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Forecasting the aftershock probability has been performed by the authorities to mitigate hazards in the
disaster area after a main shock. However, despite the fact that most of large aftershocks occur within a day
from the main shock, the operational forecasting has been very difficult during this time-period due to
incomplete recording of early aftershocks. Here we propose a real-time method for efficiently forecasting the
occurrence rates of potential aftershocks using systematically incomplete observations that are available in a
few hours after the main shocks. We demonstrate the method’s utility by retrospective early forecasting of
the aftershock activity of the 2011 Tohoku-Oki Earthquake of M9.0 in Japan. Furthermore, we compare the
results by the real-time data with the compiled preliminary data to examine robustness of the present
method for the aftershocks of a recent inland earthquake in Japan.

A
vast number of aftershocks occur following a large earthquake. Especially, in the first 24 h after the main
shock, a probability of a large aftershock that possibly causes the secondary disaster in and around the
focal area is high. In this period, more than a half of the strong aftershocks that occur in the first months

after the main shock, in fact, occur, and further most of the largest aftershocks occur in this period1,2. Hence, it is
desired to give a probability forecast of a large aftershock as soon as possible after the main shock. On the other
hand, despite the effort to improve early forecast3,4, immediate forecast has been considerably difficult5,6. Actually,
operational probability forecasts by the Japan Meteorological Agency (JMA) start after more than 24 hours of
the main shock6. This is mainly due to the substantial deficiency of data. Many aftershocks occurring shortly after
the main shock are missing from the seismic records due to overlapping of seismograms6–10. Further difficulty
is the property that the number of strong aftershocks considerably differs depending on a main shock even if the
magnitude of the main shock is similar2.

Here we propose a method for forecasting underlying aftershock activity that includes missing aftershocks,
using the incomplete observations that are available a few hours after the main shock. In this method, we
introduce a statistical model of the incompletely detected aftershocks. This model is then combined with the
model adopted by Reasenberg and Jones3. This procedure enables us to give the forecast without relying on the
generic model based on the main shock size. The usefulness of the proposed method in forecasting aftershock
activity within 24 h after the main shock is demonstrated by retrospective early forecasting of the aftershock
activity of the 2011 Tohoku-Oki Earthquake of M9.0 in Japan by analysing the data from the National Earthquake
Information Center/Preliminary Determination of Epicenters (NEIC/PDE) catalogue (Fig. 1). We also analyse
the aftershocks of the M6.3 earthquake on Feb. 25, 2013 in Nikko, central Honshu, Japan, by using the real-time
data of the High Sensitivity Seismograph Network (Hi-net) operated by National Research Institute for Earth
Science and Disaster Prevention (NIED)11, and show the effectiveness of the present method in a realistic
situation.

Results
Estimating the forecasting model from observed data of incompletely detected earthquakes. For the
occurrence rate of underlying aftershocks of magnitude M at elapsed time t from the main shock, we employ
the following model3:

l(t)~
K

(tzc)p 10{bM : ð1Þ

Here the parameters K, c, and p of the Omori–Utsu (O-U) formula for aftershock decay7,12,13 and the b-value of the
Gutenberg–Richter (G-R) formula for the magnitude frequency relation14 are constants to be estimated. Here, the
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parameter K, which controls the number of aftershocks, greatly
depends on individual aftershock sequence, even if the magnitudes
of the main shocks are almost the same: For example, the 2004
Chuetsu earthquake and the 2007 Chuetsu-oki earthquake in
Japan, which are about 40 km apart, have the same magnitudes of
M6.8, but the numbers of their aftershocks of M $ 4.0 differ by 6–7
times2. Hence, this parameter is particularly crucial for the early
forecast, but has been difficult to estimate in an early period5–6.

Given the estimate of the parameters of the forecasting model (1),
the occurrence rate l(t) of aftershocks with magnitude M $ Mp is
calculated as

l(t)~
ð?

Mp

l(t,M)dM: ð2Þ

The method to calculate the 95% predictive interval of the empir-
ical occurrence rate is described in Sec. S1 in Supplementary
information.

One usually estimates these model parameters from observed data
with magnitude greater than selected threshold15–17, avoiding the
early period of incompletely detected aftershocks (Fig. 1). In this
study, the parameters have to be estimated from such incompletely
detected aftershocks in the early period for making an early forecast-
ing. For the purpose, we must consider the statistical feature of
incompletely detected aftershocks. To model the incomplete detec-
tion of earthquakes, previous studies18–21 introduced the detection
rate function of magnitude, the probability at which each underlying
earthquake is detected. The detection rate of an earthquake clearly
depends on its magnitude such that smaller (larger) earthquakes are
detected with a lower (higher) probability. The detection rate func-
tion of the magnitude is suitably represented by the cumulative dis-
tribution function of the normal distribution W(Mjm,s),

W(Mjm,s)~

ðM

{?

1ffiffiffiffiffiffiffiffiffiffi
2ps2
p e{

(x{m)2

2s2 dx, ð3Þ

where m represents the magnitude with a 50% detection rate, and s
represents a partially detected magnitude range18–21. By means of
suitable estimate of the detection rate function, we can estimate the
occurrence rates of the underlying earthquakes from given data of
incompletely detected earthquakes.

The detection rate function and the b-value of the G-R formula can
be estimated simultaneously. For homogeneously detected earth-
quakes, the observed magnitude distribution p(Mjb,m,s) is modelled

as a product of the underlying magnitude distribution m(M) 5 102bM

(the G-R formula) and the detection rate function W(Mjm,s) (Fig. 2),
given as

p(Mjb,m,s)~
10{bMW(Mjm,s)Ð?

{? 10{bM0W(M0jm,s)dM0

~be{b(M{m){b2s2=2W(Mjm,s),

ð4Þ

where b 5 bloge10. The parameters are estimated by maximizing the
log likelihood function ln L(b,m,s)~

X
i
ln P(Mijb,m,s), where ‘ln’

represents the natural logarithm, and {Mi} is a series of observed
magnitudes. Figure 2 demonstrates a good fit of the model to the
observed data for homogeneously detected earthquakes in the Japan
region before the 2011 Tohoku-Oki earthquake of M9.0.

However, the detection rate of aftershocks substantially varies in
time: it is quite low immediately after the main shock and recovers to
the normal level with time. To account for this, we assume that the
parameter m, which represents the magnitude with a 50% detection
rate (Fig. 2b), is a function of the elapsed time. In other words, the
magnitude distribution moves in time, and the parameter m(t) spe-
cifies the position of the magnitude distribution at each elapsed time t
after the main shock. Here, we assume that the b-value is constant
throughout the entire aftershock sequence7,22,23. To make optimally
adaptive estimation of the time-dependent parameter m(t), we de-
velop a state-space model for an objective Bayesian inference24–26. In
addition, we employ a Gaussian prior probability distribution of the
b-value for robust estimation using short data from an early period.
The method is described in detail in Methods.

Next, given the estimate of the b-value and detection rate function,
we can estimate the parameters K, c, and p of the Omori–Utsu for-
mula for the underlying aftershocks27. The occurrence rate n(t,M) of
detected aftershocks is given by the product of the rate l(t,M) of the
underlying aftershocks in equation (1), and the estimated detection
rate function W(Mjm,s) in (3) as follows: n(t,M)~l(t,M)W(Mjm(t),
s). This leads to the log likelihood function of the parameters K, c,
and p, given as

ln L(K,c,p)~
X

Mi§Mc
ln n(ti,Mi){

ð?
Mc

dM
ðT

0
dtn(t,M), ð5Þ

where ti and Mi are the occurrence time and magnitude of the i-th
aftershock observed in a learning period of duration T after the main
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Figure 1 | Observed earthquakes in Japan before and after the 2011 Tohoku-Oki earthquake of M9.0. (a) Epicenters and (b) time versus

magnitude of earthquakes that occurred in Japan according to PDE/NEIC catalogue. Grey (black) closed circles represent earthquakes within one

day after (within two years before) the main shock. The star indicates the main shock. The inner rectangular in (a) represents the aftershock area, and the

data in this region is used for the forecasting experiment. Clearly many small aftershocks are absent just after the main shock [see (b)]. The map in

Fig. 1a was generated by using GMT (Generic Mapping Tool).
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shock, respectively, and we fit the model to detected aftershocks with
magnitude M $ Mc.

The details of the methods and procedures in estimation and
forecasting are described below and supplementary documents.
The flow of these procedures is summarized in Table 1.

Forecast experiment of the aftershocks of the 2011 Tohoku-oki
earthquake M9.0 in Japan. Figure 3a shows the optimal estimation
of the time-dependent parameter m(t) for various periods until the
time to forecast. The estimated b-values and other parameters are
listed in Table 2. In a previous study27, m(t) was assumed to be a
parametric model of a monotonically decreasing function of time.
However, the estimated m(t) includes some oscillations that are
scarcely realized by such a simple parametric model. A careful look
at Fig. 3a suggests that m(t) rose steeply after some large aftershocks:
indeed, large aftershocks lower the detection rate again. The
oscillation is, therefore, not an artefact of the estimation method.
Hence, we take a state-space approach to adapt to such changes in
the detection rate. To demonstrate that the present estimate is useful,
we compare the empirical magnitude frequency of the observed
aftershocks with that predicted by the model in various time
windows (Fig. 3b). Figure 3b shows snap shots of real-time
estimation of time-varying magnitude distribution, based on the
adaptive estimation of the parameter m(t) at each time when an
aftershock has been detected. Figure 3b demonstrates the good fit
of the predictive distribution to the data, validating the proposed
procedure.

Given the estimate of the detection rate function and the G-R
formula, we next obtain the maximum likelihood estimates K, c,
and p of the O-U formula for the underlying aftershock activity.
These estimates are listed in Table 2. Then, we forecast the occur-
rence rates of future underlying aftershocks with magnitude M $ 5.0

and 6.0 by using the model in equation (1). The forecasts based on
observations made within only one day after the main shock agree
well with the empirical occurrence rates of the observed aftershocks
in the following 30 days (red lines in Figs. 4a and b). On the other
hand, one may suspect that direct application of the O-U formula to
the observed data could work well with a large c-value, which could
compensate for the missing aftershocks in the early stage7. In order to
examine this, we obtained these fits and their forecasts (green lines in
Figs. 4a and b). In contrast to the proposed method, in which the
detection rate is taken into account, these forecasts clearly deviate
from the later observations in spite of its good fit to the observed data
in the learning period (within one day after the main shock). The
result demonstrates the importance of taking into account the detec-
tion rate in the analysis. Furthermore, this method forecasts well even
for a learning period shorter than 24 h. Figures 4c and d show that
the occurrence rates of the underlying aftershocks within 24 h of the
main shock were forecasted very well on the basis of the observations
in the first 3 h period and longer, despite the highly incomplete
aftershock detection. Figures 4c and d also show the robustness of
our estimates of the underlying occurrence rates during the learning
periods, although the estimated parameters seem to be different
depending on the learning period within 24 hours, which is due to
the correlations between the parameters (such as p- and c-values)
under relatively small sample sizes. Hence, we conclude that the
present method is effective for forecasting the aftershock activity
within 24 h after the main shock. Note that the rate of underlying
aftershocks decays for even less than 0.01 day (15 minutes) in con-
trast to the rate of detected aftershocks (Figs. 4c and d). This is
consistent with the recent study28 that carefully examined waveforms
to identify aftershocks.

Forecast experiment of the aftershocks of the strong inland
earthquake in Japan using real-time data. Next we compare our
results by the data from JMA preliminary catalog (open of 1–2 days
delay) with the real-time data of the High Sensitivity Seismograph
Network (Hi-net) operated by National Research Institute for Earth
Science and Disaster Prevention (NIED)11. The Hi-net provides the
data of earthquakes that were automatically detected, and also their
original records are partly used for compiling JMA hypocenter
catalog. We consider the aftershocks of the M6.3 earthquake on
Feb. 25, 2013 in Nikko, central Honshu, Japan.

Supplementary Figures S1 and S3 show the estimation of the time-
varying detection rate for the Hi-net catalog and JMA catalog,
respectively. Supplementary Figs. S2 and S4 show the predicted fre-
quency with the superimposed empirical frequency for the Hi-net
catalog and JMA catalog, respectively. Although the Hi-net catalog
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Figure 2 | Statistical model of observed magnitude frequency distribution. (a) Assumed G-R formula for magnitude distribution of underlying

earthquakes. (b) Detection rate function modelled as cumulative distribution function of normal distribution. The parameter m represents the magnitude

with a 50% detection rate. (c) Magnitude distribution (red solid line) of detected earthquakes, given as the product of the G-R formula and the detection

rate function. Closed circles represent the empirical magnitude frequency distribution for earthquakes that occurred before the main shock in Japan

(black closed circles in Fig. 1b).

Table 1 | Summary of the method

[Estimation]
1. Estimating the time-varying detection rate and the G-R formula
(Methods).
1.1 Choose initial values of the hyper-parameters b, s, and V.
1.2 Evaluate the posterior function Pb,s,V (mjM) (Sec. S2).
1.3 Update the hyper-parameters (Sec. S3).
1.4 If the hyper-parameter converges, go to the step 2.

Else, back to the step 1.2.
2. Estimating the O-U formula by maximizing the likelihood function (Eq. 5).
[Forecast]
3. Calculate the expected rate of underlying aftershocks (Eq. 2), and the
predictive interval (Sec. S1).
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contains less events than the JMA catalog (Supplementary Figs. S1a
and S3a), the changing aftershock magnitude distribution within the
24 h can be suitably predicted based on the Hi-net catalog as well as
the analysis based on the JMA data (see Supplementary Figs. S1b and
S3b). Furthermore, it can appropriately forecast the aftershock activ-
ity within 24 h after the main shock by our procedure, indicating the
usefulness of the proposed method for the early forecasting in a
realistic situation (see Supplementary Figs. S2c and d). However,
the 1-month ahead forecast using the Hi-net data slightly deviates
from the future observation (Supplementary Figs. S2a and b) in
contrast to the forecast using the JMA catalog (Supplementary
Figs. S4a and b). Note that, because we only have the data during
two days after the main shock for the Hi-net catalog, we have used the
JMA catalog for the following period to compile Supplementary Figs.
2a and b, but the forecast model is constructed solely based on the
data from the Hi-net. The estimated parameters for the Hi-net cat-
alog and the JMA catalog are respectively listed in Supplementary
Tables S1 and S2.

Discussion
In this paper, we have proposed a method for forecasting underlying
aftershock activity from the observed data of incompletely detected
earthquakes. In our method, the time-varying detection rate is adap-
tively estimated by using the state-space model, and then this model

is combined with the forecasting model employed by Reasenberg and
Jones3. We have shown that our method can be successfully applied
to the retrospective early forecasting of aftershocks of the 2011
Tohoku-oki earthquake. Furthermore, we also show that our method
is effective and robust in early forecasting even for the real-time data,
by analysing the aftershocks of the recent strong inland earthquake in
Japan.

One might wonder whether we can employ a generic model for an
early forecast, which has the parameters corresponding to those of
the standard aftershock activity in a certain area. Indeed, generic c
and p-values are not so sensitive to work robustly for a short period of
a few days. However, the parameter K represents the individual
feature of aftershocks in the focal area besides the main shock mag-
nitude; in fact, it has been shown that cumulative numbers of after-
shocks for the first 30 days differs in the order of 10 times even for the
main shocks of similar magnitude of M7 class2. Due to the deficient
aftershocks in the early period, we have to wait a couple of days to
assess a suitable K-value for a generic model. This is a reason why
early operational forecast has not been achieved by the authorities. In
contrast, the present study aims to directly estimate the model para-
meters from the systematically incomplete data of the early period by
considering the detection rate of earthquakes.

The O-U formula well represents aftershock activity unless there
are any conspicuous secondary and successive aftershocks that
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Table 2 | Summary of estimated parameters. Parameters b, K, p, and c are defined in equation (1), s is defined is in equation (3), and V is
defined in equation (7)

Learning Period b-value s V K p c (day)

0–3 h 1.17
(6 0.10)

0.14
(6 0.06)

1.11 3 1023

(6 6.97 3 1024)
1.71 3 108

(6 9.19 3 107)
1.29

(6 0.19)
9.71 3 1023

(6 4.32 3 1024)
0–6 h 1.25

(6 0.09)
0.15

(6 0.03)
4.01 3 1024

(6 2.34 3 1024)
2.04 3 108

(6 5.64 3 107)
1.60

(6 0.12)
1.16 3 1022

(6 3.54 3 1024)
0–12 h 1.24

( 6 0.08)
0.28

(6 0.02)
7.31 3 1026

(6 6.09 3 1026)
3.45 3 108

(6 5.37 3 107)
1.42

(6 0.07)
6.19 3 1023

(6 1.99 3 1024)
0–24 h 1.22

( 6 0.07)
0.22

(6 0.02)
6.64 3 1026

(6 4.60 3 1026)
2.81 3 108

(6 2.92 3 107)
1.29

(6 0.05)
3.04 3 1023

(6 1.24 3 1024)
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followed a significantly large aftershock. However, aftershock sequen-
ces in general are not always accurately represented by the O-U for-
mula15. Hence, for a longer period, it would be useful to extend the
present forecasting method to include statistical models such as the
ETAS model29. The extension is our important future problem.

Although the most of strong aftershocks occur within one day
after the main shock, some largest aftershocks occur days or months

after the main shock. Our model based on the O-U formula gives a
small probability according to the G-R law for such events. A large
aftershock sometimes accompanies precursory anomalous activity of
aftershocks30. Thus the probability gain of such forecast might be
improved by considering the anomaly of aftershock activity.

In our procedure, we have used cumulative function of a Normal
distribution for the detection rate function of magnitude. This
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function works well if the hypocenter detection is based on an
enough number of homogeneously located seismic stations18–20.
There may be other possible detection functions, such as the logistic
function19 and the exponential detection function21, dependent on
configuration of seismic networks.

Methods
Data. We have first used the catalogue of the Weekly Listing version of Preliminary
Determination of Epicenters (PDE-W) from the NEIC to analyse the aftershock
sequence of the 2011 Tohoku-Oki Earthquake of M9.0 in Japan (Fig. 1). The data were
obtained from the FTP website of the USGS (http://earthquake.usgs.gov/
earthquakes/eqarchives/epic/), but one can use the real-time version, ‘Current
Worldwide Earthquake List’ (http://earthquake.usgs.gov/earthquakes/map/). The
catalogue of the Japan Meteorological Agency (JMA) is typically used to study the
seismicity around Japan because of its overall high detection of smaller earthquakes.
However, in this particular case, the detection rates of aftershocks from a very wide
area (Fig. 1) are spatially heterogeneous19, mainly depending on the distance from the
east coast of northern Honshu because the JMA network is located in the inland area.
On the other hand, the global NEIC network enables spatially homogeneous
detection of aftershocks, although the stations are much sparser than those of the
JMA. Since our goal is to provide a forecasting method that will work in real time, the
forecasting method should be tested using either real-time observations or the earliest
quasi-real-time observations. Therefore, we tested the proposed methods using the
NEIC-PDE catalogue.

To analyse the aftershock sequence the M6.3 earthquake on Feb. 25, 2013 in
Nikko, central Honshu, Japan, we have used the High Sensitivity Seismograph
Network (Hi-net) catalog and the Japan Meteorological Agency (JMA) catalog. For
the analysis of the aftershocks of the Nikko earthquake, the data is considered
to be spatially homogeneous because the aftershock region is limited to the narrow
area.

Magnitude frequency model with time-dependent detection rates. In the setting
described above, the magnitude of each earthquake can be considered a random
realization of the hidden variable m(t), and the noise is controlled by the hyper-
parameters b and s. A state-space model provides a useful framework for estimating a
smooth profile of the hidden variable m(t) from an observed magnitude sequence
{Mi}24–26.

For simplicity, we assume that m(t) is a step function that changes upward or
downward when each earthquake occurs; that is, m(t) 5 mi for the time interval ti # t
, ti11 (i 5 1, 2, …, N), where ti is the occurrence time of the i-th aftershock detected
in an estimation period [0, T], and N is the number of detected aftershocks. Thus, we
will estimate a sequence of the parameters m~(m1,m2,:::,mN )T . Given a sequence of
magnitudes M~(M1,M2,:::,MN )T of detected earthquakes, the likelihood function is
rewritten as

Pb,s(Mjm)~ P
N

i~1
Pb,s(Mijmi)~ P

N

i~1
be{b(Mi{mi){

b2 s2

2 W(Mijmi,s), ð6Þ

where Pb,s(Mijmi)~P(Mijb,mi,s) in equation (4). Because the model contains para-
meter m~(m1,m2,:::,mN )T , the maximum likelihood method gives a rough estimate of
m(t). Hence, we assume a prior distribution PV (m) of a smoothness constraint for m(t)
that penalizes the second difference of m and is given by

PV (m)~P(m1,m2) P
N{2

i~1
PV (miz2jmi,miz1)

~P(m1,m2) P
N{2

i~1

1ffiffiffiffiffiffiffiffiffi
2pV
p e{

(miz2 {2miz1 zmi )2

2V ,

ð7Þ

where V is a hyper-parameter that controls the degree of smoothness of m(t). We
assume that m1 and m2 obey the uniform prior; that is, P(m1,m2)~const.

From Bayes’ rule, the posterior function Pb,s,V (mjM) of m given the observed
magnitudes M is given by

Pb,s,V (mjM)~
Pb,s(Mjm)PV (m)Ð

Pb,s(Mjm0)PV (m0)dm0
: ð8Þ

Our goal is to obtain the posterior mode m̂ such that m̂~ arg maxmPb,s,V (mjM) under
the optimal values of the hyper-parameters b, s, and V. Given the hyper-parameters
b, s, and V, this maximization can be readily performed using Newton’s iteration
method, as shown in Section S2 in Supplementary Information. Here, in this model,
the detection rate during the period between the occurrence time t0 5 0 of the main
shock and the time t1 of the first detected aftershock, m(t) for t0 , t , t1 is set to m(t) 5

M0, where M0 is the magnitude of the main shock.
The optimal estimate of the hyper-parameters b, s, and V is obtained as follows.

Here, we introduce a prior probability distribution P(b) for the b-value to avoid over-
fitting the model and to achieve a good fit to the data for a short estimation period; it is
given explicitly below. In this case, the hyper-parameters are optimized by max-
imizing the posterior probability distribution P(b,s,V jM)!Pb,s,V (M)P(b), where
Pb,s,V (M) is the marginal likelihood function, given as
Pb,s,V (M)~

Ð
Pb,s(Mjm0)PV (m0)dm0 . Because the exact treatment of the non-Gaussian

high-dimensional integration appearing in the calculation of the marginal likelihood

function is intractable, we approximate this optimization by the method described in
Section S3 in Supplementary Information.

In this paper, the prior distribution P(b) is set to be Gaussian with the mean of
1:04| ln 10 and standard deviation of 0:11| ln 10. This agrees with the distribution
of b estimated by using the Z-map31 for earthquakes with magnitude M $ 5.0 that
occurred in the area before the main shock.

A similar Bayesian model for estimating the time-dependent detection rate was
implemented using cubic spline19 or broken-line-type parameterization20. The pre-
sent state-space representation of the Bayesian model enables adaptive updating of
the prediction in real time. Another novelty of the proposed model is the introduction
of the prior probability distribution of the b-value. Owing to this prior, the estimate is
robust even for a very short learning period.
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