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A two-parameter unit distribution and its regression model plus its extension to 0 and 1 inflation 
is introduced and studied. The distribution is called the unit upper truncated Weibull (UUTW) 
distribution, while the inflated variant is called the 0 − 1 inflated unit upper truncated Weibull 
(ZOIUUTW) distribution. The UUTW distribution has an increasing and a J-shaped hazard rate 
function. The parameters of the proposed models are estimated by the method of maximum 
likelihood estimation. For the UUTW distribution, two practical examples involving household 
expenditure and maximum flood level data are used to show its flexibility and the proposed 
distribution demonstrates better fit tendencies than some of the competing unit distributions. 
Application of the proposed regression model demonstrates adequate capability in describing the 
real data set with better modeling proficiency than the existing competing models. Then, for 
the ZOIUUTW distribution, the CD34+ data involving cancer patients are analyzed to show the 
flexibility of the model in characterizing inflation at both endpoints of the unit interval.

1. Introduction

In practice, phenomena that can give rise to data on the restricted domain of [0,1) are quite ubiquitous, where such data 
could represent proportions or even some sort of standardized or transformed values, for example in demography we have the sex, 
dependency, abortion and child-woman ratios; in economics and finance we have the proportion of household income spent on food, 
as well as the following famous ratios: savings to income, capital to output, labor’s share income, income velocity of circulation 
and capital to labor ratios; in engineering and related fields, we have the crawl ratio in automotive engineering, aspect ratio in 
aeronautics, fineness ratio in naval architecture and aerospace engineering, extinction ratio (𝑟𝑒) in telecommunication, common mode 
rejection ratio (CMRR) in electronics and lighting ratio in photography. Other applications can be found in the beta distribution’s 
guide [1]. To model this kind of data, one distribution that first come to mind is the beta distribution. However, in most application 
problems, we are constrained with the much we could do with the beta distribution because, its distribution function (cdf) does not 
appear in any analytical closed form. A similar and popular alternative to the beta distribution is the Kumaraswamy distribution 
[2]. Unlike the cdf of the beta distribution, the cdf of the Kumaraswamy distribution come in a nice close form therefore, making 
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it easier to work with compare to the beta distribution. Jones [3] presents a list of similarities and dissimilarities between the beta 
distribution and the Kumaraswamy distribution as well as the advantages and the disadvantages of one over the other.

Apart from the Kumaraswamy distribution, many other unit distributions have emerged for modeling the ever growing number 
of data-sets on the unit interval which could emanate from different complex phenomena, with the ultimate goal of providing better 
fit capabilities for this kind of data. Some of these distributions were introduced even before the emergence of the Kumaraswamy 
distribution thus, providing us with several alternative distributions to try should any lack of fit occasion the use of either the beta 
distribution or the Kumaraswamy distribution. Some of these distributions includes the Topp-Leone distribution [4]. The unit-gamma 
distribution [5] is one of the few unit interval distributions we are aware of, as well as the following more recent ones: Log-

Lindley distribution [6], the two-parameter unit logistic distribution [7], the two-parameter unit-Birnbaum–Saunders distribution 
[8], unit-Gompertz [9], unit-inverse Gaussian distribution [10], unit-Rayleigh distribution [11], the unit-Weibull distribution [12], 
unit modified Burr-III distribution [13] and log-weighted exponential(WE) distribution [14], transmuted unit Rayleigh quantile 
regression model [15], unit generalized half-normal quantile regression model [16], unit generalized log Burr XII distribution [17]

and unit folded normal distribution [18].

As earlier mentioned, unit data or data on [0,1) can result from data scaling/transformation. In the same vein, unit distributions 
can as well be constructed by some random variable transformations. For instance, if the random variable 𝑋 is defined on (0, ∞), 
then the random variable 𝑌 = exp(−𝑋) can result to a unit distribution and a typical example of this case is when 𝑌 is distributed 
either as the unit-Rayleigh distribution or the log-WE distribution provided that 𝑋 follows either the Rayleigh distribution or the 
weighted exponential(WE) distribution by [19], respectively. In a different development, the random variable 𝑌 =𝑋∕(1 +𝑋) is said 
to follow the unit-Lindley distribution [9] if the random variable 𝑋 follows the Lindley distribution [20]; also for the case of the so 
called power transformation; let 𝜆 > 0, the random variable 𝑌 =𝑋𝜆 is said to follow the 2-parameter Topp-Leone distribution [21] if 
the random variable 𝑋 follows the Topp-Leone distribution [4].

In addition to data on [0, 1), in practice, we may encounter unit data that includes other boundary cases such as (0, 1] and [0, 1]. 
That is, the data may involve in addition to observations in the interval of (0, 1), many occurrences of both 0’s and 1’s or either a 
preponderance of 0’s or a preponderance 1’s and in such situations, we can apply the so called hurdle models for analysis. Several 
hurdle models exist in the literature and some of them includes the inflated beta distributions [22], the inflated Kumaraswamy 
distributions [23] and the inflated unit-Birnbaum-Saunders distribution [24].

The remainder of this paper contains: the proposed distribution in Section 2; additional properties of the proposed distribution 
in Section 3, parameter estimation in Section 4, UUTW regression model in Section 5, proposed 0 and 1 inflated model in Section 6, 
application examples in Section 7, discussion of results in Section 8 and concluding remarks in Section 9.

2. The proposed distribution

Here, we introduce the unit upper truncated Weibull distribution; hereafter referred to as, the UUTW distribution following a 
random variable transformation based on the zero-truncated Poisson power function (ZTPPF) random variable [25]. We would like 
to point out that the ZTPPF distribution is actually the upper truncated Weibull distribution. A random variable 𝑌 is said to follow 
the ZTPPF distribution if its cdf and probability density function (pdf) are given by

𝐹 (𝑦) =
1 − exp

(
−𝜆
[
𝑦

𝛼

]𝛽)
1 − exp[−𝜆]

and

𝑓 (𝑦) =
𝜆𝛽𝑦𝛽−1 exp

(
−𝜆
[
𝑦

𝛼

]𝛽)
𝛼𝛽 (1 − exp[−𝜆])

,

respectively, where 0 < 𝑦 < 𝛼, 𝛼 > 0 and 𝛽 > 0.

Now, suppose that the random variable 𝑋 follows the ZTPPF distribution, we define a new random variable 𝑌 by the transforma-

tion 𝑌 = 1 −𝑋∕𝛼 and the cdf of 𝑌 is defined by

𝐹 (𝑦) = 1 −
1 − exp

(
−𝜆[1 − 𝑦]𝛽

)
1 − exp(−𝜆)

, (1)

for 0 ≤ 𝑦 < 1, and the corresponding pdf given by

𝑓 (𝑦) =
⎧⎪⎨⎪⎩

𝜆𝛽

1−exp(−𝜆) (1 − 𝑦)𝛽−1 exp
(
−𝜆[1 − 𝑦]𝛽

)
, 0 ≤ 𝑦 < 1,

0, elsewhere,

(2)

where 𝜆 > 0 and 𝛽 > 0 are the shape parameters.

To emphasize the importance of the above transformation, we admit that the ZTPPF distribution can easily assume a unit distribu-

tion when the scale parameter 𝛼 is equal to 1 but, this approach is restrictive in practice. However, the recommended transformation 
2

that resulted in Equation (1) enhances more flexibility in the construction of the unit distribution in that, 𝛼 is allowed to take any 



Heliyon 9 (2023) e22260I.E. Okorie, E. Afuecheta and H.S. Bakouch

value on the entire positive domain, i.e., 𝛼 ∈ (0, ∞). In the application section, we compare the UUTW distribution whose pdf appear 
in Equation (2) with that obtained by simply setting 𝛼 = 1 in the ZTPPF distribution through different real-data examples. Also, the 
lifetime of many manufactured equipment and devices are sometimes characterized by the J-shaped hazard rate function, which usu-

ally involves two phases, namely; the phase of long useful life and the phase of wear-out. We have emphasized that there are many 
continuous distributions on the unit support however, most of these distributions mainly exhibits “bathtub shape” or the “upside-

down bathtub shape” hazard rate characteristics or both. For instance, the bathtub hazard rate is important for describing the failure 
rate of some lifetime phenomena e.g., human. The bathtub shape involves three phases: early failure phase (e.g., infant mortality), 
chance failure phase (e.g., sudden death due to accidents) and the wear-out failure phase (i.e.; death due to the accumulation of 
natural impacts) [26]. There are limited number of distributions with J-shape hazard rate hence, the main motivation for this paper.

3. Additional properties

The reliability function is the most widely applied function in lifetime analysis and reliability engineering and it gives the 
probability that a functional device or item will operate over a certain period of time without failure. The reliability function of the 
UUTW distribution is given by Equation (3)

𝑅(𝑦) =
1 − exp(−𝜆[1 − 𝑦]𝛽 )

1 − exp(−𝜆)
. (3)

The hazard rate function (hrf) quantifies the likelihood of failure for any operating device or item hence; larger value of the 
hazard function implies higher probability of imminent failure. In other words, the hazard function represents the probability of 
failure over a short interval of time 𝑡0 to 𝑡0 + Δ𝑡0 given that the device or item has survived up to 𝑡0 thus, it is sometimes referred to 
as the instantaneous failure rate. The hazard function of the UUTW distribution is given by Equation (4)

ℎ(𝑦) = 𝜆𝛽[1 − 𝑦]𝛽−1

exp(𝜆[1 − 𝑦]𝛽 ) − 1
. (4)

The plots of the cdf, pdf, reliability function and the hrf of the UUTW distribution are shown in Fig. 2 and from there, we could 
see that the pdf can be unimodal, L-shaped or J-shaped while the hrf is either increasing or J-shaped.

Apart from the tractable cdf of the proposed distribution, the J-shape characteristic of its hrf is another strength and motivation 
of this paper because, several existing survival models often present increasing hrf but, lack the relatively constant phase of the hrf. 
However, this flat region of the J-shaped hrf otherwise known as the long useful period is important and perhaps one of the most 
significant phase for reliability prediction and evaluation activities, as it explains the normal life span of the component or system. 
Therefore, having a model that can adequately capture this flat region is very essential. Our model is suitable for modeling the 
long useful and the final (wear-out) phases of many lifetime phenomena. The wear-out periods are usually as a result of the natural 
accumulation of adverse impacts.

3.1. Asymptotic behavior

The limiting behaviors for the pdf and hrf of the UUTW distribution are presented as follows. For any 𝜆 ∈ (0, ∞) and 𝛽 ∈ (1, ∞), we 
have that lim𝑦→0+ 𝑓 (𝑦) = lim𝑦→0+ ℎ(𝑦) = 𝜆𝛽

exp𝜆−1 ; lim𝑦→1− 𝑓 (𝑦) = 0 and lim𝑦→1− ℎ(𝑦) =∞. Also, for any 𝜆 ∈ (0, ∞) and 𝛽 ∈ (0, 1], we have 
that lim𝑦→0+ 𝑓 (𝑦) = lim𝑦→0+ ℎ(𝑦) = 𝜆𝛽

exp𝜆−1 and lim𝑦→1− 𝑓 (𝑦) = lim𝑦→1− ℎ(𝑦) =∞. When 𝛽 = 1, the asymptotic behavior of 𝑓 (𝑦) = 𝜆 exp(𝜆𝑦)
exp(𝜆)−1

(i.e., 𝑓 (𝑦) is increasing) and the asymptotic behavior of ℎ(𝑦) = 𝜆

exp(𝜆[1−𝑦])−1 (i.e., ℎ(𝑦) is increasing) with the corresponding limit 
behaviors as follows: lim𝑦→0+ 𝑓 (𝑦) = lim𝑦→0+ ℎ(𝑦) = 𝜆

exp(𝜆)−1 and lim𝑦→1− 𝑓 (𝑦) = 𝜆 exp(𝜆)
exp(𝜆)−1 and lim𝑦→1− ℎ(𝑦) =∞.

Clearly, for any 𝜆 > 0 and 𝛽 > 0, the following result from fundamental calculus: lim𝑦→0+ 𝑓 (𝑦) = 𝑓 (0) = 𝜆𝛽

exp𝜆−1 suggests that the 
UUTW distribution is continuous at the lower end point; thus, the distribution could have a bounded lower support.

3.2. Shape property

The first derivative of the natural logarithm of the pdf of the UUTW distribution in Equation (2) with respect to 𝑦 is given by

𝑑 log𝑓 (𝑦)
𝑑𝑦

= − 𝛽 − 1
1 − 𝑦

+ 𝜆𝛽(1 − 𝑦)𝛽−1. (5)

The critical value of the pdf denoted by 𝑦0 is given by

𝑦0 = 1 −
(
𝛽 − 1
𝜆𝛽

) 1
𝛽

; 𝜆, 𝛽 > 1. (6)

From Equation (5), for 𝜆 ≤ 1 the pdf of the UUTW distribution can be strictly monotone on 𝑦 ∈ [0, 1) depending on the value of 𝛽. 
Specifically, the pdf is decreasing when 𝛽 > 1 and increasing when 𝛽 ≤ 1. If the critical value 𝑦0 in Equation (6) exists, the pdf of the 
UUTW distribution can increase on the interval [0, 𝑦0) and decrease on the interval (𝑦0, 1) suggesting that it’s maximum only occur 
3

at 𝑦0. In probability theory and statistics, 𝑦0 is called the mode of the distribution. The mode describes the observation that has the 
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Fig. 1. Contour plots for the: skewness (𝜏skew) and kurtosis (𝜏kurt) of the UUTW for a wide range of 𝜆 and 𝛽 values.

highest frequency (most occurring) in a set of data. In other words, the mode corresponds to the observation for which the pdf of the 
random variable 𝑌 has its maximum.

3.3. The quantile function

In probability theory, the quantile function of an independent and identically distributed random variable has many theoretical 
and applied uses. For instance, if 𝐹 (𝑦) is the cdf, the quantile function can be used to generate random observations from 𝐹 (𝑦). This 
idea serves as a basis for sampling or simulating from an arbitrary distribution. The quantile function of the UUTW distribution is 
defined by

𝑌𝑄 = 1 −
[
−1
𝜆
log (1 − (1 −𝑄)[1 − exp(−𝜆)])

] 1
𝛽 ; 0 <𝑄< 1. (7)

We can simulate random sample of size 𝑛 from the UUTW distribution by first assuming that 𝑄 follows the standard uniform 
distribution, i.e., 𝑄 ∼𝑈𝑛𝑖𝑓 (0, 1) and evaluating 𝑌𝑄 in Equation (7) thus, 𝑌 = 𝑌𝑄 follows the UUTW distribution with parameter 𝜆 and 
𝛽.

In statistics and probability theory, the median (second quartile) is an important measure of central tendency and it has a unique 
advantage over the mean when it comes to data description because, it is not affected by outliers thus, it gives a better representation 
of a typical value. In robust statistics, the median is the most resistant statistic. The median is of the UUTW distribution can be 
obtained by evaluating Equation (7) at 𝑄 = 1

2 and it is given by Equation (8)

𝑌0.5 = 1 −
[
−1
𝜆
log
(1
2
[1 + exp(−𝜆)]

)] 1
𝛽
. (8)

Similarly, other quantiles like the first quartile and the third quartile can be calculated by setting 𝑄 to 1
4 and 3

4 , respectively in 
Equation (7). The well-known Bowley’s skewness (𝜏skew) and Moor’s kurtosis (𝜏kurt) which are important measures of symmetry and 
tailedness, respectively; can be calculated by using the first, second, third and fourth quartiles and some octiles. Fig. 1 shows the 
contour plots of the Bowley’s skewness and Moor’s kurtosis for varying values of 𝛽 and 𝜆.

From Fig. 1 (𝜏skew), we can see that the pdf of the UUTW distribution can either be skewed (right-skewed or left-skewed) or 
symmetric depending on the values of the parameters while Fig. 1 (𝜏kurt) indicate that the tail of the pdf of the UUTW distribution is 
leptokurtic (fatter than that of the normal distribution).

3.4. The kth ordinary moment

The kth ordinary moment of any continuous random variable 𝑌 is defined by 𝔼(𝑦𝑘) = ∫
𝑦∈𝖱

𝑦𝑘𝑓 (𝑦)𝑑𝑦 thus, if 𝑌 follows the UUTW 
4

distribution, its kth ordinary moment is given by
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Fig. 2. Some plots of the pdf (a), cdf (b), Survival function (c) and hazard rate function (d) of the proposed distribution for selected values of 𝜆 and 𝛽.

𝔼(𝑦𝑘) =
1

∫
0

𝑦𝑘
𝜆𝛽

1 − exp(−𝜆)
[1 − 𝑦]𝛽−1 exp

(
−𝜆[1 − 𝑦]𝛽

)
𝑑𝑦

= 𝜆𝛽

1 − exp(−𝜆)

1

∫
0

𝑦𝑘[1 − 𝑦]𝛽−1
∞∑
𝑖=0

(−𝜆)𝑖[1 − 𝑦]𝛽𝑖

𝑖!
𝑑𝑦

= 𝜆𝛽Γ(𝑘+ 1)
1 − exp(−𝜆) 1

Ψ1

⎡⎢⎢⎣
(𝛽, 𝛽)

−𝜆
(𝛽 + 𝑘+ 1, 𝛽)

⎤⎥⎥⎦ . (9)

Equation (9) was obtained after some trivial algebra. Where 1Ψ1(⋅) is the special case of the multivariate 𝑚Ψ𝑛(⋅) function defined by

𝑚Ψ𝑛

⎡⎢⎢⎣
(𝛼1,𝐴1),⋯ , (𝛼𝑚,𝐴𝑚)

−𝑧
(𝛾1,𝐵1),⋯ , (𝛾𝑛,𝐵𝑛)

⎤⎥⎥⎦ =
∞∑
𝑖=0

∏𝑚
𝑗=1 Γ(𝛼𝑗 +𝐴𝑗𝑖)∏𝑛
𝑘=1 Γ(𝛾𝑘 +𝐵𝑘𝑖)

𝑧𝑖

𝑖!

for −∞ < 𝑧 <∞, where −∞ < 𝛼𝑗 <∞, −∞ < 𝛾𝑘 <∞, 𝐴𝑗 ≠ 0 and 𝐵𝑘 ≠ 0 for 𝑗 = 1, 2, ⋯ , 𝑚 and 𝑘 = 1, 2, ⋯ , 𝑛, see [27], [28], [29] and 
[30]-Equation (1.9).

Let denote 𝔼(𝑦𝑘) by 𝜇′
𝑘
, we list the first four order moments about zero of the UUTW distribution as follows:

𝜇′
1 =

𝜆𝛽

1 − exp(−𝜆) 1
Ψ1

⎡⎢⎢⎣
(𝛽, 𝛽)

−𝜆
(𝛽 + 2, 𝛽)

⎤⎥⎥⎦ ,
𝜇′
2 =

2𝜆𝛽
1 − exp(−𝜆) 1

Ψ1

⎡⎢⎢⎣
(𝛽, 𝛽)

−𝜆
(𝛽 + 3, 𝛽)

⎤⎥⎥⎦ ,
𝜇′
3 =

6𝜆𝛽
1 − exp(−𝜆) 1

Ψ1

⎡⎢⎢⎣
(𝛽, 𝛽)

−𝜆
(𝛽 + 4, 𝛽)

⎤⎥⎥⎦

5

and
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𝜇′
4 =

24𝜆𝛽
1 − exp(−𝜆) 1

Ψ1

⎡⎢⎢⎣
(𝛽, 𝛽)

−𝜆
(𝛽 + 5, 𝛽)

⎤⎥⎥⎦ .
Using these moments, one can easily calculate the variance, skewness, kurtosis and other important measures for the UUTW distri-

bution.

3.5. Inequality measures

Popular measures of inequality in economics, insurance, health and social sciences are the Lorenz curve, the Bonferroni curve 
and the Gini index. These indices are used to quantify the distribution of income or resources in a population.

3.5.1. Lorenz curve

Using the quantile function (Equation (7)) and the first order ordinary moment 𝜇′
1, we obtain the Lorenz curve of the UUTW 

distribution by using Equation (10) as follows.

𝐿(𝑦) = 1
𝜇′
1

𝑦

∫
0

𝑌𝑄𝑑𝑄 (10)

setting 𝑥 = 𝑌𝑄, 𝑄 = 𝐹 (𝑥) and 𝑑𝑄 = 𝑓 (𝑥)𝑑𝑥 we have that

𝐿(𝑦) = 1
𝜇′
1

𝑦

∫
0

𝑥
𝜆𝛽

1 − exp(−𝜆)
[1 − 𝑥]𝛽−1 exp

(
−𝜆[1 − 𝑥]𝛽

)
𝑑𝑥

= 𝜆𝛽

𝜇′
1[1 − exp(−𝜆)]

𝑦

∫
0

𝑥[1 − 𝑥]𝛽−1 exp(−𝜆[1 − 𝑥]𝛽 )𝑑𝑥

= 𝜆𝛽𝑦2

2𝜇′
1[1 − exp(−𝜆)]

∞∑
𝑘=0

(−𝜆)𝑘

𝑘! 2𝐹1(2,1 − 𝛽 − 𝛽𝑘; 3;𝑦). (11)

Equation (11) was obtained after some algebra and using the equivalence relation 𝐵(𝑥, 𝑎, 𝑏) = 𝑥𝑎

𝑎 2𝐹1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑥), where 𝐵(𝑥, 𝑎, 𝑏)
denotes the incomplete beta function defined by ∫ 𝑥

0 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡 for 𝑎 > 0, 𝑏 > 0 and 0 < 𝑥 < 1 and 2𝐹1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑥) denotes the 
Gauss’ hypergeometric function defined as

∞∑
𝓁=0

(𝑎)𝓁(𝑏)𝓁
(𝑐)𝓁𝓁!

𝑥𝓁 = 1 + 𝑎𝑏

𝑐
𝑥+ 𝑎(𝑎+ 1)𝑏(𝑏+ 1)

𝑐(𝑐 + 1)2!
𝑥2 +⋯ = Γ(𝑐)

Γ(𝑎)Γ(𝑏)

∞∑
𝓁=0

Γ(𝑎+ 𝓁)Γ(𝑏+ 𝓁)
Γ(𝑐 + 𝓁)𝓁!

𝑥𝓁 .

The Gauss’ hypergeometric function converges if 𝑐 is nonnegative integer ∀ |𝑥| < 1 and on the unit circle if ℛ[𝑐 − 𝑎 − 𝑏] > 0 where, 
(𝑎)𝑛 denotes the Pochhammer symbol.

3.5.2. Bonferroni curve

Following Equation (11), we derive the Bonferroni curve as follows.

𝐵(𝑦) =
⎧⎪⎨⎪⎩

𝐿(𝑦)
𝑦

, if 0 < 𝑦 ≤ 1

0, if 𝑦 = 0,

thus,

𝐵(𝑦) = 𝜆𝛽𝑦

2𝜇′
1[1 − exp(−𝜆)]

∞∑
𝑘=0

(−𝜆)𝑘

𝑘! 2𝐹1(2,1 − 𝛽 − 𝛽𝑘; 3;𝑦).

The plots of the Lorenz and Bonferroni curves represent the percentage of the population on the horizontal axis and the percentage 
of their total income or wealth on the vertical axis.

3.5.3. Gini index

If the random variable 𝑌 follows the UUTW distribution, then using Equation (11) we can calculate the Gini index 𝐺 ∈ (0, 1) as 
follows.

𝐺 = 1 − 2

1

∫
0

𝐿(𝑦)𝑑𝑦. (12)
6

The integral in the Gini inequality measure of the UUTW distribution (Equation (12)) can be easily evaluated numerically.
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4. Maximum likelihood estimation for UUTW distribution

In this section, we describe the method of maximum likelihood estimation aka the MLE for the estimation of the two parameters 
(𝜆 and 𝛽) of the UUTW distribution.

Let 𝑌 be a random variable with the UUTW distribution and 𝚯 = (𝜆, 𝛽)′ be the parameter vector. The log-likelihood function 
ℒ(𝚯|𝒚) based on a random sample of size 𝑛 with the corresponding observations 𝒚 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)′ is given by

ℒ(𝚯|𝒚) = 𝑛 log(𝜆𝛽) − 𝑛 log(1 − exp[−𝜆]) + (𝛽 − 1)
𝑛∑

𝑖=1
log(1 − 𝑦𝑖) − 𝜆

𝑛∑
𝑖=1

(1 − 𝑦𝑖)𝛽 . (13)

The partial derivative of ℒ(𝚯|𝒚) given in Equation (13) with respect to 𝜆 is

𝜕ℒ(𝚯|𝒚)
𝜕𝜆

= 𝑛

𝜆
− 𝑛

exp(𝜆) − 1
−

𝑛∑
𝑖=1

(1 − 𝑦𝑖)𝛽 , (14)

and the partial derivative of ℒ(𝚯|𝒚) with respect to 𝛽 is

𝜕ℒ(𝚯|𝒚)
𝜕𝛽

= 𝑛

𝛽
+

𝑛∑
𝑖=1

log(1 − 𝑦𝑖) − 𝜆

𝑛∑
𝑖=1

(1 − 𝑦𝑖)𝛽 log(1 − 𝑦𝑖). (15)

Notice that Equation (14) and Equation (15) are nonlinear in the parameters 𝜆 and 𝛽, respectively. Therefore there is no analytical 
solutions for the simultaneous equations arising from setting the two equations to zero; however, we can conveniently obtain the 
MLEs for 𝜆 and 𝛽, denoted by �̂� and 𝛽 by some numerical approach, such as the Newton-type algorithm by minimizing ℒ(𝚯|𝒚). 
Several packages in some statistical and mathematical software like, the nlm and the optim functions in the R software [31] are 
available for implementing the Newton-type algorithm. For the standard error and the asymptotic confidence interval for 𝜆 and 
𝛽 we need to calculate the expected observed Fisher information matrix (Hessian matrix). First, we suppose that the MLEs are 
asymptotically Gaussian distributed based on the conventional large sample approximation.

To find the Hessian matrix, we require the second order derivatives of the log-likelihood equation in Equation (13) with respect 
to the parameters. All the second derivatives exist and they are given by

𝜕2ℒ(𝚯|𝒚)
𝜕𝜆𝜕𝛽

=
𝜕2ℒ(𝚯|𝒚)

𝜕𝛽𝜕𝜆
= −

𝑛∑
𝑖=1

(1 − 𝑦𝑖)𝛽 log(1 − 𝑦𝑖), (16)

𝜕2ℒ(𝚯|𝒚)
𝜕𝜆2

= − 𝑛

𝜆2
+

𝑛 exp(𝜆)
[exp(𝜆) − 1]2

, (17)

and

𝜕2ℒ(𝚯|𝒚)
𝜕𝛽2

= − 𝑛

𝛽2
− 𝜆

𝑛∑
𝑖=1

(1 − 𝑦𝑖)𝛽 [log(1 − 𝑦𝑖)]2. (18)

In Equation (17), 𝜕
2ℒ(𝚯|𝒚)
𝜕𝜆2

< 0 and in Equation (18), 𝜕
2ℒ(𝚯|𝒚)
𝜕𝛽2

< 0 which indicates that the profile log-likelihood for 𝜆 and 𝛽 are 

concave and that �̂� and 𝛽 corresponds to the local maximum. However, since there is only one local maximum for each parameter, 
we conclude that in each case, the local maximum is exactly the global maximum and by implication the MLE.

The Hessian matrix for the UUTW distribution is given by

𝐼(𝚯) = −𝔼

(
𝐼𝜆𝜆 𝐼𝜆𝛽

𝐼𝜆𝛽 𝐼𝛽𝛽

)
with the corresponding asymptotic variance-covariance matrix of the MLEs given by(

𝐼⋆
𝜆𝜆

𝐼⋆
𝜆𝛽

𝐼⋆
𝜆𝛽

𝐼⋆
𝛽𝛽

)
= −𝔼

(
𝐼𝜆𝜆 𝐼𝜆𝛽

𝐼𝜆𝛽 𝐼𝛽𝛽

)−1

.

Therefore, the asymptotic distribution of the estimators is given by(
�̂�

𝛽

)
∼𝑁2

([
̄̂𝜆
̄̂𝛽

]
,

[
𝐼⋆
𝜆𝜆

𝐼⋆
𝜆𝛽

𝐼⋆
𝜆𝛽

𝐼⋆
𝛽𝛽

])
.

Note that the entries of the Hessian matrix are given by 𝐼𝜆𝛽 = 𝜕2ℒ(𝚯|𝒚)
𝜕𝜆𝜕𝛽

, 𝐼𝜆𝜆 = 𝜕2ℒ(𝚯|𝒚)
𝜕𝜆2

and 𝐼𝛽𝛽 = 𝜕2ℒ(𝚯|𝒚)
𝜕𝛽2

in Equations (16)-(18), 
respectively.

Considering that �̂� ∼ 𝑁2(
̄̂𝚯, 𝐼(𝚯)−1), where 𝐼(𝚯) is the estimated information matrix, the approximate 100(1 − 𝛾)% confidence 

interval for 𝜆 and 𝛽 are given by �̂�±𝑍𝛾
2

√
𝐼⋆
𝜆𝜆

and 𝛽 ±𝑍𝛾
2

√
𝐼⋆
𝛽𝛽

, respectively, where 𝑍𝛾
2

is the 𝛾th percentile of the standard normal 
distribution, 

√
⋅ denote the standard error (SE) of the parameter. The SEs corresponds to the square roots of the diagonal elements 
7

of the variance-covariance matrix.
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4.1. Simulation experiment for the MLE of the parameters of the UUTW distribution

In the previous section, we employed the MLE method to estimate the parameters of the UUTW distribution, and here we 
investigate the performance of this method through a Monte-Carlo simulation. The simulation involves different sample sizes (𝑛), 
specifically: 25, 50, 75, 100, 150, 200, 250 and 300, with different parameter combinations as shown in Table 1, and 5000 replications 
in 𝖱 software. Table 1 shows the values of the mean estimates, standard errors (SEs), biases, and mean square errors (MSEs) for 𝜆
and 𝛽. We consider a wide range of initial guesses for the parameters and we did not notice any convergence issues, so any set of 
initial values will give a similar result in all scenarios.

The Monte-Carlo algorithm is detailed as follows.

(i) For specific parameter values of 𝚯, simulate a random sample of size 𝑛 from the UUTW distribution through the inverse 
transformation method.

(ii) Estimate the parameters of the UUTW distribution by the MLE method.

(iii) Perform 5000 replications of steps (i)-(ii).
(iv) For each of the two parameters calculate the mean, SE, bias and MSE of the 5000 parameter estimates in (iii). The mean, SE, 

bias and MSE for the parameters are expressed as: ̄̂𝚯 = 1
5000
∑5000

𝑖=1 �̂�𝑖; SE ̄̂𝚯 =
√

1
5000
∑5000

𝑖=1 (�̂�𝑖 −
̄̂𝜃)2; Bias ̄̂𝚯 = 1

5000
∑5000

𝑖=1 (�̂�𝑖 − 𝜃) and 
MSE ̄̂𝚯 = 1

5000
∑5000

𝑖=1 (�̂�𝑖 − 𝜃)2; respectively, where �̂�𝑖′𝑠 represents the MLEs of 𝜆 or 𝛽 for the 𝑖th iteration under specific sample size 
𝑛, ̄̂𝜃 corresponds to the mean of the parameter estimates, i.e., �̂�𝑖′𝑠 and 𝛽𝑖′𝑠 and 𝜃 denotes the actual values of the parameters.

Essentially, from Table 1, we note that the ML estimators for 𝜆 and 𝛽 are efficient because the estimated values are equivalent to 
the actual values. Also, the ML estimators are consistent since their SEs, biases, and MSEs decrease with an increase in the sample 
size (𝑛).

5. The UUTW regression model

The beta regression model is often used in generalized linear model (GLM) to analyze bivariate or multivariate data whose 
response variable is defined on the unit interval. Here, we introduce an alternative to the beta regression model.

The median of the UUTW distribution (Equation (8)) has a nice closed form analytical expression; so, we can re-specify it as 𝜉
and make it a function of the explanatory variables by means of a link function; considerably, the logit-link function. The logit-link 
function come in handy when it comes to connecting the explanatory variables 𝒙𝑻 say, and the response variable 𝑦 ∈ [0, 1). Since 
𝜉 ∈ (0, 1), we can now define the logit-link function as

𝜉𝑖 =
exp(𝒙𝑻

𝒊
𝜽)

1 + exp(𝒙𝑻
𝒊
𝜽)

; 𝑖 = 1,2,3,⋯ , 𝑛,

where 𝒙𝑻
𝒊
= (1, 𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑝) is the vector of 𝑝 explanatory variables, 𝜽 = (𝜃0, 𝜃1, ⋯ , 𝜃𝑝−1)𝑇 is the vector of 𝑝 unknown regression 

coefficients and 𝑛 is the sample size. The explanatory variables and the regression coefficients can take any value on the entire real 
line.

After a slight re-parametrization of the median and substituting into the pdf in Equation (2), we obtain the pdf of the UUTW 
regression model as

𝑓 (𝑦, 𝜉;𝜆) = 𝜆𝛽⋆(𝜆, 𝜉)
1 − exp(−𝜆)

(1 − 𝑦)𝛽⋆(𝜆,𝜉)−1 exp
(
−𝜆[1 − 𝑦]𝛽⋆(𝜆,𝜉)

)
, (19)

where 𝛽⋆(𝜆, 𝜉) = log
(
− 1

𝜆
log
[
1
2 (1 + exp[−𝜆])

])
[log(1 − 𝜉)]−1.

The primary assumptions of the UUTW regression model (Equation (19)) are: the dependent variable 𝑌 must be a UUTW random 
variable, the 𝑝 independent variables must be uncorrelated (i.e., absence of multicollinearity), no influential data (outlier) and the 
residuals are independent and identically distributed.

We recommend the MLE method for estimating the parameters of the UUTW regression model (𝜆 and 𝜽). The MLE for UUTW 
regression model is straightforward and its mathematical detail is analogous to that in Section 3 therefore, we omit it to avoid 
unnecessary repetition.

Next, we discuss two prominent diagnostic tools for the GLMs.

5.1. Cox-Snell residual

In general, one way to validate the adequacy of any fitted regression model is to check whether the residuals of the model are 
well behaved. In reliability studies, the Cox-Snell residual by Cox and Snell [32] is a kind of standardized residuals that is widely 
used for assessing the goodness-of-fit of the fitted regression model and it is given by

𝜖𝑖 = −ln[1 − 𝐹 (𝑦𝑖|�̂�, �̂�)]; 𝑖 = 1,2,⋯ , 𝑛,

where 𝐹 (⋅) is the theoretical cdf and in this case, the cdf of the UUTW regression model whose pdf is given in Equation (19). If the 
8

fitted distribution is valid for the data, the residuals will approximately follow the exponential distribution, with 𝜅 = 1, i.e., 𝜖 ∼ exp(1). 
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Table 1

Simulation result for the unit upper truncated Weibull distribution.

Actual Estimates

𝛽 𝜆 𝑛 ̄̂𝛽 ̄̂𝜆 SE ̄̂𝛽
SE ̄̂𝜆

Bias ̄̂𝛽
Bias ̄̂𝜆

MSE ̄̂𝛽
MSE ̄̂𝜆

0.80 1.70 25 0.8526 1.9926 0.2156 1.2775 0.0526 0.2926 0.0493 1.7176

50 0.8255 1.8274 0.1491 0.8738 0.0255 0.1274 0.0229 0.7797

75 0.8169 1.7903 0.1201 0.7072 0.0169 0.0903 0.0147 0.5082

100 0.8125 1.7625 0.1041 0.6026 0.0125 0.0625 0.0110 0.3670

150 0.8088 1.7476 0.0844 0.4887 0.0088 0.0476 0.0072 0.2411

200 0.8048 1.7230 0.0733 0.4258 0.0048 0.0230 0.0054 0.1818

250 0.8043 1.7244 0.0655 0.3805 0.0043 0.0244 0.0043 0.1454

300 0.8038 1.7207 0.0594 0.3424 0.0038 0.0207 0.0035 0.1177

8.00 7.00 25 8.4300 8.4688 1.4472 4.0280 0.4300 1.4688 2.2791 18.3801

50 8.2082 7.6065 0.9622 2.0116 0.2082 0.6065 0.9691 4.4141

75 8.1424 7.4074 0.7931 1.5603 0.1424 0.4074 0.6493 2.6003

100 8.1046 7.2895 0.6777 1.3037 0.1046 0.2895 0.4702 1.7834

150 8.0680 7.1853 0.5401 1.0066 0.0680 0.1853 0.2963 1.0475

200 8.0441 7.1322 0.4626 0.8598 0.0441 0.1322 0.2160 0.7567

250 8.0376 7.1038 0.4120 0.7557 0.0376 0.1038 0.1712 0.5818

300 8.0313 7.0806 0.3781 0.6902 0.0313 0.0806 0.1439 0.4828

3.00 1.00 25 3.3142 1.3567 0.9014 1.1186 0.3142 0.3567 0.9111 1.3783

50 3.1426 1.1639 0.6174 0.8022 0.1426 0.1639 0.4015 0.6704

75 3.0883 1.0948 0.5089 0.6709 0.0883 0.0948 0.2668 0.4590

100 3.0668 1.0731 0.4468 0.5955 0.0668 0.0731 0.2041 0.3600

150 3.0352 1.0316 0.3667 0.4914 0.0352 0.0316 0.1357 0.2424

200 3.0277 1.0216 0.3183 0.4246 0.0277 0.0216 0.1021 0.1808

250 3.0259 1.0271 0.2854 0.3842 0.0259 0.0271 0.0821 0.1483

300 3.0161 1.0142 0.2612 0.3546 0.0161 0.0142 0.0685 0.1259

5.00 0.45 25 5.7765 0.9374 1.6137 0.9931 0.7765 0.4874 3.2067 1.2236

50 5.4172 0.7161 1.0873 0.6892 0.4172 0.2661 1.3562 0.5457

75 5.2764 0.6206 0.8898 0.5783 0.2764 0.1706 0.8680 0.3635

100 5.2049 0.5845 0.7745 0.5173 0.2049 0.1345 0.6418 0.2856

150 5.1409 0.5372 0.6395 0.4363 0.1409 0.0872 0.4288 0.1980

200 5.0973 0.5097 0.5645 0.3919 0.0973 0.0597 0.3281 0.1571

250 5.0756 0.4960 0.5172 0.3610 0.0756 0.0460 0.2731 0.1324

300 5.0569 0.4874 0.4695 0.3320 0.0569 0.0374 0.2236 0.1116

1.00 0.60 25 1.1365 1.0395 0.3100 1.0016 0.1365 0.4395 0.1147 1.1963

50 1.0689 0.8239 0.2156 0.7306 0.0689 0.2239 0.0512 0.5838

75 1.0477 0.7548 0.1772 0.6218 0.0477 0.1548 0.0337 0.4106

100 1.0334 0.7058 0.1572 0.5511 0.0334 0.1058 0.0258 0.3148

150 1.0223 0.6751 0.1286 0.4653 0.0223 0.0751 0.0170 0.2221

200 1.0140 0.6402 0.1146 0.4170 0.0140 0.0402 0.0133 0.1755

250 1.0108 0.6279 0.1019 0.3746 0.0108 0.0279 0.0105 0.1411

300 1.0090 0.6224 0.0947 0.3504 0.0090 0.0224 0.0091 0.1233

We can verify whether the Cox-Snell residuals follow approximately the exponential distribution with unit parameter by modeling

𝜖 with the exponential distribution with pdf specified as 𝑓 (𝜖) = 𝜅 exp(−𝜅𝜖), where 𝜖 > 0 and 𝜅 > 0. Once 𝜅 is estimated, we can plot 
the cdf of the residuals based on the estimated exponential distribution, i.e., exp(�̂�) versus the cdf of the set of 𝑛 randomly generated 
observations from the exp(1). We expect to see a straight line running through the origin if the fitted model is valid as shown in the 
Cox-Snell residual plots of the fitted regression models for the household food expenditure data in Fig. 7.

5.2. Randomized quantile residual

One can alternatively use the randomized quantile residuals [33] to access the adequacy of the fitted regression model. The 
randomized quantile residuals are given by

�̂�𝑖 =Φ−1[𝐹 (𝑦𝑖|�̂�, �̂�)]; 𝑖 = 1,2,⋯ , 𝑛,

where Φ−1(⋅) is the quantile function of the standard normal distribution. If the fitted distribution is a valid model for the data, 
the residuals will follow the standard Gaussian distribution, i.e., �̂� ∼ 𝑁(0, 1) as shown in the quantile residual plots of the fitted 
regression models for the household food expenditure data in Fig. 7 and by the 𝑝-values of the following normality tests: Jarque 
Bera test, Pearson chi-square test, Shapiro-Francia test, Anderson-Darling test, Cramer-von Mises test and the Lilliefors (Kolmogorov-
9

Smirnov) test for the quantile residuals of the fitted regression models for the household food expenditure data in Tables 6 and 7.
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6. 0 and 1 inflated unit upper truncated Weibull distribution

As we know, the UUTW distribution is best suited for modeling random variables that are defined on [0,1) but without many 
0′s however, in practice, we may encounter some random variables that generates data that include few 0’s and 1’s or even a 
preponderance of 0’s and 1’s and in such case, the support of the random variable is [0,1] and we need a suitable model to capture 
the inflation of 0′s and 1′s.

There are several instances in the literature where the support of the pdf of some notable continuous distributions excludes the 
endpoint(s) even when the distribution clearly have densit(y/ies) at such point(s), few examples includes: the exponential distribution 
with pdf defined as 𝑓 (𝑦) = 𝜆 exp(−𝜆𝑦), 𝑦, 𝜆 > 0 in both [34] and [35] omits 0 at the support of 𝑦 even when 𝑓 (0) = 𝜆; the Marshall–Olkin 
generalized exponential distribution with pdf defined as 𝑓 (𝑥) = 𝑝𝜃 exp(−𝜃𝑦)[1 −(1 −𝑝) exp(−𝜃𝑦)]2, 𝑦, 𝜃 > 0 and𝑝 ∈ (0, 1] in [36] omits 0 at 
the support of 𝑦 even when 𝑓 (0) = 𝜃∕𝑝; the unit Lindley distribution with pdf defined as 𝑓 (𝑥) = 𝜃2∕(1 + 𝜃)(1 −𝑦)−3 exp(−𝜃𝑦∕[1 −𝑦]), 𝜃 >

0, 𝑦 ∈ (0, 1) in [37] omits 0 at the support of 𝑦 even when it is clear that 𝑓 (0) = 𝜃2∕(1 + 𝜃); the unit-improved second-degree Lindley 
distribution with pdf defined as 𝑓 (𝑥) = 𝜆3(1 − 𝑦)−2∕(𝜆2 + 2𝜆 + 2)(1 + 𝑦∕[1 − 𝑦])2 exp(−𝑦𝜆∕(1 − 𝑦)), 𝜆 > 0, 𝑦 ∈ (0, 1) in [38] omits 0
at the support of 𝑦 even when it is obvious that 𝑓 (0) = 𝜆3∕(𝜆2 + 2𝜆 + 2); and the unit-Gompertz distribution with pdf defined as 
𝑓 (𝑦) = 𝛼𝛽𝑦−(𝛽+1) exp[−𝛼(𝑦−𝛽 − 1)], 𝛼, 𝛽 > 0, and 𝑦 ∈ (0, 1) in [9] omits 1 at the support of 𝑦 even when 𝑓 (1) = 𝛼𝛽. Also, there are two 
main variants of the support of the beta distribution. Some authors include the endpoints (i.e., 𝑦 ∈ [0, 1]) in the support of the 
beta distribution while others choose to exclude them (i.e., 𝑦 ∈ (0, 1)). For instance, refer to https://www .sciencedirect .com /topics /
mathematics /beta -distribution. The inflated beta distribution by [22] for modeling 0 and 1 inflations was developed around the beta 
distribution with support on (0, 1).

In Subsection 3.1, we showed that the behavior of the pdf of the UUTW distribution when it is evaluated at 𝑦 = 0; i.e., 𝑓 (0) is the 
same as when 𝑦 approaches 0; i.e., lim𝑦→0+ 𝑓 (𝑦) therefore, in this section, without compromising the validity of the pdf, we capitalize 
on the convenience that comes with specifying the support of the pdf of the UUTW distribution as 𝑦 ∈ (0, 1) instead of 𝑦 ∈ [0, 1). 
Hence, the random variable 𝑌 could be said to follow the UUTW distribution if its cdf is defined as

𝐹 (𝑦) = 1 −
1 − exp

(
−𝜆[1 − 𝑦]𝛽

)
1 − exp(−𝜆)

, 0 < 𝑦 < 1, (20)

and pdf defined as

𝑓 (𝑦) = 𝜆𝛽

1 − exp(−𝜆)
(1 − 𝑦)𝛽−1 exp

(
−𝜆[1 − 𝑦]𝛽

)
, 0 < 𝑦 < 1. (21)

From this point through to the end of this section, Equation (20) and Equation (21) would be referred to as the cdf and pdf, 
respectively of the UUTW distribution.

Suppose the random variable 𝑌 generates many 0’s and 1’s alongside other values between 0 and 1, we cannot model this sort of 
data by the proposed UUTW distribution, instead we develop a special model for it by extending the UUTW distribution in Equation 
(21). We name the latest model the 0-1 inflated UUTW (ZOIUUTW for short) distribution. The ZOIUUTW distribution is a mixture 
model whose cdf is defined by Equation (22)

𝐹ZOIUUTW(𝑦;𝜙,𝜓, 𝛽, 𝜆) = 𝜙Ber(𝑦;𝜓) + (1 −𝜙)𝐹 (𝑦;𝜆, 𝛽), (22)

and pdf defined by

𝑓ZOIUUTW(𝑦;𝜙,𝜓, 𝛽, 𝜆) =

⎧⎪⎪⎨⎪⎪⎩

𝜙(1 −𝜓); if 𝑦 = 0

(1 −𝜙)𝑓 (𝑦;𝜆, 𝛽); if 𝑦 ∈ (0,1)

𝜙𝜓 ; if 𝑦 = 1

(23)

where 𝜆 and 𝛽 are as defined before, 𝑦 ∈ [0, 1], 𝜓 ∈ [0, 1] is the proportion of degenerate values that are equal to 1, 𝜙 ∈ (0, 1) is 
the mixing parameter (i.e., the proportion of 𝑦 that are either 0 or 1), Ber(𝑦; 𝜓) denote the cdf of a Bernoulli random variable 
with parameter 𝜓 , 𝐹 (⋅) and 𝑓 (⋅) denote the cdf and pdf of the UUTW distribution in Equation (20) and Equation (21), respectively. 
Fig. 3(a)-(d) shows the plots of the pdf of the ZOIUUTW distribution in Equation (23) for different parameter combinations.

If 𝑌 follows the ZOIUUTW distribution, its 𝑘th order ordinary moment is given by

𝔼(𝑦𝑘) = 𝜙𝜓 + (1 − 𝜙)𝜇′
𝑘

where 𝜇′
𝑘

is the 𝑘th ordinary moment of the UUTW distribution in Equation (9).

Worthy of note is the fact that the pdf of the ZOIUUTW distribution in Equation (23) can alternatively be expressed as

𝑓ZOIUUTW(𝑦;𝜙,𝜓, 𝛽, 𝜆) =
[
𝜙𝜓𝑦(1 −𝜓)1−𝑦

]1{0,1}(𝑦) × [(1 −𝜙)𝑓 (𝑦;𝜆, 𝛽)]1−1{0,1}(𝑦)

=
[
𝜙1{0,1}(𝑦)(1 −𝜙)1−1{0,1}(𝑦)

]
×
[
𝜓𝑦(1 −𝜓)1−𝑦

]1{0,1}(𝑦)

×𝑓 (𝑦;𝜆, 𝛽)1−1{0,1}(𝑦), (24)
10

where 1{0,1}(𝑦) is an indicator function that takes the value of 1 if 𝑦 ∈ {0, 1} and the value of 0 if 𝑦 ∉ {0, 1}.

https://www.sciencedirect.com/topics/mathematics/beta-distribution
https://www.sciencedirect.com/topics/mathematics/beta-distribution
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Fig. 3. Some plots of the pdf of the proposed ZOIUUTW distribution for selected values of 𝜙, 𝜓 , 𝜆 and 𝛽.

6.1. The MLE for ZOIUUTW distribution

Suppose we draw the random sample 𝒚 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)′ from the ZOIUUTW distribution, the likelihood function for 𝚽 =
(𝜓, 𝜙, 𝜆, 𝛽)′ based on Equation (24) is given by

𝐿(𝚽|𝒚) = 𝑛∏
𝑖=1

𝑓ZOIUUTW(𝑦𝑖;𝜙,𝜓, 𝛽, 𝜆) =𝐿1(𝜙|𝒚) ×𝐿2(𝜓|𝒚) ×𝐿3(𝜆, 𝛽|𝒚), (25)

where

𝐿1(𝜙|𝒚) = 𝑛∏
𝑖=1

𝜙1{0,1}(𝑦𝑖)(1 − 𝜙)1−1{0,1}(𝑦𝑖) = 𝜙
∑𝑛

𝑖=1 1{0,1}(𝑦𝑖)(1 − 𝜙)𝑛−
∑𝑛

𝑖=1 1{0,1}(𝑦𝑖),

𝐿2(𝜓|𝒚) = 𝑛∏
𝑖=1

[
𝜓𝑦𝑖 (1 −𝜓)1−𝑦𝑖

]1{0,1}(𝑦𝑖) = 𝜓
∑𝑛

𝑖=1 𝑦𝑖1{0,1}(𝑦𝑖)(1 −𝜓)
∑𝑛

𝑖=1(1−𝑦𝑖)1{0,1}(𝑦𝑖)

= 𝜓
∑𝑛

𝑖=1 1{1}(𝑦𝑖)(1 −𝜓)[
∑𝑛

𝑖=1 1{0,1}(𝑦𝑖)−
∑𝑛

𝑖=1 1{1}(𝑦𝑖)] and

𝐿3(𝜆, 𝛽|𝒚) = ∏
𝑖=1

𝑦𝑖∈(0,1)

𝑓 (𝑦𝑖;𝛽, 𝜆) =
∏
𝑖=1

𝑦𝑖∈(0,1)

𝜆𝛽

1 − exp(−𝜆)
(1 − 𝑦𝑖)𝛽−1 exp(−𝜆[1 − 𝑦𝑖]𝛽 ).

The log-likelihood function can be expressed as the natural logarithm of Equation (25) as in Equation (26):

ℒ(𝚽|𝒚) = ln
𝑛∏

𝑖=1
𝑓ZOIUUTW(𝑦𝑖;𝜙,𝜓, 𝛽, 𝜆) =ℒ1(𝜙|𝒚) +ℒ2(𝜓|𝒚) +ℒ3(𝜆, 𝛽|𝒚), (26)

where

ℒ1(𝜙|𝒚) = ln(𝜙)
𝑛∑

𝑖=1
1{0,1}(𝑦𝑖) + ln(1 − 𝜙)

[
𝑛−

𝑛∑
𝑖=1

1{0,1}(𝑦𝑖)

]
,

ℒ2(𝜓|𝒚) = ln(𝜓)
𝑛∑

𝑖=1
1{1}(𝑦𝑖) + ln(1 −𝜓)

[
𝑛∑

𝑖=1
1{0,1}(𝑦𝑖) −

𝑛∑
𝑖=1

1{1}(𝑦𝑖)

]
and

ℒ3(𝜆, 𝛽|𝒚) = ∑ ln(𝜆𝛽) −
∑

ln[1 − exp(−𝜆)] + (𝛽 − 1)
∑

ln(1 − 𝑦𝑖) − 𝜆
∑

(1 − 𝑦𝑖)𝛽 .
11

𝑖=1
𝑦𝑖∈(0,1)

𝑖=1
𝑦𝑖∈(0,1)

𝑖=1
𝑦𝑖∈(0,1)

𝑖=1
𝑦𝑖∈(0,1)
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We define the score function as 𝐽 (Φ) = [𝐽𝜙(𝜙), 𝐽𝜓 (𝜓), 𝐽𝜆(𝜆), 𝐽𝛽 (𝛽)], where

𝐽𝜙(𝜙) =
𝜕ℒ1(𝜙|𝒚)

𝜕𝜙
= 1

𝜙

𝑛∑
𝑖=1

1{0,1}(𝑦𝑖) −
1

1 −𝜙

[
𝑛−

𝑛∑
𝑖=1

1{0,1}(𝑦𝑖)

]
,

𝐽𝜓 (𝜓) =
𝜕ℒ1(𝜓|𝒚)

𝜕𝜓
= 1

𝜓

𝑛∑
𝑖=1

1{1}(𝑦𝑖) −
1

1 −𝜓

[
𝑛∑

𝑖=1
1{0,1}(𝑦𝑖) −

𝑛∑
𝑖=1

1{1}(𝑦𝑖)

]
,

𝐽𝜆(𝜆) =
𝜕ℒ1(𝜆|𝒚)

𝜕𝜆
=

𝑛−
∑𝑛

𝑖=1 1{0,1}(𝑦𝑖)
𝜆

−
𝑛−
∑𝑛

𝑖=1 1{0,1}(𝑦𝑖)
exp(𝜆) − 1

−
∑
𝑖=1

𝑦𝑖∈(0,1)

(1 − 𝑦𝑖)𝛽 and

𝐽𝛽 (𝛽) =
𝜕ℒ1(𝛽|𝒚)

𝜕𝛽
=

𝑛−
∑𝑛

𝑖=1 1{0,1}(𝑦𝑖)
𝛽

+
∑
𝑖=1

𝑦𝑖∈(0,1)

ln(1 − 𝑦𝑖) − 𝜆
∑
𝑖=1

𝑦𝑖∈(0,1)

(1 − 𝑦𝑖)𝛽 ln(1 − 𝑦𝑖).

Notice that 𝐽𝜙(𝜙) and 𝐽𝜓 (𝜓) involve a single parameter each 𝜙 and 𝜓 , respectively. Therefore, the maximum likelihood estimators 
of 𝜙 and 𝜓 can be obtained by setting 𝐽𝜙(𝜙) to 0 and solving for 𝜙 and analogously setting 𝐽𝜓 (𝜓) to 0 and solving for 𝜓 hence, 

the two estimators are given by �̂� = 1
𝑛

𝑛∑
𝑖=1

1{0,1}(𝑦𝑖) and �̂� =
∑𝑛

𝑖=1 1{1}(𝑦𝑖)∑𝑛
𝑖=1 1{0,1}(𝑦𝑖)

, respectively. Each of the remaining two equations 𝐽𝜆(𝜆)

and 𝐽𝛽 (𝛽) involves two parameters; specifically, 𝜆 and 𝛽 thus, to obtain the maximum likelihood estimators �̂� and 𝛽, we set both 
equations to 0 and solve them simultaneously through the Newton-Raphson’s method.

The Fisher information matrix for the parameters of the ZOIUUTW distribution can be specified as

�̂�(Φ) = −𝔼

⎛⎜⎜⎜⎜⎝
�̂�𝜙𝜙 0 0 0
0 �̂�𝜓𝜓 0 0
0 0 �̂�𝜆𝜆 �̂�𝜆𝛽

0 0 �̂�𝜆𝛽 �̂�𝛽𝛽

⎞⎟⎟⎟⎟⎠
where �̂�𝜙𝜙 = − 𝑛

𝜙(1 − 𝜙)
, �̂�𝜓𝜓 = − 𝑛𝜙

𝜓(1 −𝜓)
, �̂�𝜆𝜆 = −𝑛(1 − 𝜙)

𝜆2
+ 𝑛(1 −𝜙)

1 − exp(−𝜆)
, �̂�𝛽𝛽 = − 𝑛(1−𝜙)

𝛽2
− 𝜆 
∑
𝑖=1

𝑦𝑖∈(0,1)

(1 − 𝑦𝑖)𝛽 [ln(1 − 𝑦𝑖)]2 and �̂�𝜆𝛽 =

− 
∑
𝑖=1

𝑦𝑖∈(0,1)

(1 − 𝑦𝑖)𝛽 ln(1 − 𝑦𝑖).

Confidence intervals for the parameters �̂� can be constructed as before. For large sample size, �̂� is asymptotically multivariate 
normal distributed in particular, �̂� ∼ 𝑁4(

̄̂𝚽, �̂�(𝚽)−1), where �̂�(𝚽) is the Hessian matrix. The approximate 100(1 − 𝛾)% confidence 
interval for 𝜙, 𝜓 , 𝜆 and 𝛽 are given by �̂�±𝑍𝛾

2

√
SE𝜙, �̂� ±𝑍𝛾

2

√
SE𝜓 , �̂�±𝑍𝛾

2

√
SE𝜆 and 𝛽 ±𝑍𝛾

2

√
SE𝛽 respectively, where 𝑍𝛾

2
is the 𝛾th 

percentile of the standard normal distribution.

We would like to conclude this section by pointing out that, with slight modification to Equation (24), that it can be amenable for 
cases of either only 0-inflation (i.e., 𝑦 ∈ [0, 1)) or only 1-inflation (i.e., 𝑦 ∈ (0, 1]) and the corresponding inferential treatments remain 
more or less the same as in this section. Therefore, we omit such analogous developments to avoid an unnecessarily lengthy article.

6.2. Simulation experiment for the MLE of the parameters of the ZOIUUTW distribution

In this section, we adopt analogous procedure to the simulation exercise in Section 4.1. The objective is to carryout a numerical 
experiment to assess the maximum likelihood estimators of the parameters (𝛽, 𝜆, 𝜓 and 𝜙) of the ZOIUUTW distribution. We use the 
same sample sizes as in Section 4.1 but, we fix different parameter values as shown in Table 9. The algorithm for generating random 
numbers from the ZOIUUTW distribution is detailed below.

Algorithm 1: An algorithm for generating data from ZOIUUTW distribution.

Initialize: 𝑛, 𝜙, 𝜓, 𝛽, 𝜆;

𝑛1 ← 𝑛 × 𝜙;

𝑛2 ← 𝑛 − 𝑛1 ;

𝑦 ← 𝗋𝖻𝖾𝗋𝗇(𝑛1 , 𝜓) ; /* Sample 𝑛1 from Bernoulli (𝜓) */

𝑄 ← 𝗋𝗎𝗇𝗂𝖿(𝑛2); /* Sample 𝑛2 from Uniform (0, 1) */

𝑧 ← 1 − [−1∕𝜆 × log(1 − (1 −𝑄) × [1 − exp(−𝜆)])](1∕𝛽) ; /* UUTW draws */

Data← 𝑐(𝑦, 𝑧); /* 𝑛 realizations from ZOIUUTW */

We can see from Table 9, that the MLE estimators for 𝛽, 𝜆, 𝜓 and 𝜙 are efficient since the estimated values are equivalent to the 
actual values and the estimators are consistent because their corresponding SEs, biases, and MSEs decrease with an increase in the 
12

sample size.
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7. Practical data examples

Here, we demonstrate the usefulness of both the UUTW and ZOIUUTW distributions. In Section 7.1, we give two real-life examples 
for the UUTW distribution and in Section 7.2, we give one real-life example for the ZOIUUTW distribution.

7.1. Examples based on the UUTW distribution

In this section, we give some practical examples of possible applications of the proposed model with two different data-sets and 
in each case, we compare the goodness-of-fit of the proposed model with those of the seven well-known models whose pdfs are given 
below. The first data-set represents the household food expenditure data for 38 households ([39], Table 15.4); the data has three 
variables, the first one is the response variable representing the proportion of household income that was spent only on food (i.e., 
food divided by income) 𝑌 and the remaining two are the explanatory variables corresponding to the household income (previously 
mentioned) 𝑋1 and the number of individuals living in the household (household size) 𝑋2. The descriptive plots of the household 
food expenditure data are shown in Fig. 4 and from there, it could be seen from the density plots that the pdf of the proportion of 
household income spent on food is not only unimodal but right skewed, while the values of the Pearson’s correlation coefficients 
and the scatter plots, indicate statistically significant negative and positive correlations between the proportion of household income 
spent on food and the household income and household size, respectively; whereas, no statistically significant correlation exists 
between household income and household size. The data 𝑌 is right-skewed with skewness statistic of 0.9427343 and leptokurtic with 
kurtosis statistic of 3.859457; also, the min(𝑌 ) = 0.1075258 and max(𝑌 ) = 0.5612430 suggesting that 𝑌 can be modeled by the UUTW 
distribution. The second data is on the maximum flood levels of a certain river in Pennsylvania in millions of cubic feet per second 
(mlcf/s) [40]. Let 𝑌 denote the maximum flood levels data, 𝑌 is right-skewed with skewness statistic of 1.067324 and leptokurtic 
with kurtosis statistic of 3.598898; also the min(𝑌 ) = 0.265 and max(𝑌 ) = 0.740 thus, implying that 𝑌 can be modeled by the UUTW 
distribution.

To illustrate the flexibility of the UUTW distribution, we compare its fitting capability for modeling the household food expendi-

ture data and the maximum flood level data with the fitting capabilities of the following competing unit distributions.

1. 1-parameter Topp-Leone distribution [4]

𝑓 (𝑦) = 2𝛽(1 − 𝑦)[𝑦(2 − 𝑦)]𝛽−1; 𝛽 > 0.

2. unit Rayleigh distribution [11]

𝑓 (𝑦) = −2𝛽
𝑦

log(𝑦) exp(−𝛽[log(𝑦)]2); 𝛽 > 0.

3. 2-parameter Topp-Leone distribution [21]

𝑓 (𝑦) = 𝛽[𝑦𝜆(2 − 𝑦𝜆)]𝛽−1[𝜆𝑦𝜆−1(2 − 𝑦𝜆) − 𝜆𝑦2𝜆−1]; 𝜆 > 0, 𝛽 > 0.

4. log-WE distribution [14]

𝑓 (𝑦) = 𝛽 + 1
𝛽

𝜆𝑦𝜆−1(1 − 𝑦𝛽𝜆); 𝜆 > 0, 𝛽 > 0.

5. Kumaraswamy distribution [2]

𝑓 (𝑦) = 𝜆𝛽𝑦𝜆−1(1 − 𝑦𝜆)𝛽−1; 𝜆 > 0, 𝛽 > 0.

6. beta distribution

𝑓 (𝑦) = Γ(𝜆+ 𝛽)
Γ(𝜆)Γ(𝛽)

𝑦𝜆−1(1 − 𝑦)𝛽−1; 𝜆 > 0, 𝛽 > 0.

7. unit ZTPPF distribution [25]

𝑓 (𝑦) = 𝜆𝛽𝑦𝛽−1

exp(𝜆) − 1
; 𝜆 > 0, 𝛽 > 0.

All the seven competing distributions take values between 0 and 1. To check whether or not each of the distributions fit any of the 
data well, we use the Kolmogorov–Smirnov test with test statistic defined by

KS = max
𝑦∈Data

|||𝐹𝑛(𝑦) − 𝐹 (𝑦)||| .
Noting that large KS 𝑝-value (>0.05) implies that the fitted distribution provides reasonably good fit for the data. To discriminate 
13

among the fitted distributions, we use the following information criteria statistics.
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Fig. 4. Descriptive plots for the household food expenditure data.

Table 2

Fit results for different distributions for the data on the proportion of 
household income spent on food.

Parameter Estimate
[SE]

K-S test

Distribution(s) 𝛽 �̂� Statistic 𝑝-value

UUTW distribution 9.0435
[1.1675]

13.3416
[4.3577]

0.0964 0.8389

beta 6.0716
[1.3586]

14.8221
[3.3988]

0.1101 0.7056

Kumaraswamy 26.9552
[10.8244]

2.9541
[0.3693]

0.6945 2.2 × 10−16

log-WE 0.1885
[0.5556]

1.4149
[0.3572]

0.3464 0.0001

1-para Topp-Leone 1.0000
[0.1622]

− 0.2910 0.0024

unit Rayleigh 0.5567
[0.0903]

− 0.3171 0.0007

2-para Topp-Leone 0.4163
[0.5607]

2.2363
[2.5575]

0.3774 2.2 × 10−5

unit ZTPPF 3.0129
[0.3537]

29.8293
[11.2662]

0.1184 0.6193

1. Akaike information criterion (AIC) due to [41] defined by

AIC = −2ℒ̂ + 2𝑘,

2. Bayes information criterion (BIC) due to [42] defined by

BIC = −2ℒ̂ + 𝑘 log(𝑛),

3. Akaike information criterion with a correction (AICc) due to [43] defined by

AICc = AIC+ 2𝑘(𝑘+ 1)
𝑛− 𝑘− 1

,

where ℒ̂ and 𝑘 denote the maximized log likelihood value and the number of parameters, respectively. Any distribution with the 
smallest AIC, BIC and AICc values is considered to be the better model.

We obtained the Hessian matrices for the fitted UUTW distribution for the two data-sets as

Household income Maximum flood levels(
2.9734047 −0.6913883

)|| (
4.23034890 −0.43842038

)||

14

−0.6913883 0.2134250 |||UUTW distribution
−0.43842038 0.05497373 |||UUTW distribution



Heliyon 9 (2023) e22260I.E. Okorie, E. Afuecheta and H.S. Bakouch

Table 3

Model fit discrimination for the data on the proportion of household income 
spent on food.

Information Criteria

Distribution(s) −ℒ̂ AIC BIC AICc

UUTW distribution -36.1400 -68.2801 -65.0049 -67.9372

beta -35.3464 -66.6929 -63.4177 -66.3500

Kumaraswamy -33.4891 -62.9782 -59.7030 -62.6353

log-WE -14.5450 -25.0899 -21.8147 -24.7470

1-para Topp-Leone -12.9134 -23.8268 -22.1892 -23.7156

unit Rayleigh -23.7528 -45.5056 -43.8680 -45.3945

2-para Topp-Leone -9.5086 -15.0172 -11.7421 -14.6744

unit-ZTPPF -33.7835 -63.5670 -60.2918 -63.2242

Table 4

Fit results for different distributions for the maximum flood levels data.

Parameter Estimate
[SE]

K-S test

Distribution(s) 𝛽 �̂� Statistic 𝑝-value

UUTW distribution 6.2224
[1.1673]

19.0738
[10.2398]

0.1636 0.6582

beta 6.7587
[2.0951]

9.1142
[2.8526]

0.1988 0.4083

Kumaraswamy 11.7919
[5.3617]

3.3634
[0.6034]

0.4841 0.0002

log-WE 0.0063
[0.5770]

2.1997
[0.7142]

0.3108 0.0420

1-para Topp-Leone 1.0000
[0.2236]

− 0.4598 0.0004

unit Rayleigh 1.0000
[0.2236]

− 0.2419 0.1925

2-para Topp-Leone 1434.1760
[2219.3910]

2.8 × 10−2
[0.0223]

0.2810 0.0850

unit ZTPPF 3.5260
[0.5648]

14.4518
[5.9650]

0.1987 0.4084

Table 5

Model fit discrimination for the maximum flood levels data.

Information Criteria

Distribution(s) −ℒ̂ AIC BIC AICc

UUTW distribution -15.0725 -26.1450 -21.9233 -25.9381

beta -14.0622 -24.1245 -19.9027 -23.9176

Kumaraswamy -12.8662 -21.7324 -17.5106 -21.5255

log-WE exp -6.6692 -9.3383 -5.1166 -9.1314

1-para Topp-Leone -2.2864 -2.5728 -0.4619 -2.5050

unit Rayleigh -10.9249 -19.8497 -18.8540 -19.6275

2-para Topp-Leone -10.9113 -17.8226 -13.6008 -17.6157

unit-ZTPPF -13.2640 -22.5280 -20.5366 -21.8221

while the Hessian matrix for the UUTW regression model with the intercept for the income data was obtained as

⎛⎜⎜⎜⎜⎝
2.261381 × 102 1.339075 × 104 7.795482 × 102 1.276036 × 10−1
1.339075 × 104 8.819196 × 105 4.588221 × 104 8.78320609
7.795482 × 102 4.588221 × 104 3.317699 × 103 8.656662 × 10−1
1.276036 × 10−1 8.78320609 8.656662 × 10−1 0.02133125

⎞⎟⎟⎟⎟⎠
||||||||||Regression with intercept

,

and the Hessian matrix for the UUTW regression model without the intercept for the income data was obtained as

⎛⎜⎜⎝
8.033747 × 105 4.196223 × 104 7.81888694
4.196223 × 104 3.044179 × 103 0.71319795
7.81888694 0.71319795 0.03334324

⎞⎟⎟⎠
|||||||Regression without intercept

.

The inverse of the Hessian matrices results to the corresponding variance-covariance matrices. The square root of the diagonal 
15

elements of each of the variance-covariance matrix gives the standard errors of the parameters in Tables 2, 4, 6 and 7.
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Table 6

Fitted regression model with the intercept and the residual analysis for the household expenditure on 
food data.

−ℒ 𝜃0 𝜃1 𝜃2 𝜆

Estimates -44.6518 -0.6749 -0.0110 0.1039 20.1741

SE − 0.2552 0.0034 0.0401 6.9090|𝑧|a − 2.6446 3.2353 2.5910 2.9200

Pr(> |𝑧|) − 0.0082 0.0012 0.0096 0.0035

Normality test for the estimated regression residuals �̂�𝑖

Test statistic df 𝑝-value

Jarque Bera 5.0373 2 0.5214

Pearson chi-square 4.1579 − 0.6553

Shapiro-Francia 0.9415 − 0.0467

Anderson-Darling 0.7524 − 0.0459

Cramer-von Mises 0.1341 − 0.0367

Lilliefors (Kolmogorov-Smirnov) 0.1455 − 0.0412

a 𝑧 is equal to the model coefficient divided by the corresponding standard error (SE); it is called 
the 𝑧-score and it follows the standard normal distribution.

Table 7

Fitted regression model without the intercept and the residual analysis for the household expenditure 
on food data.

−ℒ 𝜃1 𝜃2 𝜆

Estimates -41.3455 -0.0182 0.0466 16.8988

SE − 0.0021 0.0343 5.4917|𝑧|a − 8.6667 1.3586 3.0772

Pr(> |𝑧|) − 0.0000 0.1743 0.0021

Normality test for the estimated regression residuals �̂�𝑖

Test statistic df 𝑝-value

Jarque Bera 1.2645 2 0.5314

Pearson chi-square 1.7895 − 0.9380

Shapiro-Francia 0.9830 − 0.7304

Anderson-Darling 0.2156 − 0.8349

Cramer-von Mises 0.0302 − 0.8388

Lilliefors (Kolmogorov-Smirnov) 0.0638 − 0.9602

a 𝑧 is equal to the model coefficient divided by the corresponding standard error (SE); it is called 
the 𝑧-score and it follows the standard normal distribution.

Fig. 5. (a) Plot of the estimated pdf of the UUTW distribution superimposed on the empirical density of the data on the maximum flood level. (b) P-P plot of the fitted 
16

UUTW distribution for the data on the maximum flood level.
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Fig. 6. (a) Plot of the estimated pdf of the UUTW distribution superimposed on the empirical density of the data on the proportion of income spent on food. (b) P-P 
plot of the fitted UUTW distribution for the data on the proportion of income spent on food.

Fig. 7. Cox-Snell residual plots: (a) for the regression model with the intercept and (c) for the regression model without the intercept. The randomized quantile 
residual plots: (b) for the regression model with the intercept and (d) for the regression model without the intercept.

7.2. Example based on the ZOIUUTW distribution

In this section, we use the CD34+ data which involve 239 patients at the Edmonton Hematopoietic Stem Cell Lab in Cross Cancer 
Institute - Alberta Health Services from 2003 to 2008. The data can be obtained from the 𝖱 software package “𝗌𝗂𝗆𝗉𝗅𝖾𝗑𝗋𝖾𝗀” [44]. 
The data consists of five variables in columns but, we only use the variable in the fourth column corresponding to the adjusted age 
“𝖺𝗀𝖾𝖺𝖽𝗃” of the patients who underwent chemotherapy in the cancer institute. In order to obtain a set of data on [0, 1], we divided 
the adjusted age data by the maximum adjusted age value (i.e., 31) and henceforth, we shall simply refer to this scaled data as “the 
age data”. Out of the 239 observations in the age data, 48 of them are either 0 or 1. The frequencies of 0’s and 1’s in the age data 
are 46 and 2, respectively. Therefore, the data is considered to be 0 and 1 inflated hence, can be suitably modeled by the ZOIUUTW 
distribution. The empirical density plot of the data is depicted in Fig. 5(a) and the data is left-skewed with skewness statistic of 
−0.1600658 and leptokurtic with kurtosis statistic of 1.715061. We compare the fit of the ZOIUUTW distribution to the fits of the zero 
17

and one inflated beta (ZOIbeta) distribution [22] and the zero and one inflated Kumaraswamy (ZOIKum) distribution [23].
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Table 8

Fit results for different 0 & 1 inflated distributions for the 0 and 1 inflated age data.

Parameter Estimate
[SE]

Log-likelihood & Information Criteria

Distribution(s) 𝛽 �̂� �̂� �̂� −ℒ AIC BIC AICc

ZOIUUTW 1.7372
[0.1340]

2.6693
[0.4425]

0.0417
[2.8×10−2]

0.2008
[2.5×10−2]

111.4232 230.8465 244.7523 231.0174

ZOIbeta 1.7824
[1.7×10−1]

1.5348
[1.4×10−1]

0.0417
[2.8×10−2]

0.2008
[2.5×10−2]

113.2475 234.4951 248.4009 234.6660

ZOIKum 1.7280
[0.1484]

1.5908
[0.1669]

0.0416
[2.8×10−2]

0.2009
[2.5×10−2]

112.8925 233.7850 247.6908 233.9559

Fig. 8. (a) Empirical density plot of the age data. (b) Estimated cdf plot of the ZOIUUTW distribution superimposed on the empirical cdf plot of the age data.

The pdf of the ZOIbeta distribution is given by Equation (27)

𝑓ZOIbeta(𝑦;𝜙,𝜓, 𝛽, 𝜆) =

⎧⎪⎪⎨⎪⎪⎩

𝜙(1 −𝜓); if 𝑦 = 0

(1 −𝜙)𝑓 (𝑦;𝜆, 𝛽); if 𝑦 ∈ (0,1)

𝜙𝜓 ; if 𝑦 = 1

(27)

where 𝑓 (𝑦; 𝜆, 𝛽) denote the pdf of the beta distribution which is defined as 𝑦
𝜆(1 − 𝑦)𝛽−1

𝐵(𝜆, 𝛽)
; 𝜆, 𝛽 > 0 and 𝑦 ∈ (0, 1) where 𝐵(⋅, ⋅) denote the 

beta function defined by Γ(𝜆)Γ(𝛽)
Γ(𝜆+ 𝛽)

and Γ(⋅) denote the gamma function defined by Γ(𝜈) =
∞

∫
0

𝑥𝜈−1 exp(−𝑥)𝑑𝑥.

The pdf of the ZOIKum distribution can be specified as in Equation (28)

𝑓ZOIKum(𝑦;𝜙,𝜓, 𝛽, 𝜆) =

⎧⎪⎪⎨⎪⎪⎩

𝜙(1 −𝜓); if 𝑦 = 0

(1 − 𝜙)𝑓 (𝑦;𝜆, 𝛽); if 𝑦 ∈ (0,1)

𝜙𝜓 ; if 𝑦 = 1

(28)

where 𝑓 (𝑦; 𝜆, 𝛽) denote the pdf of the Kumaraswamy distribution which is defined as 𝜆𝛽𝑦𝜆−1(1 − 𝑦𝜆)𝛽−1; 𝜆, 𝛽 > 0 and 𝑦 ∈ (0, 1).
We chose to compare the fitting capability of the ZOIUUTW distribution with only the fitting capabilities of the ZOIbeta distri-

bution and ZOIKum distribution because of the long history, popularity and extensive theoretical and application developments of 
their respective baseline distributions, i.e., the beta distribution and the Kumaraswamy distribution.

The Hessian matrix for the fitted ZOIUUTW distribution is given below and computing the inverse of the matrix would result to 
the variance-covariance matrix; where, the square root of the diagonal elements of the corresponding variance-covariance matrix 
yields the standard errors of the parameters in Table 8.

⎛⎜⎜⎜⎜⎝
1.256420 × 102 −2.839572 × 101 3.552714 × 10−9 0.000000 × 100
−2.839572 × 101 11.52549 0.000000 × 100 0.000000 × 100
3.552714 × 10−9 0.00000 × 100 1.201843 × 103 −3.552714 × 10−9
0.000000 × 100 0.00000 × 100 −3.552714 × 10−9 1.489207 × 103

⎞⎟⎟⎟⎟⎠
||||||||| .
18

|ZOIUUTW distribution
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Bias ̄̂𝜙
MSE ̄̂𝛽

MSE ̄̂𝜆
MSE ̄̂𝜓 MSE ̄̂𝜙

0.0000 0.7217 1.1516 0.0054 0.0000

0.0000 0.5003 0.8191 0.0042 0.0000

0.0000 0.3355 0.5590 0.0028 0.0000

0.0000 0.2521 0.4329 0.0021 0.0000

0.0000 0.2064 0.3521 0.0017 0.0000

0.0000 0.1680 0.2944 0.0014 0.0000

0.0000 0.5453 1.5852 0.0070 0.0000

0.0000 0.4021 1.0814 0.0052 0.0000

0.0000 0.2564 0.6572 0.0035 0.0000

0.0000 0.1896 0.4705 0.0026 0.0000

0.0000 0.1523 0.3769 0.0021 0.0000

0.0000 0.1244 0.3123 0.0017 0.0000

−3 × 10−4 0.0117 0.3725 0.0060 0.0000

−2 × 10−4 0.0088 0.2930 0.0046 0.0000

0.0000 0.0058 0.1989 0.0030 0.0000

0.0000 0.0043 0.1556 0.0023 0.0000

0.0000 0.0034 0.1224 0.0018 0.0000

0.0000 0.0027 0.1009 0.0015 0.0000

0.0067 0.0735 0.7725 0.0066 0.0000

0.0000 0.0544 0.5720 0.0050 0.0000

0.0000 0.0343 0.3874 0.0033 0.0000

0.0000 0.0252 0.3016 0.0025 0.0000

0.0000 0.0205 0.2419 0.0020 0.0000

0.0000 0.0171 0.2043 0.0017 0.0000
Table 9

Simulation result for the 0 & 1 inflated unit upper truncated Weibull distribution.

Actual values: 𝛽 = 3.0000, 𝜆 = 1.0000, 𝜓 = 0.5000 and 𝜙 = 0.6000

𝑛 ̄̂𝛽 ̄̂𝜆 ̄̂𝜓 ̄̂𝜙 SE ̄̂𝛽
SE ̄̂𝜆

SE ̄̂𝜓 SE ̄̂𝜙
Bias ̄̂𝛽

Bias ̄̂𝜆
Bias ̄̂𝜓

75 3.2609 1.2995 0.5001 0.6000 0.8085 1.0305 0.0737 0.0012 0.2609 0.2995 1 × 10−4

100 3.1776 1.1964 0.5002 0.6000 0.6847 0.8835 0.0646 0.0011 0.1776 0.1964 2 × 10−4

150 3.1165 1.1199 0.4997 0.6000 0.5674 0.7380 0.0531 0.0007 0.1165 0.1199 −3 × 10−4

200 3.0886 1.0951 0.4999 0.6000 0.4942 0.6511 0.0455 0.0006 0.0886 0.0951 −1 × 10−4

250 3.0642 1.0672 0.4996 0.6000 0.4497 0.5896 0.0412 0.0005 0.0642 0.0672 −4 × 10−4

300 3.0488 1.0500 0.5001 0.6000 0.4070 0.5403 0.0371 0.0004 0.0488 0.0500 1 × 10−4

Actual values: 𝛽 = 5.0000, 𝜆 = 4.0000, 𝜓 = 0.7000 and 𝜙 = 0.4000

75 5.1370 4.2856 0.6998 0.4000 0.7257 1.2263 0.0837 1 × 10−4 0.1370 0.2856 −2 × 10−4

100 5.0932 4.1963 0.7007 0.4000 0.6272 1.0213 0.0723 0.0000 0.0932 0.1963 7 × 10−4

150 5.0609 4.1250 0.6999 0.4000 0.5027 0.8010 0.0591 0.0000 0.0609 0.1250 −1 × 10−4

200 5.0450 4.0855 0.7000 0.4000 0.4332 0.6806 0.0514 0.0000 0.0450 0.0855 0.0000

250 5.0367 4.0793 0.7003 0.4000 0.3886 0.6088 0.0460 1 × 10−4 0.0367 0.0793 3 × 10−4

300 5.0368 4.0726 0.7003 0.4000 0.3509 0.5541 0.0416 1 × 10−4 0.0368 0.0726 3 × 10−4

Actual values: 𝛽 = 0.5000, 𝜆 = 0.1000, 𝜓 = 0.9000 and 𝜙 = 0.2000

75 0.5458 0.4035 0.9012 0.1997 0.0981 0.5295 0.0772 0.0029 0.0458 0.3035 0.0012

100 0.5407 0.3714 0.8998 0.1998 0.0846 0.4683 0.0680 0.0021 0.0407 0.2714 −0.0002

150 0.5320 0.3156 0.9000 0.2000 0.0690 0.3905 0.0549 0.0012 0.0320 0.2156 0.0000

200 0.5272 0.2904 0.9005 0.2000 0.0597 0.3456 0.0476 0.0009 0.0272 0.1904 0.0005

250 0.5226 0.2575 0.9003 0.2000 0.0535 0.3124 0.0419 0.0007 0.0226 0.1575 0.0003

300 0.5196 0.2404 0.9007 0.2000 0.0484 0.2850 0.0384 0.0007 0.0196 0.1404 0.0007

Actual values: 𝛽 = 1.0000, 𝜆 = 0.5000, 𝜓 = 0.5000 and 𝜙 = 0.5000

75 1.0985 0.8189 0.4982 0.5067 0.2525 0.8190 0.0812 0.0016 0.0985 0.3189 −0.0018
100 1.0797 0.7481 0.4988 0.5000 0.2192 0.7145 0.0704 0.0014 0.0797 0.2481 −0.0012
150 1.0522 0.6692 0.5004 0.5000 0.1777 0.5990 0.0573 0.0012 0.0522 0.1692 0.0004

200 1.0384 0.6239 0.5003 0.5000 0.1541 0.5350 0.0504 0.0011 0.0384 0.1239 0.0003

250 1.0306 0.6006 0.4999 0.5000 0.1398 0.4814 0.0452 0.0008 0.0306 0.1006 −0.0001
300 1.0242 0.5695 0.5002 0.5000 0.1286 0.4467 0.0411 0.0008 0.0242 0.0695 0.0002
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8. Discussion of results

From Table 2, it could be seen that only the UUTW distribution, followed by the beta distribution and the unit ZTPPF distribution 
provides good fit for the data on the proportion of household income spent on food. From Table 4 we have that the UUTW distribution, 
beta distribution, unit ZTPPF distribution and the unit Rayleigh distribution provide decent fits for the maximum flood level data; 
while in Tables 2 and 4, we observe that some of the competing models (based on their 𝑝-values) do not appear to provide adequate 
fit for the data-sets, but we examine them for the purpose of comparison and to demonstrate the worth of the suggested model in 
contrast to them. Moreover, the results in Table 3 and Table 5 indicate that the UUTW distribution with the smallest AIC, BIC and 
AICc values fits the two data-sets better than the rest of the distributions and the density plots and P-P plots in Fig. 5 and Fig. 6 also 
indicate that the UUTW distribution captured the two data-sets really well.

After demonstrating the suitability of the UUTW distribution and its better fitting performance viz-a-viz the beta distribution 
and the rest of the other competing distributions with respect to modeling of the response variable - the proportion of household 
income spent on food, we carried-out a regression analysis to investigate the impact of the household income and household size 
on the proportion of household income spent on food. First, we fitted two regression models, one with an intercept in Table 6

and another one without the intercept in Table 7. It could be seen from Table 6 that all the regression coefficients are statistically 
significant at 0.05 level whereas, after dropping the intercept in Table 7 we found that the regression coefficient for the number 
of individuals in the household became non-statistically significant at 0.05 level but, this appears to be a clear departure from the 
obvious. The residual analysis for the two regression models in Table 6 and Table 7 as well as the Cox-Snell residual plots and 
the randomized quantile residual plots in Fig. 7(a)-(d) did not indicate any model fit inadequacy for the fitted regression models; 
however, to decide which one between the model in Table 6 and Table 7 describes the data better enough, we use the likelihood 
ratio test. The likelihood ratio test allows us to segregate among two hierarchically nested models. The model in Table 6 reduces 
to the one in Table 7 when 𝜃0 = 0 thus, using the likelihood ratio test, we tested 𝐻0 ∶ 𝜃0 = 0 against 𝐻1 ∶ 𝜃0 ≠ 0. For this test, we 
got a 𝑝-value of 𝑃𝑟(𝜒2

1 > 2[44.6518 − 41.3455]) = 0.010, where 𝜒2
1 denotes a chi-square random variable with 1 degree of freedom. 

Therefore, we have enough evidence at 0.05 level of significance to reject 𝐻0 and we must reject that 𝜃0 = 0. Hence, the regression 
model without the intercept in Table 7 is not significantly better than the one with the intercept in Table 6.

Since we have selected the full model in Table 6, based on Section 5, the results therein can be expressed as the following 
regression equation,

log
(

𝜖𝑖
1 − 𝜖𝑖

)
= −0.6749 − 0.0110Household income𝑖 + 0.1039Household size𝑖. (29)

Thus, the interpretation of Equation (29) is that, the higher the household income the lower the proportion of income spent on food 
and this result is consistent with the famous Engel’s Law which states that “the proportion of household income spent on food declines as 
the household income increases”; however, the more the number of individuals in the household increases, the more the proportion of 
income spent on food increases.

The ZOIUUTW distribution was fitted to the age data alongside with the ZOIbeta distribution and the ZOIKum distribution as 
competitors. The fit results of the models are presented in Table 8 and from there, we could observe that the ZOIUUTW distribution 
gave the smallest AIC, BIC and AICc values compare to the ones produced by the competing distributions and the plot of the estimated 
cdf of the ZOIUUTW distribution superimposed on the empirical cdf plot in Fig. 8(b) indicates by their mimicking patterns that the 
ZOIUUTW distribution provides a good fit for the age data. Therefore, for this data, the ZOIUUTW distribution provides a better fit 
than both the ZOIbeta distribution and the ZOIKum distribution.

9. Concluding remarks

In this paper, we introduced and studied a unit upper truncated Weibull (UUTW) distribution with the inflated variant, where the 
inflation occurs at both 0 and 1. Aside from the pdf and cdf, other important mathematical properties of the proposed distribution 
were derived, such as the reliability function, hazard rate function (J-shaped), moments, quantile function, inequality measures. 
Statistical inferences on the parameters of the proposed unit distribution have been dealt with via the method of maximum likeli-

hood estimation. Three real-data applications are used to demonstrate the effectiveness of the proposed model. The first two real-life 
examples are related to the field of economics and hydrology which involve data on the proportion of household income spent on 
food and the maximum flood level data, respectively, the UUTW model provides better results than the existing one/two-parameter 
Topp-Leone, unit Rayleigh, log-weighted exponential, Kumaraswamy, beta and the unit zero-truncated Poisson power function dis-

tributions. Then, the flexibility of the inflated version of the proposed model is illustrated using the CD34+ data, which involve 
239 patients at the Edmonton Hematopoietic Stem Cell Lab in Cross Cancer Institute-Alberta Health Services from 2003 to 2008. 
Furthermore, we developed a regression model based on the UUTW distribution. As an extended development of the aforementioned 
application of the UUTW distribution to the univariate case of the proportion of household income spent on food, we demonstrate 
that given the household income and the household size, the UUTW regression model can adequately predict the proportion of 
household income spent on food.
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