the allosteric control and no-control
cases was mostly seen in the second (pyruvate-driven) phase of CAT
production, following glucose exhaustion. Specifically, pyruvate, succi-
nate, and malate consumption and acetate accumulation increased with
the removal of allosteric control. The rate of acetate accumulation
increased by 172%, while the rates of malate, pyruvate, and lactate
consumption increased by 146%, 82%, and 9%, respectively. Succinate
went from accumulating slightly in the second phase, in the presence of
allosteric control, to being fully consumed. While ATP generation varied
when allosteric control was removed, ATP expenditure toward CAT
production did not. Most of the fluxes that differed between the two cases
involved PEP and pyruvate, which directly participated in many of the
reactions modulated by allosteric control. Taken together, the ensemble
of kinetic models was consistent with time series measurements of the
cell-free production of a model protein. Although the ensemble described
the experimental data, it was unclear which kinetic parameters and
pathways most influenced metabolism and CAT production. To explore
this question, we performed reaction group knockout analysis.

The importance of CFPS pathways was estimated using pathway
teric control, including glucose (substrate), CAT (product), and intermediates, as
rsus experimental data (points). 95% confidence interval (blue or gray shaded
in this figure legend, the reader is referred to the Web version of this article.)



Fig. 3. Amino acids in the presence of allosteric control. Best-fit parameter set (orange line) versus experimental data (points). 95% confidence interval (blue shaded
region) over the ensemble of 100 sets. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Energy species and energy totals by base in the presence of allosteric control. Best-fit parameter set (orange line) versus experimental data (points). 95%
confidence interval (blue shaded region) over the ensemble of 100 sets. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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Fig. 5. Log of cost function (residual between training data and model simulations) across 37 datasets for data-trained ensemble (blue) and randomly generated
ensemble (red, gray background). Median (bars), interquartile range (boxes), range excluding outliers (thin lines), and outliers (circles) for each dataset. Median across
all datasets (large bar overlaid). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Key reaction fluxes of the network, in the first (gray boxes, top row) and second (gray boxes, bottom row) phases of metabolism. A. Fluxes of ATP generation
and consumption, and GTP consumption toward protein synthesis. B. Fluxes of glycolysis and lactate and acetate metabolism. Fluxes are normalized to the first-phase
glucose uptake rate. For PEP and pyruvate, accumulation (normalized to glucose uptake) is also shown.
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group knockout analysis (Fig. 7). The metabolic network was divided
into 19 reaction groups, spanning central carbon metabolism, energetics,
and amino acid biosynthesis. Group knockout analysis was used to esti-
mate the influence of broadly defined network functions on protein
synthesis. While this approach is not directly transferable to experi-
mental investigation, deleting groups of reactions avoids under-
predicting the sensitivity of reactions that exist in parallel with others
e.g., isozymes. It also gives a global picture of the robust and fragile el-
ements of the network in terms of the functional groups. The response in
the productivity (Fig. 7A) and overall system state (Fig. 7B) was calcu-
lated for single and pairwise deletion of each of these reaction groups.
Lastly, the overall effect of the deletion of a pathway was estimated by
summing the single and pairwise effects (summation across the columns
of the response array). Glycolysis/gluconeogenesis and oxidative phos-
phorylation had the greatest effect on both productivity and system state.
This supports previous studies that have suggested oxidative phosphor-
ylation is occurring in a cell-free system (Jewett et al., 2008); Jewett and
6

coworkers observed a decrease in CAT yield, ranging from 1.5-fold to
4-fold, when inhibiting oxidative phosphorylation reactions in the
Cytomim cell-free platform, using both pyruvate and glutamate as sub-
strates. CAT productivity was also affected by two sectors of amino acid
biosynthesis: alanine/aspartate/asparagine, and glutamate/glutamine
biosynthesis. Aspartate, glutamate, and glutamine are key reactants in
the biosynthesis of many other amino acids, all of which are required for
CAT synthesis. Meanwhile, the TCA cycle and overflow metabolism
(which included acetyl-coA/acetate reactions and the interconversion of
pyruvate and lactate) also had a significant effect on the system state.
These reactions directly impacted key system species: succinate and
malate in the TCA cycle, and acetate, pyruvate, and lactate in the over-
flow metabolism. In addition, the relative influence of transcription and
translation parameters was interrogated by global sensitivity analysis
(Sobol, 2001). Productivity was sensitive to the maximum reaction rate
of transcription (coefficient of 0.43 � 0.06), but was more sensitive to
variations in the maximum reaction rate of translation (0.66 � 0.08).



Fig. 7. Effect of group knockouts on system. A. Change in CAT productivity when one (diagonal) or two (off-diagonal) reaction groups are turned off. B. Change in
system state (only species for which data exist) when one (diagonal) or two (off-diagonal) reaction groups are turned off. Total-order effect for each group calculated as
the sum of first-order effect and all pairwise effects. Larger and darker circles represent greater effects.
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Table 2
Breakdown of ATP consumption. Flux through ATP-consuming pathways in the
first and second phases as percentages of total ATP consumption in that phase.

Name Index Reaction Phase
1

Phase
2

R_glk_atp 1 ATP þ GLC→ ADP þ G6P þ H 22% <1%
R_pfk 4 ATP þ F6P→ ADP þ FBP 24% <1%
R_pps 22 ATP þ H2O þ PYR→ AMP þ PEP

þ Pi
1% 1%

R_acs 70 AC þ ATP þ COA→ ACCOA þ
AMP þ PPi

8% 19%

R_glnA 86 GLU þ ATP þ NH3→ GLN þ ADP
þ Pi

1% 2%

R_atp_amp 152 ATP þ H2O→ AMP þ PPi 6% 13%
R_udp_utp 160 UDP þ ATP→ UTP þ ADP 3% 6%
R_cdp_ctp 161 CDP þ ATP→ CTP þ ADP 4% 8%
R_gdp_gtp 162 GDP þ ATP→ GTP þ ADP 3% 4%
R_atp_ump 163 ATP þ UMP→ ADP þ UDP 1% 3%
R_atp_cmp 164 ATP þ CMP→ ADP þ CDP 2% 3%
R_adk_atp 166 AMP þ ATP→ 2 ADP 18% 35%
tRNA
charging

185–204 AA þ tRNA þ ATP þ H2O→ AA
tRNA þ AMP þ PPi

2% 2%

Other 4% 4%

N. Horvath et al. Metabolic Engineering Communications 10 (2020) e00113
Thus, translation appeared to be the limiting step of cell-free protein
synthesis.

The energy efficiency of CAT production, as well as the sources of
energy generation and consumption, were tracked for the best-fit set.
Energy efficiency was calculated as the ratio of transcription and trans-
lation rates (weighted by the associated ATP costs of each step) to the
amount of ATP generated by all sources. During the first phase of protein
production, with glucose as the substrate, CAT was produced with a
productivity of 8 μM/h and an energy efficiency of 10%. The organic
acids that accumulated in the first phase (with the exception of acetate)
were then utilized as substrates in the second phase, once glucose was
depleted. We assumed the second phase of CAT production was powered
largely by pyruvate; although malate was also consumed in the second
phase, it accounted for only 11% of substrate consumption. Lactate
accounted for a significant amount of substrate consumption, but was
connected in the stoichiometry only to pyruvate. Thus, we considered the
second phase as pyruvate-driven production. Interestingly, while this
mode of protein production was slower (5 μM/h), it exhibited a higher
energy efficiency (14%). Of the ATP generated, about half was observed
to come from oxidative phosphorylation (R_atp) in each of the two phases
of production (Fig. 6A, Table 1). Another 30% was generated by
glycolysis during the first phase (R_pgk,R_pyk), which decreased to
approximately 20% following glucose exhaustion. However, glycolysis
was also amongst the largest consumers of ATP during first phase of
production (R_glk_atp, R_pfk) (Table 2). The TCA cycle (R_sucCD)
contributed 3% to the overall rate of ATP generation in the first phase
and 5% in the second. The hypothesis that pyruvate drives the second
phase explains this; stores of accumulated pyruvate can be converted to
acetyl-CoA, as well as OAA (via PEP), and thus power the TCA cycle just
as when glucose was available. Interestingly, ATP generation through
acetate metabolism (R_ackA) increased from 12% in the first phase to
28% in the second. The switch from glycolysis in the first phase, to
consumption of organic acid reserves and increased acetate accumulation
in the second phase, can also be seen in the reaction fluxes surrounding
PEP and pyruvate (Fig. 6B). Lastly, amino acid degradation contributed a
negligible amount to energy production. Taken together, while the effi-
ciency of production was higher for the pyruvate-driven phase, it was still
relatively low, suggesting that there is room for platform optimization.
This strengthens the importance of glycolysis and oxidative phosphory-
lation, and presents a trade-off between productivity and energy effi-
ciency in CFPS.

3. Discussion

In this study, an ensemble of kinetic cell-free protein synthesis (CFPS)
models was developed using dynamic metabolite measurements from an
early glucose powered Cytomim E. coli cell-free extract. The hybrid cell-
free modeling approach of Wayman and coworkers, (Wayman et al.,
2015), which integrates traditional kinetic modeling with a logic-based
description of allosteric regulation, was employed to describe the time
Table 1
Breakdown of ATP generation. Flux through ATP-generating pathways in the first
and second phases as percentages of total ATP generation in that phase.

Name Index Reaction Phase
1

Phase
2

R_pgk 12 13DPG þ ADP→ 3PG þ ATP 14% 21%
R_pyk 18 ADP þ PEP→ ATP þ PYR 16% <1%
R_sucCD 45 ADP þ Pi þ SUCCOA→ ATP þ COA þ

SUCC
3% 5%

R_atp 55 ADP þ Pi þ 4 He→ ATP þ 4 H þ H2O 54% 46%
R_ackA 68 ACTP þ ADP→ AC þ ATP 12% 28%
R_asn_deg 102 ASNþ AMPþ PPi→NH3þ ASPþ ATP <1% <1%
R_thr_deg3 109 THR þ Pi þ ADP→ NH3 þ FOR þ ATP

þ PROP
<1% <1%
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evolution of the CFPS reaction. The ensemble captured dynamic
metabolite measurements over two orders of magnitude better than
random parameter sets generated in the same region of parameter space.
The ensemble captured the biphasic time course of CAT production,
relying on glucose during the first hour and pyruvate and lactate
following glucose exhaustion. Allosteric control was essential to the
description of the organic acid trajectories; without allosteric control,
pyruvate, lactate, succinate, and malate were predicted to be consumed
more quickly following glucose exhaustion, to power CAT synthesis.
However, CAT production was robust to the removal of allosteric control
because the amino acids and energy species that are reactants for CAT
synthesis were also not affected by allosteric control. The ensemble of
kinetic models was then used to analyze the performance of the CFPS
system, and to estimate the pathways most important to protein pro-
duction. CAT was produced with an approximate aggregate energy effi-
ciency of 12%, suggesting that much of the energy resources for protein
synthesis were diverted to non-productive pathways. By knocking out
metabolic enzymes in groups, it was shown that metabolism and protein
production in particular depended upon oxidative phosphorylation and
glycolysis/gluconeogenesis. Lastly, global sensitivity analysis suggested
that the translation rate was more important to protein productivity than
transcription. Taken together, this study provides a foundation for
sequence-specific genome scale, dynamic modeling of cell-free E. coli
protein synthesis that could be adapted to model the production of other
proteins and synthetic circuits.

The ensemble of models could serve as a surrogate to rationally
design cell-free production processes to optimize production rate and
energy efficiency. In analyzing the effect of reaction groups on CAT
production and the system state, the regions of metabolism associated
with substrate utilization and energy generation were the most impor-
tant. Oxidative phosphorylation was vital, since it provided most of the
energetic needs of CFPS. While it is unknown how active oxidative
phosphorylation is compared to that of in vivo systems, this study sug-
gested it was critical to CFPS performance. However, the biphasic
operation of CFPS highlights the ability of the system to respond to an
absence of glucose. During the first phase, central carbon metabolites
accumulated with the majority of flux going toward acetate and some
toward pyruvate, lactate, succinate and malate. While acetate continued
to accumulate as a byproduct, the other organic acids were consumed as
secondary substrates after glucose was no longer available. Glutamate
also served as a substrate throughout both phases, powering amino acid
synthesis. These results confirmed experimental findings that CAT pro-
duction can be sustained by other substrates in the absence of glucose,
providing alternative strategies to optimize CFPS performance. While
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CAT synthesis can be powered by other substrates, the productivity was
lower (5 μM/h, as opposed to 8 μM/h). This is in accordance with liter-
ature, where pyruvate provided a relatively slow but continuous supply
of ATP (Swartz, 2001). Taken together, this shows CFPS can be designed
towards a specified application, either requiring a slow stable energy
source or faster production.

Presented herein is the first dynamic model of E. coli cell-free protein
synthesis. A hybrid modeling framework was applied to describe an
experimental dataset for production of a model protein (Vilkhovoy et al.,
2018) and identified system limitations and areas of improvement for
production efficiency. Having captured the system dynamics, areas of
improvement for CFPS performance were investigated. The model pre-
dicted CAT production with an energy efficiency of 10% under glucose
consumption and 14% under pyruvate consumption. The accumulation
of glycolytic intermediates and byproducts such as acetate and carbon
dioxide was responsible for this sub-optimal performance. If fluxes could
be balanced such that intermediates were fully utilized, CAT production
would increase. Theoretical estimations of the energy efficiency of an in
vivo system can be as high as 80%, as found by our group (Vilkhovoy
et al., 2018) and others (Maitra and Dill, 2015). However, the corre-
sponding experimental values are much lower; 16% in the case of our
experimentally-constrained sequence-specific model (Vilkhovoy et al.,
2018). While the efficiency is lower, and the ATP produced per unit
glucose consumed is also likely lower, the demand for ATP in a cell free
system is significantly less. Previously, we estimated that approximately
120–160 mM ATP/h was produced in a cell free system powered by
glucose, in contrast to 12–84 mM ATP/h for optimal protein production
estimated by a constraint based model (Vilkhovoy et al., 2018). Thus,
despite being less efficient, the cell free system may not be energy
limited as it overproduced ATP relative to the demand from protein
synthesis. Knocking out sections of network metabolism revealed that
glycolysis/gluconeogenesis and oxidative phosphorylation were the
most important to CAT production and the system as a whole. Produc-
tivity was also heavily dependent on the synthesis reactions of alanine,
aspartate, asparagine, glutamate, and glutamine, while TCA cycle and
overflow reactions affected the system state. These findings represent
the first dynamic model of E. coli cell-free protein synthesis, an impor-
tant step toward a functional genome scale description of cell-free sys-
tems. This work could be extended through further experimentation to
gain a deeper understanding of system performance under a variety of
conditions. Specifically, CAT production performed in the absence of
amino acids could inform the system’s ability to synthesize them, while
experimentation in the absence of glucose or oxygen could shed light on
the importance of those substrates. Another extension of this study
would be to apply its insights to other protein applications. CAT is only a
test protein used for model identification; the modeling framework, and
to some extent the parameter values, should be protein agnostic. How-
ever, it should be noted that the fully kinetic approach resulted in a
model that was computationally expensive to solve, difficult to charac-
terize, and arduous to interrogate. Future applications may benefit from
alternate modeling strategies. For example, our group also employed a
dynamic constraint-based approach to model CFPS (Dai et al., 2018).
This involved constraining the problem to hundreds of different com-
binations of measurements, and solving the model for each. That
approach also captured the dynamics, and allowed the question of which
measurements might best characterize a system to be explored.
Approaching that question using the fully kinetic approach would have
been untenable. However, constraint-based approaches depend on the
accuracy of the measurements to which they are constrained. A kinetic
approach can theoretically predict dynamics in the absence of data, if
parameters are well identified. Taken together, the dynamics of multi-
phasic metabolism and protein synthesis in CFPS were accurately
captured, and the importance of various pathways was interrogated
toward improvement of production; however, other modeling ap-
proaches have advantages that make them well suited for future
endeavors.
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4. Materials and Methods

4.1. Cell-free protein synthesis and measurement

The protein synthesis reaction was conducted using a modified
version of the PANOxSP protocol (Jewett and Swartz, 2004b). Briefly, the
protein synthesis reaction was performed using the S30 extract in 1.5-mL
Eppendorf tubes (working volume of 15 μL) and incubated in a humid-
ified incubator at 37 �C. Plasmid pK7CAT was used as the DNA template
for chloramphenical acetyl transferase (CAT) expression by placing the
cat gene between the T7 promoter and the T7 terminator (Kigawa et al.,
1995). The plasmid was isolated and purified using a Plasmid Maxi Kit
(Qiagen, Valencia CA). Cell-free reaction samples were quenched at
specific timepoints with equal volumes of ice-cold 150 mM sulfuric acid
to precipitate proteins. Protein synthesis of CAT was determined from the
total amount of 14C-leucine-labeled product by trichloroacetic acid pre-
cipitation followed by scintillation counting as described previously
(Calhoun and Swartz, 2005). Samples were centrifuged for 10 min at 12,
000 g and 4 �C. The supernatant was collected for high performance
liquid chromatography (HPLC) analysis. HPLC analysis (Agilent 1100
HPLC, Palo Alto CA) was used to separate nucleotides and organic acids,
including glucose. Compounds were identified and quantified by com-
parison to known standards for retention time and UV absorbance (260
nm for nucleotides and 210 nm for organic acids) as described previously
(Calhoun and Swartz, 2005). The standard compounds quantified with a
refractive index detector included inorganic phosphate, glucose, and
acetate. Pyruvate, malate, succinate, and lactate were quantified with the
UV detector. The stability of the amino acids in the cell extract was
determined using a Dionex Amino Acid Analysis (AAA) HPLC System
(Sunnyvale, CA) that separates amino acids by gradient anion exchange
(AminoPac PA10 column). Compounds were identified with pulsed
amperometric electrochemical detection and by comparison to known
standards. More details are available in the Materials and Methods sec-
tion of Vilkhovoy et al. (2018).
4.2. Formulation and solution of the model equations

Cell-free protein synthesis was modeled using ordinary differential
equations (ODEs) to estimate the time evolution of metabolite (xi), scaled
enzyme activity (εi), transcription (m) and translation (P ) in an E. coli
cell-free metabolic network:

dxi
dt

¼
X
j¼1

σijrjðx; ε; kÞ i¼ 1; 2;…;M (1)

dεi
dt

¼ � λiεi i ¼ 1; 2;…;E (2)

dm
dt

¼ rTu� rd (3)

dP
dt

¼ rX (4)

The quantity R denotes the number of metabolic reactions, M de-
notes the number of metabolites and E denotes the number of metabolic
enzymes in the model. The quantity rjðx; ε;kÞ denotes the rate of reaction
j. Typically, reaction j is a non-linear function of metabolite and enzyme
abundance, as well as unknown kinetic parameters k (K � 1). The
quantity σij denotes the stoichiometric coefficient for species i in reaction
j. If σij > 0, metabolite i is produced by reaction j. Conversely, if σij < 0,
metabolite i is consumed by reaction j, while σij ¼ 0 indicates metabolite i
is not connected with reaction j. Lastly, λi denotes the scaled enzyme
activity decay constant. The system material balances were subject to the
initial conditions xðtoÞ ¼ xo and εðtoÞ ¼ 1 (initially we have 100% cell-
free enzyme activity).
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Metabolic reaction rates were written as the product of a kinetic term
(rj) and a control term (vj), rjðx; kÞ ¼ rjvj. We used multiple saturation
kinetics to model the reaction term rj:

rj ¼Vmax
j εi

Y
s2m�

j

xs
Kjs þ xs

(5)

where Vmax
j denotes the maximum rate for reaction j, εi denotes the scaled

enzyme activity which catalyzes reaction j, Kjs denotes the saturation
constant for species s in reaction j, and m�

j denotes the set of reactants for
reaction j.

The control term 0 � vj � 1 depended upon the combination of fac-
tors which influenced rate process j. For each rate, we used a rule-based
approach to select from competing control factors. If rate jwas influenced
by 1;…;m factors, we modeled this relationship as vj ¼ I jðf1jð�Þ;…;

fmjð�ÞÞ where 0 � fijð�Þ � 1 denotes a transfer function quantifying the
influence of factor i on rate j. The function I jð�Þ is an integration rule
which maps the output of regulatory transfer functions to a control var-
iable. We used Hill-like transfer functions and I j 2 fmeang in this study
(Wayman et al., 2015). We included 17 allosteric regulation terms, taken
from literature, in the CFPS model. PEP was modeled as an inhibitor for
phosphofructokinase (Kotte et al., 2010; Cabrera et al., 2011), PEP car-
boxykinase (Kotte et al., 2010), PEP synthetase (Kotte et al., 2010;
Chulavatnatol and Atkinson, 1973), isocitrate dehydrogenase (Kotte
et al., 2010; Ogawa et al., 2007), and isocitrate lyase/malate synthase
(Kotte et al., 2010; Ogawa et al., 2007; MacKintosh and Nimmo, 1988),
and as an activator for fructose-biphosphatase (Kotte et al., 2010;
Donahue et al., 2000; Hines et al., 2006, 2007). AKG was modeled as an
inhibitor for citrate synthase (Kotte et al., 2010; Pereira et al., 1994;
Robinson et al., 1983) and isocitrate lyase/malate synthase (Kotte et al.,
2010; MacKintosh and Nimmo, 1988). 3PG was modeled as an inhibitor
for isocitrate lyase/malate synthase (Kotte et al., 2010; MacKintosh and
Nimmo, 1988). FDP was modeled as an activator for pyruvate kinase
(Kotte et al., 2010; Zhu et al., 2010) and PEP carboxylase (Kotte et al.,
2010; Wohl andMarkus, 1972). Pyruvate was modeled as an inhibitor for
pyruvate dehydrogenase (Kotte et al., 2010; Kale et al., 2007; Arjunan
et al., 2002) and as an activator for lactate dehydrogenase (Okino et al.,
2008). Acetyl-CoA was modeled as an inhibitor for malate dehydroge-
nase (Kotte et al., 2010).

The symbol rT denotes the transcription rate, u denotes a promoter
specific activation model, and rd denotes the transcript degradation rate.
The transcription rate was modeled as:

rT ¼ kTcat �RT

�
GP

KT
G þ GP

�Y
s2m�

T

xs
KT

s þ xs
(6)

where kTcat denotes the maximum transcription rate, RT denotes the RNA
polymerase concentration, GP denotes the gene concentration, KT

G de-
notes the gene saturation constant, KT

s denotes the saturation constant for
species s, and m�

T denotes the set of reactants for transcription: ATP, GTP,
CTP, UTP, and water. In this study, we considered only the T7 promoter;
we have previously estimated u ’0.95 for T7 (Vilkhovoy et al., 2018).
Transcription was modeled as saturating with respect to gene concen-
tration and directly proportional to the concentration of RNA polymer-
ase. Transcript degradation was modeled as first-order in transcript:

rd ¼ kd �m (7)

where kd denotes the transcript degradation rate constant.
The symbol rX denotes the translation rate, which was modeled as:

rX ¼ kXcat �RX

�
m

KX
mRNA þ m

�Y
s2m�

X

xs
KX

s þ xs
(8)

where kXcat denotes the maximum translation rate, RX denotes the ribo-
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some concentration, m denotes the transcript concentration, KX
mRNA de-

notes the transcript saturation constant, KX
s denotes the saturation

constant for species s, and m�
X denotes the set of reactants for translation:

GTP, water, and the 20 species representing tRNA charged with amino
acids. Translation was modeled as saturating with respect to transcript
concentration and directly proportional to the concentration of ribo-
somes (Table 6).
4.3. Estimation of kinetic model parameters

We estimated an ensemble of kinetic parameter sets using a con-
strained Markov Chain Monte Carlo (MCMC) random walk strategy. We
have used this technique previously to estimate numerically stable low-
error parameter sets for signal transduction models (Tasseff et al.,
2010, 2011). Starting from a small number of parameter sets estimated
by inspection and literature, we calculated the cost function, equal to the
sum-squared-error between experimental data and model predictions:

cost¼
XD
i¼1

�
wi

Y 2
i

XT i

j¼1

�
yij � xijtðjÞ

�2
�

(9)

where D denotes the number of datasets (D ¼ 37), wi denotes the
weight of the ith dataset, T i denotes the number of timepoints in the ith

dataset, tðjÞ denotes the jth timepoint, yij denotes the measurement value
of the ith dataset at the jth timepoint, and xijtðjÞ denotes the simulated

value of the metabolite corresponding to the ith dataset, interpolated to
the jth timepoint. Lastly, the cost function was scaled by the maximum
experimental value in the ith dataset, Y i ¼ maxjðyijÞ. We then perturbed
each model parameter between an upper and lower bound that varied by
parameter type:

knewi ¼minðmaxðki � expða � riÞ; liÞ; uiÞ i¼ 1; 2;…;P (10)

where P denotes the number of parameters (P ¼ 815), which includes
204 maximum reaction rates (Vmax), 204 enzyme activity decay con-
stants, 548 saturation constants (Kjs), and 34 control parameters, knewi

denotes the new value of the ith parameter, ki denotes the current value of
the ith parameter, a denotes a distribution variance, ri denotes a random
sample from the normal distribution, li denotes the lower bound for that
parameter type, and ui denotes the upper bound for that parameter type.
Model parameters were constrained by literature collected using the
BioNumbers database (Milo et al., 2009). Transcription, translation, and
mRNA degradation were bounded within a factor of two of their refer-
ence values. A characteristic cell-free enzyme concentration of 170 nM
was calculated by diluting the one-tenth maximal concentration of lacZ
(5 μM, BNID 100735) by a cell-free dilution factor of 30. This enzyme
level was then used to calculate rate maxima from turnover numbers for
various enzymes from BioNumbers (Table 4). Enzyme levels calculated
from the rate maxima of select reaction fluxes in the best-fit set and
catalytic rates reported in the MOMENT study of Shlomi and coworkers
(Adadi et al., 2012) (Table 5) had a median value of 202 nM, well in
agreement with this characteristic value. Rate maxima were bounded
within one order of magnitude of the reference value where available; all
other rate maxima were bounded within two orders of magnitude of the
geometric mean of the available values. Enzyme activity decay constants
were bounded between 0 and 1 h�1, corresponding to half lives of infinity
and 42 min, respectively. Saturation constants were bounded between
0.0001 and 10mM. Control gain parameters were bounded between 0.05
and 10 (dimensionless), while order parameters were bounded between
0.02 and 10 (dimensionless) (see Table 6).

For each newly generated parameter set, we re-solved the balance
equations and calculated the cost function. All sets with a lower cost were
accepted into the ensemble. Sets with a higher cost were also accepted
into the ensemble, if they satisfied the acceptance constraint:



Table 3
Mean and standard deviation of Akaike information criterion (AIC), by mea-
surement, for the ensemble and random ensemble.

Measurement μEnsAIC σEnsAIC μRandAIC σRandAIC μRandAIC � μEnsAIC

GLC 65.4 2.1 103.9 0.6 38.5
CAT �23.0 10.5 �5.2 <0.1 17.8
PYR 64.8 10.3 84.7 0.7 19.9
LAC 70.7 4.5 88.9 <0.1 18.2
AC 79.4 6.0 96 2.1 16.6
SUCC 59.6 3.4 55.5 4.1 �4.1
MAL 60.8 4.1 71.6 6.3 10.8
ATP 51.1 3.3 69.1 <0.1 18.0
ADP 39.8 3.7 53.2 4.7 13.4
AMP 32.9 1.5 75.1 5.7 42.2
GTP 53.4 1.6 68.2 <0.1 14.8
GDP 45.7 2.9 43.6 9.5 �2.1
GMP 46.5 4.2 46.1 12.5 �0.4
CTP 44.9 2.6 58.5 <0.1 13.7
CDP 38.8 1.6 50.7 8.2 11.8
CMP 32.1 4.0 51.9 9.1 19.8
UTP 55.6 5.2 53 <0.1 �2.7
UDP 28.2 4.6 51.9 11.5 23.6
UMP 35.3 3.3 72.3 7.3 36.9
ALA 66.4 4.4 100.5 1.1 34.1
ASN 53.7 1.5 67.6 3.8 13.8
ASP 65.9 2.5 79.5 <0.1 13.6
CYS 60.5 3.1 74 <0.1 13.5
GLN 54.3 5.6 84.7 <0.1 30.4
GLY 47.2 12.7 75.5 11.7 28.3
HIS 46.3 6.2 43.2 3.2 �3.2
ILE 53.3 3.8 48.4 4.8 �5.0
LEU 41.5 6.5 52.5 4.6 10.9
LYS 68.4 2.0 73.9 0.2 5.5
MET 55.9 1.0 57.4 4 1.5
PHE 43.4 5.9 57.7 8.3 14.3
PRO 54.4 2.8 47.9 6.7 �6.5
SER 65.9 4.1 81.4 <0.1 15.6
THR 28.2 5.5 63.2 14.9 35.0
TRP 31.2 5.7 79.9 1.4 48.6
TYR 39.3 2.0 36.7 5.4 �2.6
VAL 51.3 3.1 55.5 4.6 4.1

Table 4
Reference values for reaction rate maxima (Vmax) from BioNumbers. Vmax values
calculated from turnover numbers (kcat ) from BioNumbers, and a characteristic
enzyme concentration of 170 nM. Characteristic rate maximum for all other re-
actions calculated as geometric mean of calculated rate maxima.

Enzyme Reaction kcat
(min�1)

Vmax (mM/
h)

BNID#

Serine dehydrase R_ser_deg 10400 104 101119
Isocitrate
dehydrogenase

R_icd 11900 119 101152

Lactate dehydrogenase R_ldh 5800 58 101036
Aspartate transaminase R_aspC R_tyr

R_phe
25800 258 101108

Enolase R_eno 13200 132 101028
Pyruvate kinase R_pyk 25000 250 101029

101030
Malic enzyme R_maeA

R_maeB
35400 354 101167

Phosphofructokinase R_pfk 554400 5544 104955
Malate dehydrogenase R_mdh 33000 330 101163
Citrate Synthase R_gltA 42000 420 101149
6PG dehydrogenase R_zwf R_pgl

R_gnd
3200 32 101048

Succinate
dehydrogenase

R_sdh 121 1.21 101162

Succinyl-coA synthetase R_sucCD 4700 47 101158
3PGA dehydrogenase R_gpm 1100 11 101135
PEP carboxylase R_ppc 35400 354 101139
3PGA kinase R_pgk 4300 43 101016
Characteristic Vmax 110

Table 5
Enzyme levels for key reaction fluxes, calculated from enzyme turnover numbers
58 and rate maxima from the best-fit set.

Enzyme Reaction kcat (min�1),
MOMENT

Vmax

(mM/h),
best-fit set

Enzyme Level
(nM),
calculated

Isocitrate
dehydrogenase

R_icd 1700 37 356

Lactate
dehydrogenase

R_ldh 52500 35 11

Aspartate
transaminase

R_aspC 4900 39 130

Pyruvate kinase R_pyk 8100 610 1250
Malic enzyme R_maeA 8100 46 96
Malic enzyme R_maeB 4000 66 274
Phosphofructokinase R_pfk 5000 15600 51800
Malate
dehydrogenase

R_mdh 43700 33 13

Succinate
dehydrogenase

R_sdh 10000 4.9 8.2

Succinyl-coA
synthetase

R_sucCD 1500 250 2690

Median 202

Table 6
Reference values for transcription, translation, and mRNA degradation from
literature. Transcription rate calculated from elongation rate, mRNA length, and
promoter activity level. Translation rate calculated from elongation rate, protein
length, and polysome amplification constant. mRNA degradation rate calculated
from mRNA degradation time.

Description Parameter Value Units Reference

T7 RNA polymerase
concentration

RT 1.0 μM

Ribosome concentration RX 2 μM Garamella et al.
(2016)

Transcription saturation
coefficient

KT 100 nM estimated

Translation saturation
coefficient

KX 45 μM estimated

Transcription elongation
rate

_vT 25 nt/s Garamella et al.
(2016)

CAT mRNA length lG 660 nt Kigawa et al.
(1995)

Promoter activity level u 0.9 estimated
Transcription rate kTcat ¼�

_vT
lG

�
u

123 h�1 calculated

Translation elongation rate _vX 1.5 aa/s Garamella et al.
(2016)

CAT protein length lP 219 aa Kigawa et al.
(1995)

Polysome amplification
constant

KP 10 estimated

Translation rate kXcat ¼�
_vX
lP

�
KP

247 h�1 calculated

mRNA degradation time t1=2 8 min BNID 106253
mRNA degradation rate

kdeg ¼ lnð2Þ
t1=2

5.2 h�1 calculated

ATP transcription
coefficient

ATPT 176 calculated

CTP transcription
coefficient

CTPT 144 calculated

GTP transcription
coefficient

GTPT 151 calculated

UTP transcription
coefficient

UTPT 189 calculated

ATP tRNA charging
coefficient

ATPX 219 calculated

GTP translation coefficient GTPX 438 calculated
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R uniform
0;1 < exp

�
� α � costnew � cost

cost

�
(11)
where R uniform
0;1 denotes a random number taken from a uniform distri-

bution between 0 and 1, cost denotes the cost of the current parameter
set, costnew denotes the cost of the new parameter set, and α denotes a
tunable parameter to control the tolerance to high-error sets. A total of
3875 sets were accepted into the initial ensemble, from which we
selected N ¼ 100 with minimal error for the final ensemble.

Lastly, a random ensemble of 100 parameter sets was generated
within the same parameter bounds as the trained ensemble. The ran-
domized parameter sets were generated using a Monte Carlo approach:
each parameter was taken from a uniform distribution constructed be-
tween its upper and lower bounds. Themodel equations were then solved
and the cost function and the Akaike information criterion (AIC) were
calculated for each of the 37 separate experimental datasets (Table 6).
4.4. Reaction group knockouts

The metabolic network was divided into 19 reaction groups: glycol-
ysis/gluconeogenesis, pentose phosphate, Entner-Doudoroff, TCA cycle,
oxidative phosphorylation, cofactor reactions, anaplerotic/glyoxylate
reactions, overflow metabolism, folate synthesis, purine/pyrimidine re-
actions, alanine/aspartate/asparagine synthesis, glutamate/glutamine
synthesis, arginine/proline synthesis, glycine/serine synthesis, cysteine/
methionine synthesis, threonine/lysine synthesis, histidine synthesis,
tyrosine/tryptophan/phenylalanine synthesis, and valine/leucine/
isoleucine synthesis. Each reaction group and pair of reaction groups
were removed and the model was re-solved; the CAT productivity was
then calculated and subtracted from that of the base case (no knockouts):

Pii ¼ jΔCAT�ΔCATΔRi j (12)

Pij ¼
��ΔCAT�ΔCATΔRiΔRj

�� (13)

Ptotal
i ¼Pii þ

X
j

Pij (14)

where Pii denotes the first-order productivity knockout effect for reaction
group i, Pij denotes the pairwise productivity knockout effect for reaction
groups i and j, Ptotali denotes the total-order productivity knockout effect
for reaction group i, ΔCAT denotes the base case CAT productivity,
ΔCATΔRi denotes the CAT productivity when reaction group i is knocked
out, ΔCATΔRiΔRj denotes the CAT productivity when reaction groups i
and j are knocked out, and jxj denotes the absolute value of x. The system
state, defined as the model predictions for all species for which experi-
mental data exists, was also recorded for each knockout and compared to
the base case:

Sii ¼
����xdata � xdataΔRi

��j2 (15)

Sij ¼
������xdata � xdataΔRiΔRj

���j2 (16)

Stotali ¼ Sii þ
X
j

Sij (17)

where Sii denotes the first-order system state knockout effect for reaction
group i, Sij denotes the pairwise system state knockout effect for reaction
groups i and j, Stotali denotes the total-order system state knockout effect
for reaction group i, xdata denotes the base-case system state, xdataΔRi

denotes

the system state when reaction group i is knocked out, xdataΔRiΔRj
denotes the

system state when reaction groups i and j are knocked out, and
����x��j2

denotes the l2 norm of x. In order to not dominate the colorbar, the total-
order knockout effects were normalized to the same ranges as the main
12
arrays (first-order and pairwise effects).

4.5. Sensitivity of CAT productivity to transcription and translation

The catalytic rates of transcription and translation were sampled
within one order of magnitude on each side from the best-fit values. The
parameter bounds were set as the base-10 logarithms of the upper and
lower bound for each rate; then, 10 was taken to the power of each
parameter sample to obtain the catalytic rates:

kT ;samplecat 2 	
log10



kT ;bfcat

�
10
�
; log10



kT ;bfcat �10

�
(18)

kX;samplecat 2 	
log10



kX;bfcat

�
10
�
; log10



kX;bfcat �10

�
(19)

ΔCAT¼ f
�
10k

T;sample
cat ; 10k

X;sample
cat

�
(20)

where kT;sample
cat denotes the sample of the transcription catalytic rate,

kX;sample
cat denotes the sample of the translation catalytic rate, kT;bfcat denotes

the best-fit value of the transcription catalytic rate, and kX;bfcat denotes the
best-fit value of the translation catalytic rate. The sampling was per-
formed using the Sensitivity Analysis Library in Python (Numpy) with
3000 samples (Herman).

4.6. Calculation of energy efficiency

Energy efficiency was calculated as the ratio of transcription and
translation (weighted by the appropriate energy species coefficients) to
ATP generation:

Efficiency¼ΔτmRNA � αT þ ΔτCAT � αXP
j2fRATPg

R
τσ

ATP
j rj

(21)

αT ¼ 2 �ðATPT þCTPT þGTPT þUTPTÞ (22)

αX ¼ 2 �ATPX þ GTPX (23)

where ΔτmRNA denotes the net accumulation of mRNA in phase τ (first,
second, or overall), ΔτCAT denotes the net accumulation of protein in
phase τ, αT denotes the energy cost of transcription, αX denotes the en-
ergy cost of translation, RATP denotes the set of ATP-producing reactions,
and σATPj denotes the ATP coefficient for reaction j. ATPT, CTPT, GTPT,
UTPT denote the stoichiometric coefficients of each energy species for
transcription, and ATPX, GTPX denote the stoichiometric coefficients of
ATP and GTP for translation. During transcription and tRNA charging,
triphosphate molecules are consumed with monophosphates as byprod-
ucts; this is the reason for the factors of 2 on ATPT, CTPT, GTPT, UTPT,
and ATPX.

5. Availability of model code

The cell-free model equations and the parameter estimation proced-
ure were implemented in the Julia programming language (Bezanson
et al., 2017). Themodel equations were solved using the CVODE solver of
the SUNDIALS suite (Hindmarsh et al., 2005), with an absolute tolerance
and relative tolerance of 1e�9; any parameter sets exhibiting CVODE
errors were discarded. Thus, the numerical stability of all parameter sets
in the ensemble was ensured. The model code and parameter ensemble is
freely available under an MIT software license and can be downloaded
from the Varnerlab website (Varnerlab).
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