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Abstract

CD4+ effector/memory T cells (Tem) represent a leading edge of the adaptive immune sys-

tem responsible for protecting the body from infection, cancer, and other damaging pro-

cesses. However, a subset of Tem cells with low expression of CD45Rb (RbLoTem) has

been shown to suppress inflammation despite their effector surface phenotype and the lack

of FoxP3 expression, the canonical transcription factor found in most regulatory T cells. In

this report, we show that RbLoTem cells can suppress inflammation by influencing Treg

behavior. Co-culturing activated RbLoTem and Tregs induced high expression of IL-10 in

vitro, and conditioned media from RbLoTem cells induced IL-10 expression in FoxP3+ Tregs

in vitro and in vivo, indicating that RbLoTem cells communicate with Tregs in a cell-contact

independent fashion. Transcriptomic and multi-analyte Luminex data identified both IL-2

and IL-4 as potential mediators of RbLoTem-Treg communication, and antibody-mediated

neutralization of either IL-4 or CD124 (IL-4Rα) prevented IL-10 induction in Tregs. More-

over, isolated Tregs cultured with recombinant IL-2 and IL-4 strongly induced IL-10 produc-

tion. Using house dust mite (HDM)-induced airway inflammation as a model, we confirmed

that the in vivo suppressive activity of RbLoTem cells was lost in IL-4-ablated RbLoTem cells.

These data support a model in which RbLoTem cells communicate with Tregs using a combi-

nation of IL-2 and IL-4 to induce robust expression of IL-10 and suppression of

inflammation.

Introduction

Regulatory T cells (Tregs) are critical for the maintenance of immune homeostasis. The most

widely recognized and studied subset of Tregs express the transcription factor FoxP3 and can

be induced peripherally or develop directly in the thymus [1–3]; however, FoxP3- type 1 regu-

latory cells (Tr1) are also well-characterized [4, 5]. Another CD4+ T cell subset known to have

regulatory/suppressive properties are those lacking FoxP3 while expressing low concentrations
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of the activation marker CD45Rb (RbLo) at the cell surface. These RbLo T cells inhibit the

induction of wasting disease in SCID mice [6], type 1 diabetes [7], a plant antigen-based

model of asthma [8], and the formation of adhesions [9]. In agreement with these reports, we

recently found that the polysaccharide antigen PSA from Bacteroides fragilis significantly

decreased susceptibility to the development of pulmonary inflammation through activation

and expansion of CD4+FoxP3-CD45RbLo effector-memory (CD62L-CD44+) T cells (RbLo-

Tem)[10–12].

RbLoTem cells are known to depend upon IL-10 for their protective efficacy [13, 14]. Con-

sistent with this, we found that the suppressive activity of RbLoTem cells required IL-10 in

both humans in vitro [15] and mice in vivo [10, 12]. In an in vivo model in which all cells

lacked IL-10, the RbLoTem cells failed to protect the animals from pulmonary inflammation

[10]. However, reciprocal adoptive transfer experiments in which activated wild type (WT) or

IL-10-deficient (IL-10-/-) RbLoTem cells were given to WT or IL-10-/- recipients, we discovered

that IL-10 was dispensable in the RbLoTem cells but not in the recipient [12]. Moreover, adop-

tive transfer of IL-10-/- RbLoTem cells induced IL-10 expression in CD4+FoxP3+ Tregs in the

lung [12], suggesting a model in which RbLoTem cells suppress inflammation by the selective

induction of IL-10 in FoxP3+ Tregs in vivo through an unknown mechanism.

In this study, we report the discovery of a mechanism by which RbLoTem cells communi-

cate with and drive suppressive activity of FoxP3+ Tregs to regulate inflammation. Consistent

with our in vivo studies [12], co-cultured RbLoTem cells induced FoxP3+ Tregs to secrete high

concentrations of IL-10 in vitro. Conditioned media from activated RbLoTem cells also

induced IL-10 in FoxP3+ Tregs both in vivo and in vitro, demonstrating cell-contact indepen-

dence in the communication pathway between these cells. Deep sequencing transcriptomics of

activated RbLoTem cells versus CD45RbHi T naïve cells identified potential soluble mediators,

and antibody-mediated neutralization experiments suggested that both IL-2 and IL-4 were

necessary for IL-10 induction in Tregs. Supplementation of Treg media with recombinant IL-

2 and IL-4 confirmed this in vitro, while the use of IL-4-deficient RbLoTem cells showed a lack

of protective efficacy in a model of pulmonary inflammation when compared to WT cells.

These results reveal an intrinsic IL-2 and IL-4-dependent T cell crosstalk network connecting

the suppressive capacity of RbLoTem cells with canonical FoxP3+ Tregs, which could poten-

tially be harnessed for the treatment of inflammation-mediated diseases.

Materials and methods

Mice

C57BL/6 (Stock #000664), IL-10-eGFP (B6.129S6-Il10tm1Flv/J, Stock #008379), IL-10-null

(B6.129P2-Il10tm1Cgn/J, Stock #002251), FoxP3-RFP (C57BL/6-FoxP3tm1Flv/J), and IL-

4-knockout (B6.129P2-Il4tm1Cgn/J) mice, all on the C57BL/6 background, were purchased

from the Jackson Laboratory (Bar Harbor, ME). FoxP3-eGFP animals were a kind gift of Drs.

Rudensky and Letterio. Mice were fed standard chow (Purina 5010) on a 12-hour light/dark

cycle in a specific pathogen free facility. Enrichment and privacy provided in mating cages by

‘love shacks’ (Bio Serv 53352–400). Mouse studies, and all animal housing at Case Western

Reserve University were approved by and performed according to the guidelines established

by the Institutional Animal Care and Use Committee of CWRU.

Primary splenic T cells

Primary splenocytes were isolated from freshly harvested spleens, and reduced to a single cell

suspension by passing them through a sterile 100μM nylon mesh cell strainer (Fisher Scientific,

Hampton, NH). For splenic T cell enrichment, single cell suspensions were labeled with anti-
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mouse CD4 magnetic microbeads, or alternatively negatively selected to yield untouched CD4

cells, and positively selected for CD25 by a mouse regulatory T cell isolation kit (Miltenyi Bio-

tec, San Diego, CA), and separated with an AutoMACS Pro Separator (Miltenyi Biotec, San

Diego, CA), per manufacturer’s instructions.

Pulmonary inflammation and adoptive transfer

HDM model. Mice were challenged with house dust mite antigen (HDM, D. Farinae,
GREER, Lenoir, NC) by intranasal delivery of 20μg HDM/dose in PBS on days 0–4 and 7–11

and sacrificed on day 14 [16]. For adoptive transfer, 60,000 RbLoTem cells were harvested by

FACS from FoxP3-eGFP reporter mice and i.v. injected on day 6. Animals were anesthetized

with 3% isoflurane (Baxter) with an anesthesia system (VetEquip, Livermore, CA) for intrana-

sal administration. Euthanasia, BALf recovery, and lung tissue preparation was performed as

previously reported [10, 12]. BALf automated differentials were acquired by a HemaVet 950

Hematology Analyzer.

Flow cytometry and cell sorting

For splenic T cell sorting, magnetic bead-mediated positively selected CD4+ cells were stained

with combinations of antibodies (0.5μg/mL per) to CD62L-PE (BioLegend, San Diego, CA) or

CD62L-BB515 (BD Bioscience), CD44-APC (BioLegend, San Diego, CA), CD45Rb-APC/Cy7

(BioLegend, San Diego, CA), CD124 (1μg/mL, BD Biosciences, San Jose, CA), and

CD25-BV421 (BD Biosciences, San Jose, CA). For Tregs, FoxP3-RFP reporter signal was used

for FACS. Cells were washed twice in MACS buffer (Miltenyi Biotec, San Diego, CA) before

sterile cell sorting using a FACSAria (BD Biosciences, San Jose, CA) with the support of the

Cytometry & Imaging Microscopy Core Facility of the Case Comprehensive Cancer Center.

Analysis of all FACS data was performed using FlowJo v10 (Tree Star, Inc., Ashland, OR).

Cell culture

After flow sorting, cells were cultured in 96-well plates (Corning, Corning, NY) at 50,000 cells

per type per well in advanced RPMI (Gibco/Fisher Scientific, Waltham, MA) supplemented

with 5% Australian-produced heat-inactivated fetal bovine serum, 55μM β-mercaptoethanol,

100U/mL and 100μg/mL Penicillin/Streptomycin, and 0.2mM L-glutamine (Gibco/Fisher Sci-

entific, Waltham, MA) at 5% CO2, 37˚C. For activating conditions, wells were coated with

αCD3ε (eBioscience, San Diego, CA) at 2.5μg/mL in PBS then incubated at 37˚C for 4 hours

followed by two washes with PBS before receiving cells. For fixation studies, indicated cell

types were resuspended in 2% paraformaldehyde in PBS for 10 minutes on ice. Cells were

washed twice in PBS before being co-cultured with live CD4+FoxP3+ cells. All co-culture

experiments were performed at 1:1 cell ratios, except for the experiments in Fig 1C, which

were performed by maintaining constant Tconv cell numbers (50k) and altering the number

of Tregs relative to the 50k Tconv, as indicated.

ELISA, blocking, supplementation and Luminex

Cytokine levels were analyzed by standard sandwich ELISA performed as per manufacturer’s

instructions (BioLegend, San Diego, CA), modified to utilize europium-conjugated streptavi-

din (Perkin-Elmer), and detected with a Victor V3 plate reader (Perkin Elmer, San Jose, CA).

Blocking experiments utilized antibodies to IFNγ (10μg/mL, BioLegend, San Diego, CA), IL-

21 (10μg/mL, eBioscience, San Diego, CA), IL-22 (10μg/mL, eBioscience), CSF2 (10μg/mL,

eBioscience), IL-9 (1μg/mL, eBioscience), IL-13 (2μg/mL, eBioscience), IL-4 (1μg/mL,
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Fig 1. IL-10 production by Tregs is synergistically enhanced by CD4+FoxP3-CD45RbLoCD44+CD62L- T cells. Tregs

and various CD4+ T cell subsets were cultured in vitro with plate-bound anti-CD3ε antibody for 3 days, unless otherwise

specified, to measure their cytokine responses by ELISA. (A) Comparison of mono- and co-cultures of magnetic bead

purified (M) CD4+ Tconv and CD4+CD25+ Tr cells vs. flow sorted (Fl) CD4+CD25+ Tr cells. (B) Time course of cytokine

production from co-cultures of flow-sorted Tconv and CD25+ Tregs. (C) Co-cultures of flow-sorted 50k Tconv and varied

Tregs at indicated ratios. (D) 1:1 Cultures of flow sorted CD4+FoxP3+ Tregs and CD4+FoxP3-CD45RbHi/Lo cells, showing

IL-10, IFNγ, and IL-2 production by ELISA. (E) 1:1 cultures of CD4+CD25+FoxP3+ Tregs and

CD4+CD25-FoxP3-CD62L+CD44+ (Tcm), CD4+CD25-FoxP3-CD62L-CD44+ (Tem), and

CD4+CD25-FoxP3-CD62L+CD44- (Tn) cells. (F) 1:1 cultures of CD4+CD25-FoxP3+ Tregs and Tcm, Tem, or Tn cells. (G)

IL-4 drives IL-10 in Tregs
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eBioscience), IL-24 (2μg/mL, eBioscience), IL-3 (1μg/mL, eBioscience), Neuropilin-1 (1μg/

mL, R&D Systems, Minneapolis, MN), CD124 (1μg/mL, BD Biosciences, San Jose, CA), and

corresponding isotype controls IgG1 and IgG2a (BioLegend, San Diego, CA). For CD124

blocking experiments, indicated cell types were incubated with 1μg/mL αCD124 at 4˚C for 15

minutes, washed twice with PBS, then combined into co-culture. Supplementation assays were

performed with recombinant mouse IL-2 and IL-4 (R&D Systems, Minneapolis, MN) at the

indicated concentrations. For Luminex assays, media from indicated cultured populations

were snap frozen in liquid nitrogen and sent to Eve Technologies (Calgary, Ontario, Canada)

for mouse 32-plex and TGFβ 3-plex analysis.

RNAseq and analysis

For RNA quantitation, CD4+FoxP3+ (Treg), CD4+FoxP3-CD45RbHiCD62HiCD44Lo (RbHiTn),

CD4+FoxP3-CD45RbLoCD62LLoCD44Hi (RbLoTem) cells were flow sorted as above, pelleted

and snap frozen in liquid nitrogen. RNA extraction and RNAseq was performed at Ambry

Genetics. Initial processing of the data was performed by using the trimmomatic [17] program

to trim the poor quality reads, and fastQC to investigate read quality. TopHat [18] was used to

align the reads to the “mm10” genome guided by the Gencode vm4 [19] annotations. To count

the number of reads aligning to each feature in Gencode vm4, we used htseq-count [20].

RPKM values were calculated in R, and the differential expression analysis between “Hi” and

“Lo” samples was performed using the negative binomial test implemented in DEseq2 [21].

Histology and microscopy

Tissues were blocked, sectioned, and stained with H&E by the Case Western Reserve Univer-

sity Tissue Procurement and Histology Core Facility, and at AML Laboratories, Inc. (Jackson-

ville, FL). Unstained sections were stained with rat-anti-EpCAM-AF488 (eBioscience, San

Diego, CA) or rat-anti-EpCAM-AF594 (BioLegend, San Diego, CA) at 6μg/mL, and rabbit-

anti-myeloperoxidase (1:100, Abcam, Cambridge, MA) then either anti-rabbit-APC (Thermo/

Fisher, Waltham, MA) or anti-rabbit-AF488 (Jackson ImmunoResearch, West Grove, PA) at

1:1000. Confocal analysis and imaging was performed on a Leica SP5 confocal microscope;

H&E images were acquired with a Leica DM IL LED.

Clinical scoring

Scoring of H&E-stained lung tissues was performed by Dr. Cobb in a blinded fashion based on

the rubric shown in Table 1, with a maximum score of 9 characterized by severe airway epithe-

lial hyperplasia and large numbers of infiltrating cells disseminated throughout the tissue.

Data analyses

All data are represented by mean ± SEM from at least 3 independent experiments, with the

exception of the RNAseq, which was performed in duplicate for each subset. Pulmonary

inflammation data sets include a minimum of four, but more commonly six animals per group

per experiment. Data and statistical measurements were generated with GraphPad Prism

1:1 cultures of CD4+FoxP3+ Tregs and CD4+FoxP3-CD45RbLoCD62L-CD44+ (RbLoTem) or CD4+FoxP3-

CD45RbHiCD62L+CD44- (RbHiTn) cells. � = p<0.05; # = p>0.05. P value calculated from Student’s T-Test. Error bars

show mean with SEM. For A-B and D-F, n = 3 experiments. For C, n = 6 experiments. For G, n = 4 experiments.

https://doi.org/10.1371/journal.pone.0216893.g001
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(v5.0). For comparisons between two groups, Student’s t-test was used; comparisons between

multiple groups utilized analysis of variance.

Results

RbLoTem cells induce IL-10 in FoxP3+ Tregs

Our previous studies revealed that conventional CD4+ T cells activated by the polysaccharide

PSA from the capsule of Bacteroides fragilis can influence FoxP3+ Tregs to produce IL-10

through an unknown pathway [10, 12]. Here, we investigated the ability of CD4+ T cells to

influence Tregs and their production of IL-10 in the absence of PSA. CD4+CD25+ Tregs and

CD4+CD25- Tconv cells were isolated from WT mice using either magnetic beads (M) or ster-

ile flow sorting (Fl), and stimulated with anti-CD3ε antibody alone or in co-culture for differ-

ent amounts of time. Despite having not been previously exposed to PSA, we found that when

cultured together, Tregs and Tconv cells synergistically produced IL-10 at 72 hours, while

IFNγ production was simply additive (Fig 1A and 1B). Moreover, variations of the ratio of

Treg:Tconv demonstrates that the amount of IL-10 is proportional to the number of Tregs, not

the number of Tconv cells (Fig 1C).

PSA exposure expands a CD4+FoxP3-CD45RbLo T cell population in both humans [15] and

mice [10, 11], and this population was found to induce IL-10 production by lung-localized

FoxP3+ Tregs [12]. We therefore isolated CD4+FoxP3-CD45RbLo (FoxP3-RbLo),

CD4+FoxP3-CD45RbHi (FoxP3-RbHi), and CD4+FoxP3+ Tregs (FoxP3+) from PSA-naïve Fox-

P3-eGFP reporter mice and stimulated them as before with anti-CD3ε. We found that while

the FoxP3-RbLo subset produced some IL-10 alone, the IL-10 concentration was increased

over 2 fold in co-culture with FoxP3+ cells on day 3 (Fig 1D). IFNγ trended down but was not

significant while IL-2 was significantly reduced in co-culture (Fig 1D). Importantly, the

FoxP3-RbHi population, despite their ability to produce IL-2, did not induce significant IL-10

secretion in vitro.

To further clarify the identification of T cells responsible for communicating with FoxP3+

Tregs, CD4+FoxP3+ Tregs with or without CD25, CD4+ naïve (Tn; CD62L+CD44-), effector

memory (Tem; CD62L-CD44+) and central memory (Tcm; CD62L+CD44+) T cells from

Table 1. Lung inflammation clinical score rubric.

Parameter Score Description

Hyperplasia 0 None

1 Not more than 2 bronchi with mild to moderate epithelial hyperplasia

2 Many bronchi with moderate hyperplasia

3 Most bronchi with moderate to severe hyperplasia

Infiltration 0 None

1 Small numbers of infiltrating immune cells (undifferentiated)

2 Moderate numbers of infiltrating immune cells

3 High numbers of infiltrating immune cells

Localization 0 Infiltrating cells limited to one or two bronchi

1 Infiltrating cells seen around a plurality of bronchi

2 Infiltrating cells seen around all bronchi and some dissemination in the alveolar space

3 Infiltrating cells throughout the tissue

H&E stained lung sections were scored for epithelial cell hyperplasia, infiltration of immune cells, and localization of

immune cells on a zero to 3 scale for each parameter. Final clinical scores were the sum of each parameter for each

tissue.

https://doi.org/10.1371/journal.pone.0216893.t001
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FoxP3-eGFP mice were isolated and stimulated as before in various combinations. Tem cells

were the only subset to produce IL-10 alone, and the only ones to synergistically induce IL-10

in co-culture with Tregs (Fig 1E and 1F), suggesting that the T cell subset responsible for the

Treg IL-10 effect is antigen experienced and are most likely

CD4+FoxP3-CD62L-CD44+CD45RbLo (RbLoTem) cells. The presence (Fig 1E) or absence (Fig

1F) of the IL-2Rα (CD25) on the Treg population (see S1 Fig for the gating strategy) did not

have an impact on the synergistic interaction between these cells. Finally, we isolated RbLoTem

and CD4+FoxP3-CD62L+CD44-CD45RbHi (RbHiTn) T cells (see S2 Fig for the gating strategy)

and compared their ability to induce IL-10 synergy with FoxP3+ Tregs. Only the RbLoTem

cells produced IL-10 alone and synergistically with FoxP3+ Tregs (Fig 1G). These findings

align the identity of the cells capable of stimulating IL-10 production in Tregs with those

which are selectively expanded by PSA [10–12]. More importantly, the data demonstrate that

RbLoTem cell communication with Tregs is independent of PSA, and is therefore an intrinsic

property of this regulatory T cell subset.

IL-10 synergy is unique among common cytokines

Although IL-10 is necessary for RbLoTem cell-mediated immune suppression [10, 12], we per-

formed multiplex Luminex analysis in order to identify other important cytokines and chemo-

kines. We found that IL-10 was the only cytokine tested that displayed synergistic increases

when RbLoTem and FoxP3+ Tregs were in co-culture (Fig 2A). Two other cytokines closely

aligned with immune regulation, TGFβ1 and TGFβ2, were significantly down-regulated in co-

culture compared to the combined production of each cell population in isolation (Fig 2A). All

other cytokines and chemokines fell into two categories–reduced in co-culture (Fig 2B) or

unchanged in co-culture (Fig 2C). Notable molecules with robust decreases included IL-5, IL-

6, IL-13, TNFα, and GM-CSF (Fig 2B), while a notable unchanged molecule was IL-4 (Fig 2C).

IL-10 synergy depends on a soluble mediator

Our data suggested that RbLoTem cells communicate with FoxP3+ Tregs to synergistically pro-

duce IL-10 (Figs 1 and 2). To confirm that the increase in IL-10 originated from FoxP3+ Tregs

in these experiments, we cultured Tregs and RbLoTem cells alone or together as before, only

using RbLoTem cells from IL-10-knockout (IL-10ko) mice. ELISA of IL-10 showed that

FoxP3+ Tregs produce almost no IL-10 when cultured alone, but the inclusion of IL-10ko

RbLoTem cells dramatically increased IL-10 concentration (Fig 3A). These data show that the

RbLoTem cells induce FoxP3+ Tregs to produce IL-10.

In order to determine the contact dependence of this communication, we measured

FoxP3+ Treg IL-10 output in vitro after co-culturing with either paraformaldehyde-fixed RbLo-

Tem or RbHiTn cells, or by supplementation of FoxP3+ Treg media with conditioned media

from stimulated RbLoTem or RbHiTn cells. We found that fixation of the RbLoTem cells elimi-

nated the synergy (Fig 3B), while RbLoTem-conditioned media was able to robustly induce IL-

10 production in live FoxP3+ Tregs (Fig 3C). In addition, neutralizing antibody blockade of

the Sema4-Neuropilin cell contact pathway reported to promote Treg activity [22] also did not

reduce the synergistic production of IL-10 (S3 Fig). These data suggest that RbLoTem cells

communicate with Tregs via a soluble mediator(s).

To confirm that conditioned media from RbLoTem cells also lead to IL-10 production in
vivo, we induced pulmonary inflammation in IL-10-GFP reporter mice using lung house dust

mite antigen (HDM) challenges and then intranasally administered conditioned media from

either RbLoTem or RbHiTn cells, with untreated HDM mice and resting mice as controls. As

seen in vitro (Fig 3C), we found that RbLoTem but not RbHiTn conditioned media significantly

IL-4 drives IL-10 in Tregs
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Fig 2. Cytokine synergy of RbLoTem and FoxP3+ Tregs is limited to IL-10. RbLoTem and RbHiTn cells were

stimulated alone or in co-culture as before for 3 days to determine cytokine and chemokine secretion in relation to the

mRNA transcriptomes using multiple Luminex. Statistical comparisons were made based on differences between the

sum of the FoxP3+ Treg and RbLoTem individual responses and the corresponding co-culture. Shown are immune

regulation-associated proteins with significant change in co-culture (A), other cytokine and chemokines with

IL-4 drives IL-10 in Tregs
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increased the percentage of IL-10-producing CD4+ T cells in the airway compared to untreated

HDM-inflamed mice (Fig 3D and 3E). Although resting mice had too few CD4+ T cells for

robust analysis of their IL-10 expression pattern, there was no difference in the total number

of CD4+ T cells in all HDM-challenged mice (Fig 3E). Thus, a soluble mediator(s) produced

by RbLoTem but not RbHiTn cells can induce IL-10 in FoxP3+ Tregs in vitro and in recipient

lung CD4+ T cells in vivo.

statistically significant differences in co-culture (B), and molecules not significantly different in co-culture (C). � =

p<0.05; # = p>0.05. P value calculated from Student’s T-Test. Error bars show mean with SEM. n = 3 experiments for

all panels.

https://doi.org/10.1371/journal.pone.0216893.g002

Fig 3. T cell synergy is mediated by a soluble factor. Cells were flow sorted, stimulated with anti-CD3ε antibody for 3

days, and treated as indicated. ELISA measurements of IL-10 concentration in culture supernatant from FoxP3+ Tregs

co-cultured with IL-10-knockout RbLoTem (A), fixed RbLoTem or RbHiTn cells (B) or the change in IL-10 in the

supernatant from cultured FoxP3+ Tregs supplemented with conditioned media from RbLoTem, RbHiTn or FoxP3+

Tregs stimulated previously for 3 days as before (C). Conditioned media from activated RbLoTem or RbHiTn cells were

administered to HDM-challenged IL-10-GFP reporter mice intranasally and compared to resting and HDM-

challenged mice without conditioned media. Mice were sacrificed and the BALf was analyzed by flow cytometry,

showing percent IL-10+ among CD4+ cells in representative histograms (D) as well as replicates and the total CD4+ cell

counts (E). ELISA measurements of IFNγ concentration in culture supernatants from FoxP3+ Tregs, WT RbLoTem, or

both cells in co-culture with anti-CD3ε stimulation for 4 days (F). � = p<0.05; # = p>0.05. P value calculated from

Student’s T-Test. Error bars show mean with SEM. For A-C, n = 3 to 6 experiments. For E-F, n = 3 experiments.

https://doi.org/10.1371/journal.pone.0216893.g003
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Treg suppressive activity was measured in co-cultures of WT FoxP3+ Tregs and WT RbLo-

Tem cells for 4 days with anti-CD3ε antibody stimulation. The presence of FoxP3+ Tregs sig-

nificantly reduced the activation state of the RbLoTem cells, as measured by IFNγ ELISA,

supporting the conclusion that the Tregs are active and suppressive (Fig 3F).

The RbLoTem transcriptome. In order to identify the mediator(s), we compared the tran-

scriptomes of anti-CD3ε activated RbLoTem and RbHiTn cells by mRNA deep sequencing

(RNAseq). We arranged the change in copy number by the ratio of RbLoTem to RbHiTn

RPKM values because we predicted that the mediator must be significantly up-regulated in the

RbLoTem population relative to the RbHiTn population. Lead candidates were robustly tran-

scribed (RPKM > 2), at least 16-fold greater in RbLoTem over RbHiTn cells, and known to be

secreted (i.e., non-membrane proteins; not found in the nucleus or cytoplasm). This analysis

revealed a list of highly up-regulated genes which might account for the activity of these cells,

including IFNγ, IL-4, IL-22 and others (Fig 4).

Neutralization of IL-4 eliminates IL-10 synergy. In order to identify the molecules

mediating T cell synergy, we performed antibody neutralization experiments during co-cul-

ture of FoxP3+ Treg and RbLoTem cells based on the transcriptomic data (Fig 4). We found

that neutralization of IL-4 eliminated the synergistic production of IL-10 (Fig 5A). In repeat

experiments comparing neutralization of IL-4 to neutralization of IL-4Rα (CD124), which

inhibits both type I and type II IL-4 receptor complexes, we found a corresponding elimina-

tion of IL-10 synergy (Fig 5B). To identify which cell the IL-4 was impacting, we neutralized

CD124 on only the RbLoTem cells by pre-incubation with the antibody, washing away

unbounded antibody, then co-culturing the CD124-blocked RbLoTem cells with fresh FoxP3+

Tregs. We found no difference in IL-10 synergy (Fig 5C). However, the inverse experiment in

which the FoxP3+ Tregs were pre-blocked with anti-CD124 revealed robust inhibition of syn-

ergy (Fig 5D). Moreover, we tested the impact of IL-4 neutralization in FoxP3+ Treg mono-

cultures using conditioned media from RbLoTem cells. Once again, we found that blockade of

IL-4 eliminated the IL-10 response (Fig 5E).

In order to determine whether IL-4 was necessary and/or sufficient to induce IL-10 in

Tregs, we cultured FoxP3+ Tregs with fresh media supplemented with recombinant IL-4 (rIL-

4) and IL-2 (rIL-2) together and independently. Although our data already demonstrated that

IL-2 was not the primary driver of IL-10 production (Fig 1D & 1F), IL-2 was used because IL-2

concentrations robustly decrease in co-culture (Fig 1D), suggesting that it may play the well-

documented pro-survival role for Tregs [23]. We found that rIL-4 induced IL-10 in mono-cul-

tured FoxP3+ Tregs, but that the addition of IL-2 greatly enhanced this response despite the

failure of IL-2 to robustly induce IL-10 in the absence of IL-4 (Fig 5F). This effect was depen-

dent upon CD124, since neutralizing antibody completely reversed the impact of rIL-4 supple-

mentation (Fig 5F). Cytokine titration experiments with isolated FoxP3+ Tregs and varied

concentrations of rIL-2 (Fig 5G) and rIL-4 (Fig 5H) further demonstrated the dose-response

nature of IL-10 production downstream of exposure to these cytokines. We also found that the

expression of CD124 in FoxP3+ Tregs was dependent upon prior stimulation with αCD3ε
antibody, and this expression was not impacted by the presence of RbLoTem cells (Fig 5I and

5J).

RbLoTem cells require IL-4 to protect mice from pulmonary inflammation

The in vitro experiments implicate RbLoTem cells as a key population of T cells capable of

inducing IL-10 release by FoxP3+ Tregs, while transcriptomic and antibody-mediated neutrali-

zation experiments implicated a dependence upon IL-4 to promote this response. In order to

test the RbLoTem protective activity and their dependence on IL-4 in vivo, we performed an
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adoptive transfer experiment into a house dust mite (HDM)-induced acute asthma model.

RbLoTem cells were isolated as before (S2 Fig) from either WT or IL-4 knockout (IL-4ko)

mice, stimulated in vitro for 48 hours with anti-CD3ε antibody, then transferred via the tail

vein into recipient WT mice on day 7 of HDM challenges. Robust immune suppression, as

measured by the total number of airway-infiltrating leukocytes (Fig 6A), overall clinical score

(Fig 6B; Table 1), neutrophils, lymphocytes, macrophages and eosinophils (Fig 6C) recovered

in bronchoalveolar lavage fluid (BALf), was achieved with a single transfer of 60,000 WT cells.

Moreover, tissue pathology measured by confocal microscopy for activated leukocytes (Fig

6D) and hematoxylin and eosin staining (H&E; Fig 7) was returned to baseline in mice receiv-

ing WT RbLoTem cells, while TriChrome and periodic acid-Schiff (PAS) staining revealed a

reversal of collagen deposition (i.e. tissue remodeling) and mucus production, respectively

(Fig 7). Importantly, this potent ability to reverse lung inflammation was lost when the RbLo-

Tem cells lacked IL-4 (Figs 6 and 7), confirming the central role for IL-4 in RbLoTem-mediated

immune suppression.

Discussion

In this study, we discovered a novel pathway of immune suppression mediated by the RbLo-

Tem subset of regulatory T cells. We found that FoxP3-CD4+CD62L-CD44+CD45RbLo effec-

tor/memory T cells (RbLoTem) coordinate a regulatory circuit in which they communicate

with FoxP3+ Tregs to synergistically enhance IL-10 production, leading to the suppression of

Fig 4. RbLoTem and RbHiTn transcriptomes reveal potential crosstalk mediators. RbLoTem and RbHiTn cells were

stimulated alone as before for 3 days, and RNA was isolated for deep sequencing and whole transcriptome analysis.

Genes were arranged according to the log2 of the RbLoTem to RbHiTn ratio of expression, using the calculated RPKM

values. Candidates were narrowed by excluding all membrane proteins, proteins known to exist only in the nucleus or

cytoplasm, and those showing at least 16-fold increase in RbLoTem cells compared to RbHiTn cells. n = 2 per cell type.

https://doi.org/10.1371/journal.pone.0216893.g004
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Fig 5. IL-4 and FoxP3+ Treg IL-4Rα (CD124) mediates Treg IL-10 production. FoxP3+ Tregs and RbLoTem were

stimulated in co-culture as before for 3 days with the addition of cytokine (A) or receptor (B) neutralizing antibodies to

identify the mediator of IL-10 synergy. (C) To determine whether IL-4 was acting on RbLoTem cells or FoxP3+ Tregs,

(C) RbLoTem cells were incubated with CD124 neutralizing antibody, washed, then co-cultured with fresh FoxP3+

Tregs as before (C); and then compared to pre-incubating FoxP3+ Tregs with CD124 antibody followed by co-culture

with RbLoTem cells (D). FoxP3+ Tregs were stimulated as before in monoculture supplemented with either

conditioned media from stimulated RbLoTem cells (E) or various concentrations, denoted in ng/mL, of recombinant

IL-2 or IL-4 (F-H) with and without neutralizing IL-4 or CD124 antibodies (E-H). (I-J) FoxP3+ Tregs were cultured

with and without αCD3ε stimulation, as well as with and without RbLoTem cells. At day 3, cells were harvested and

stained for CD124 expression, and analyzed by geometric mean fluorescence intensity (I) and the percent CD124

positive among FoxP3+ Tregs (J). � = p<0.05; # = p>0.05. P value calculated from Student’s T-Test, with comparisons

to control unless specified. Error bars show mean with SEM. For A-H, n = 3 to 6 experiments. For I-J, n = 6

experiments.

https://doi.org/10.1371/journal.pone.0216893.g005
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Fig 6. RbLoTem cells reverse lung inflammation in an IL-4-dependent fashion. Mice were given 60,000 of anti-

CD3ε-stimulated WT or IL-4ko RbLoTem cells on day 7 of acute HDM-induced asthma to test their ability to reverse

inflammatory pathology. The total number of infiltrating cells (A), the clinical score (see Table 1) (B), normalized

cellular differentials from BALf harvests (C), and tissue pathology (D) by immunofluorescence staining for EpCAM

(green) and MPO (red) from representative sections of pulmonary tissue are shown. � = p<0.05; # = p>0.05. P value

calculated from an unpaired Student’s T-Test. Error bars show mean with SEM. n = 6 to 14 individual mice total per

group, across two asthma trials, as indicated on the White Blood Cell counts in panel C.

https://doi.org/10.1371/journal.pone.0216893.g006
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Fig 7. Lung inflammation, remodeling and mucus production is reversed by RbLoTem cells in an IL-4-dependent fashion.

Representative lung sections from n = 6 mice at 4x and 10x magnification from the mice described in Fig 6 were stained with H&E

(top), TriChrome (middle) and PAS (bottom) to assess cellular infiltration, tissue remodeling/collagen deposition and mucus

production respectively in HDM-challenged mice receiving 60,000 activated WT or IL-4ko RbLoTem cells.

https://doi.org/10.1371/journal.pone.0216893.g007
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IFNγ and other cytokines in vitro and pulmonary inflammation in vivo. We also discovered

that this pathway is mediated by a combination of IL-2 and IL-4 secreted by RbLoTem cells,

leading to ligation of IL-4Rα (CD124) on αCD3ε-activated FoxP3+ Tregs and subsequent IL-

10 production. The discovery of a novel T-effector cell-driven regulatory pathway and its

underlying mechanism could have a major impact on how we understand the resolution of

inflammation, the maintenance of homeostasis throughout the body, Treg behavior, and possi-

bly how to control a variety of inflammatory diseases.

The interplay between T cell subsets to favor a particular response is not a novel concept. A

recent example is the interaction between neuropilin-1 (Nrp1) and semaphorin-4a (Sema4a)

[22]. Association of surface Sema4a on Tconv cells with Nrp1 on Tregs increased Treg survival

and function in vitro and was found to be required for the in vivo suppression of inflammatory

bowel disease. Here, we found that the direct cell-to-cell contact via the Sema4a-Nrp1 axis

does not account for the suppressive influence of RbLoTem cells on Tregs, as neutralization of

Nrp1 with an antibody had no impact on in vitro IL-10 synergy. Instead, our data strongly sup-

port a contact-independent mechanism which relies upon soluble mediators, IL-2 and IL-4.

Since the establishment of the TH1/TH2 paradigm [24–26], it has been widely recognized

that TH1 responses oppose TH2 responses, and vice versa, and that this is driven by key TH1 or

TH2-associated cytokines. IL-4 has long been characterized as a central inducer of TH2 cell

development [27], a characteristic cytokine made by TH2 cells [24–26], and a critical factor

leading to the suppression of TH1 cell differentiation [27–29]. TH2 responses were originally

described as including IL-4, IL-5, IL-6, and IL-10 [24–26]. As sophistication in the laboratory

setting increased, IL-6 and IL-10 were removed from this general list, but it is pertinent to

recall that IL-4 has been well documented to induce IL-10 production in T cells [30]. In fact,

IL-4 was linked to anti-inflammatory activity as far back as 1989 [31]. A more recent human

trial demonstrated that subcutaneous injection of psoriatic lesions with human IL-4 signifi-

cantly reduced clinical scores [32], while IL-4 expression from a viral vector was able to pre-

vent chondrocyte death and reduce cartilage erosion in a murine model of collagen-induced

arthritis [33]. In EAE, gene delivery of IL-4 into mice selectively recruited FoxP3+CD25+ Tregs

which eliminated the disease pathology [34]. IL-4 has also been implicated in the regulatory

mechanisms required for the anti-inflammatory effects of intravenous immunoglobulin [35],

and is known to be a robust driver of the wound healing phenotype of many macrophages,

which includes IL-10 and TGFβ release [36, 37]. Indeed, IL-4 was previously shown to increase

the suppressive capacity of CD25+ Tregs in vitro, although IL-10 was not assessed at the time

[38]. Although it is unclear why IL-4 was not depleted in our experiments (Fig 2) like IL-2 (Fig

1), it may be explained by differences in the relative rates of cytokine release by RbLoTem cells

and consumption by Tregs, these findings not only show that IL-4 is a highly pleiotropic cyto-

kine with a robust history of immune suppression, but they also strongly support the notion

that RbLoTem cells could use IL-4 as a key driver of IL-10 and immune suppression under at

least some inflammatory conditions.

In terms of asthma, the role of IL-4 is not entirely clear. In early descriptions of asthma one

hundred years ago, asthma was divided into “intrinsic” or non-atopic and “extrinsic” atopic

disease [39]. However, in the 1980s, the notion that asthma was nearly always atopic came into

prominence [40], which lead to the use of asthma as an exemplar TH2-mediated atopic disease

characterized by TH2 cytokines like IL-4, IL-5 and IL-13, eosinophilia and increased IgE pro-

duction [24–26]. More recent large-cohort studies, such as those conducted by the Severe

Asthma Research Program (SARP), have reinvigorated the division of asthma into specific

endotypes based on a variety of clinical characteristics. Of these endotypes, it is now widely

recognized that atopic asthma is not the only endotype, and that non-atopic asthma accounts

for up to 51% of all asthma cases in the US [41].
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Consistent with the interpretation that IL-4 is not a central driver of asthma, a number of

clinical trials designed to selectively inhibit IL-4 in asthma patients have failed. The trials for a

neutralizing anti-IL-4 antibody (Pasolizumab), a soluble IL-4 decoy receptor (Altrakincept),

and even a mutant form of IL-4 with a proposed dominant negative impact on IL-4 function

(Pitrakinra) all were halted due to a lack of meeting clinical benchmarks of efficacy. In con-

trast, efforts simultaneously targeting both IL-4 and IL-13 through IL-4Rα blockade have been

more successful (Dupliumab), and primarily in eosinophilic asthma [42]. Since IL-13 uses the

type II IL-4 receptor, which is comprised of IL-4Rα (CD124) and IL-13Rα (CD213a), the effi-

cacy of Dupliumab supports the notion that IL-13 may be the more important cytokine in

terms of asthma pathology. It is also becoming clear that the non-atopic neutrophilic endo-

types are more likely driven by a Th17-dominated response, and these patients are much more

likely to have greater disease severity and corticosteroid-resistance. Our results using a model

of neutrophilic asthma (Fig 6A) fit with the well-known phenomenon that IL-4 opposes Th1

and Th17 responses, and induces IL-10 release in T cells [28, 29].

In summary, our work has revealed a novel T cell-to-T cell regulatory pathway in which IL-2

and IL-4 from RbLoTem cells trigger the release of IL-10 in activated FoxP3+ Tregs, and that this

response can reverse the pathologies associated with HDM-induced neutrophilic lung inflamma-

tion in mice. This model fits well into the greater IL-4 literature, implicates a number of addi-

tional therapeutic targets within the IL-4Rα pathway which could be explored as clinical

therapies, and highlights the myriad of ways in which T cell-mediated responses can be regulated.

Supporting information

S1 Fig. Flow setup for sorting Tregs based on CD25. Experimental design for the gating

strategy utilized to capture CD4+FoxP3+CD25+ and CD4+FoxP3+CD25- cells from magneti-

cally sorted splenocytes from FoxP3-RFP reporter mice.

(TIF)

S2 Fig. Flow setup for sorting T cell subpopulations. Experimental design schematic detail-

ing the staining and gating strategy used to isolate CD4+FoxP3+, CD4+FoxP3-CD45R-

bLoCD44+CD62L-, and CD4+FoxP3-CD45RbLoCD44+CD62L- cells from CD4+ magnetically

sorted splenocytes.

(TIF)

S3 Fig. Blocking neuropilin1 does not engage IL-10 production in Tregs. ELISA measure-

ments of IL-10 in mono- and co-culture supernatants after 72h from FoxP3+ Tregs or

CD4+CD45RbLo and CD4+CD45RbHi cells from IL-10n animals. Cells were grown with or

without stimulus from plate-bound αCD3ε and supplementation with a blocking αNeuropi-

lin1 antibody. Error bars show mean with SEM.

(TIF)
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