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Abstract: Sugar and organic acids are important factors determining pitaya fruit quality. However,
changes in sugars and acids, and expressions of metabolism-associated genes during fruit maturation
of yellow-peel pitayas are not well-documented. In this study, metabolic and expression analyses
in pulps of different fruit developmental stages of ‘Wucihuanglong’ (‘WCHL’, Hylocereus undatus)
and ‘Youcihuanglong’ pitaya (‘YCHL’, Hylocereus megalanthus) were used to explore the sugar and
organic acid metabolic process. Total phenols and flavonoids were mainly accumulated at S1 in pitaya
pulps. Ascorbic acid contents of ‘WCHL’ pitaya were higher than that of ‘YCHL’ pitaya during fruit
maturation. Starch was mainly accumulated at early fruit development stages while soluble sugars
were rich in late stages. Sucrose, fructose, and glucose were the main sugar components of ‘YCHL’
pitaya while glucose was dominant in ‘WCHL’ pitaya. Malic and citric acids were the main organic
acids in ‘WCHL’ and ‘YCHL’ pitayas, respectively. Based on the transcriptome analyses, 118 genes
involved in pitaya sugar and organic acid metabolism were obtained. Results from the correlation
analyses between the expression profiling of candidate genes and the contents of sugar and organic
acid showed that 51 genes had a significant correlation relationship and probably perform key role in
pitaya sugar and organic acid metabolism processes. The finding of the present study provides new
information for quality regulation of pitayas.

Keywords: yellow-peel pitaya; sugar and organic acid metabolism; transcriptome analyses; gene
expression

1. Introduction

Pitaya (also known as dragon fruit) belonging to Hylocereus genus within the Cac-
taceae family (Caryophyllales order) is native to Mexico, and Central and South America.
Nowadays, pitayas are widely commercially cultivated in the tropical and subtropical
regions. Based on the color of peel and pulp, pitaya is mainly classified into three species,
i.e., Hylocereus undatus (H. undatus, red or yellow peel with scales and white pulp), H.
monacanthus or H. polyrhizus (red peel with scales and red pulp) and H. megalanthus or
Selenicereus megalanthus (yellow peel without scales and with white pulp) [1]. Pitaya is
popular with consumers due to its abundant betalains, exotic appearance, fresh and sweet
taste, and high nutrients [2–4]. Moreover, yellow-peel pitayas have economic potential
in the market due to its conspicuous appearance, shocking yellow color and long shelf
life. Pitaya cultivars from a different genetic background have different biochemical and
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nutritional characteristics. In general, sugar and organic acid metabolism processes are
developed during fruit development and maturation with sugar accumulation and organic
acid degradation. Besides, sugar and organic acids are crucial components of pitaya fruit
quality, including taste, flavor, and pH, which influences the needs of consumers.

During fruit development and ripening, several metabolite processes are presented, of
which sugar and organic metabolism perform important roles in fruit quality formation.
Starch, as the predominant storage carbohydrate in plants, mainly consists of linear amylose
and branched amylopectin. Starch is an important index associated with fruit texture, for in-
stance, the softness of guava [5], and smoothness and dry constancy of pumpkin [6]. Starch
synthesis and degradation pathway are involved in the regulation of fruit quality [7,8].
Phosphoglucomutase (PGM), ADP-glucose pyrophosphorylase (AGPS) and starch synthase
(StSy) are key regulatory enzymes responsible for starch biosynthesis [8–10]. During starch
metabolism, the phosphorylation of amylopectin is an essential step which requires close
collaboration of dikinases, the glucan, water dikinase (GWD), and phosphoglucan, water
dikinase (PWD) [7]. Simultaneously, starch is degraded while the sugars are accumulated
during fruit development and ripening [3,6].

The levels of soluble sugars such as glucose, fructose, and sucrose are responsible for
fruit sweetness. In citrus, sucrose, fructose, and glucose are the three major carbohydrates
which is the main components of total soluble solids [11]. Glucose and fructose are the most
abundant molecules in pomegranate [12] and watermelon [13]. Sucrose is the main compo-
nent of soluble sugars in apricot [14] compared with pear, which is fructose-dominant [15],
while red-peel pitaya is glucose-dominant [3,16]. Sucrose phosphate synthase (SPS) is the
key enzyme responsible for sucrose synthesis while invertase (Ivr) and sucrose synthase
(SuSy) are the main enzymes involved in sucrose catabolism [17,18]. Moreover, only hexok-
inases (HXKs) and fructokinases (FRKs) are capable of catalyzing the essential irreversible
phosphorylation of glucose and fructose in plants [19]. Glucose-6-phosphate isomerase
(PGI) catalyzes the interconversion between D-glucose-6-phosphate and D-fructose-6-
phosphate which performs important roles in glycolysis and gluconeogenesis [20].

The fruit sourness is principally determined by organic acids (mainly citric and malic
acids). Citric acid and malic acid are the main organic acids in pomegranates [12]. Malic
acid is dominant in red-peel pitaya [3], watermelon [13], and apple [21] while citric acid is
dominant in citrus [11] and pear [22]. The glycolytic pathway is the oxidization of glucose to
pyruvate, of which phosphoglycerate kinase (PGK), enolase (Eno), and pyruvate kinase (PK)
are key enzymes for catalyzing 1,3-bisphosphoglycerate (1,3-BPGA) to produce pyruvate
and ATP [23]. The cofactor acetyl coenzyme A, generated from pyruvate by pyruvate
dehydrogenase (PDH), is required directly for the tricarboxylic acid (TCA) cycle and other
biochemical reactions [24]. Citrate synthase (CS), aconitate hydratase (ACO), succinyl-CoA
synthetase (SCS), 2-oxoglutarate dehydrogenase (OGDH), dihydrolipoyllysine-residue
succinyltransferase (DLST), succinate dehydrogenase (SDH), fumarate hydratase (FUM),
and malic dehydrogenase (MDH) are also involved in the TCA cycle [25,26].

Ascorbic acid (also named ascorbate or vitamin C) is one of the ubiquitous water-
soluble low molecular weight antioxidants in fruits, such as guava [5] and kiwifruit [27].
Ascorbic acid is essential for human health, intaking from edible plants due to humans lack
of the last step ascorbate synthetic enzyme [28]. Four de novo biosynthesis pathways of
ascorbic acid: the L-galactose, L-gulose, myo-inositol, and D-galacturonate pathways have
been proposed in plants [29]. The L-galactose pathway of ascorbate biosynthesis starting
from glucose has been extensively studied in higher plants [30]. Mannose-6-phosphate
isomerase (PMI), phosphomannomutase (PMM), mannose-1-phosphate guanylyltrans-
ferase (GMP), GDP-mannose 3,5-epimerase (GME), GDP-L-galactose phosphorylase (GGP),
L-galactose-1-phosphate phosphatase (GPP), L-galactose dehydrogenase (GDH), and L-
galactono-1,4-lactone dehydrogenase (GLDH) related to the ascorbate biosynthesis while
L-ascorbate oxidase (AO), L-ascorbate peroxidase (APX), dehydroascorbate reductase
(DHAR), and monodehydroascorbate reductase (MDAR) control the regeneration of ascor-
bate [5,30].
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Elucidation of key metabolites and candidate genes responsible for fruit quality is
beneficial for breeding new pitaya cultivars and improving their nutritional values. To
date, candidate genes related to betalain biosynthesis were isolated from transcriptome
data of red-peel and yellow-peel pitayas [31,32]. Besides, several candidate genes involved
in sugar biosynthesis were also obtained through RNA-Seq [16]. However, compared
with red-peel pitayas, genes related to sugars and organic acids in fruit development and
maturation of yellow-peel pitaya are rarely studied. In this study, nine fruit development
stages of ‘WCHL’ and ‘YCHL’ pitaya pulps were collected to investigate the changes in
the total phenol, total flavonoid, ascorbate, starch, soluble sugar, major sugar, and organic
acid components. Subsequently, the transcription abundance of candidate genes related
to ascorbate synthesis and regeneration, starch synthesis and degradation, major sugar
synthesis and TCA cycle were analyzed in the three fruit developmental stages of ‘WCHL’
and ‘YCHL’ pitaya pulps.

2. Materials and Methods
2.1. Plant Materials

Two yellow-peel pitayas i.e., Wucihuanglong (H. undatus, yellow peel with white flesh
(‘WCHL’)) and Youcihuanglong (H. megalanthus, yellow peel with white flesh, (‘YCHL’))
were used as materials. The pulps of nine developmental stages (S1-S9) of ‘WCHL’ (14, 17,
19, 23, 25, 27, 29, 32, and 35 day after flowering (DAF)) and ‘YCHL’ (23, 35, 45, 55, 65, 70, 75,
85, and 96 DAF) (Figure 1) from different plants were used for analyses of sugar and organic
acid. Pulps from three key fruit development stages of ‘WCHL’ (17, 25 and 29 DAF) and
‘YCHL’ (35, 65 and 75 DAF) pitaya were used for RNA-Seq with three biological repetitions
(PRJNA797242). All samples were immediately frozen in liquid nitrogen and stored at
−80 ◦C until use.
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2.2. Measurements of Total Phenols

Total phenols were measured by the Folin–Ciocalteu method [33]. A total of 0.5 g sam-
ples were extracted with 10 mL 80% aqueous methanol (v/v) solution. After centrifugation
at 5000 rpm for 10 min, 20 µL supernatants with 1.8 mL foline-phenol (0.2 mol·L−1) were
incubated at room temperature for 5 min, and then incubated with 1.2 mL 15% Na2(CO)3
in 40 ◦C for 30 min and measured at 760 nm through a spectrophotometer (Infinite M200,
Tecan Co., Ltd., Shanghai, China).

2.3. Measurements of Total Flavonoids

The total flavonoids were measured by aluminum chloride [33]. A total of 0.5 g
samples were extracted with 10 mL 80% aqueous methanol (v/v) solution. After cen-
trifugation at 5000 rpm for 10 min, 100 µL supernatants, 1.9 mL 90% aqueous ethanol
(v/v) and 300 µL 5% NaNO2 were stilled for 6 min. After that, 300 µL 10% Al(NO3)3 and
2 mL 4% NaOH were added to each mixture with an interval of 6 min, and measured by
spectrophotometer at 510 nm after standing 10 min. All determinations were performed in
three biological repetitions.

2.4. Measurements of Starch and Soluble Sugar

Samples of 0.5 g were extracted with 8 mL 80% aqueous methanol (v/v) solution and
put in a water bath at 80 ◦C for 30 min. The supernatants were collected after centrifu-
gation at 5000 rpm for 10 min. A total of 10 mg activated carbon (AC) was added to the
supernatants and then incubated in a water bath at 80 ◦C for 30 min. After filtrating the
AC, the supernatants were diluted to 25 mL with distilled water. The supernatants and
residues were collected for measuring soluble sugar and starch, respectively.

A total of 2 mL distilled water was added to the residues (dried in 80 ◦C) and kept
in boiling water for 10 min. After cooling, 2 mL 9.2 mol·L−1 perchloric acid and 6 mL
distilled water were added with an interval of 10 min. The supernatants were collected
by centrifuging at 5000 rpm for 10 min. The resides were subjected to a similar second
extraction, and then the supernatants were collected for analyses of the absorbance values
at 620 nm by a spectrophotometer.

A total of 1 mL supernatants with 5 mL anthrone (1 µg·mL−1) were kept in boil-
ing water for 10 min, and then the absorbance values were measured at 620 nm by
a spectrophotometer.

2.5. Measurements of Sugars and Organic Acids

A gas chromatography-mass spectrometry (GC-MS) was used to assay sugars and
organic acids according to Lisec et al. [34] with minor modifications. Samples of 50 mg
were extracted with 1.4 mL 70% aqueous methanol (v/v) (20 ◦C). Then, 60 µL ribitol
(0.2 mg·mL−1, internal quantitative standard) was added to each mixture and followed
by shaking in a Thermomixer Compact (Eppendorf, Germany) at 70 ◦C with the speed
of 950 rpm for 10 min. The supernatants were collected by centrifugation at 11,000× g
for 10 min. A total of 750 µL chloroform and 1.5 mL distilled water were added to the
supernatants and then centrifuged at 2200× g for 15 min. A total of 100 µL of the upper
phase (polar phase) was dried in a 1.5 mL tube by a vacuum concentrator (Eppendorf
Concentrator plus, Germany) at room temperature. The dried samples were oximated
with 20 µL of methoxyamination reagent in 37 ◦C for 2 h in a Thermomixer Compact
(950 rpm) and the derivatization reaction without samples was used as the control. After
oximation, silylation occurred by adding 35 µL of MSTFA to each mixture and incubated
in a Thermomixer Compact (950 rpm) at 37 ◦C for 30 min. A total of 40 µL of each
derivatization product were transferred into glass vials for GC-MS analyses using an
Agilent 7890A GC system equipped with an Agilent 7693 autosampler and Agilent 5975C-
inert MSD with Triple Axis Detector (Agilent, Atlanta, GA, USA). The operating parameters
were performed according to Hua et al. [3].



Plants 2022, 11, 694 5 of 18

2.6. RNA Extraction and Sequencing

Three key fruit development stages (S2, S5, and S7) of ‘WCHL’ and ‘YCHL’ pitaya
pulps were used for RNA-Seq with three biological repetitions (PRJNA797242). The to-
tal RNA was extracted using the RNA Prep Pure Plant Kit (TIANGEN, Beijing, China)
according to the manufacturer’s instructions. The integrity was assessed using the RNA
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, USA). A total of 1 µg total RNA of each sample was used as input material for the
RNA sample preparations. The first-strand cDNA was synthesized using random hexamer
primer and M-MuLV Reverse Transcriptase (RNase H-). The second-strand cDNA was
synthesized using DNA Polymerase I and RNase H. The library fragments were purified
with AMPure XP system (Beckman Coulter, Beverly, MA, USA) to select cDNA fragments
of preferentially 370~420 bp in length. PCR was performed with Phusion High-Fidelity
DNA polymerase, Universal PCR primers and Index (X) Primer. The library quality was
assessed using the Agilent Bioanalyzer 2100 system (Agilent, Santa Clara, CA, USA). The
clustering of the index-coded samples was performed on a cBot Cluster Generation Sys-
tem using TruSeq PE Cluster Kit v3-cBot-HS (Illumia, San Diego, CA, USA) according to
the manufacturer’s instructions. After cluster generation, the library preparations were
sequenced on an Illumina Novaseq platform and 150 bp paired-end reads were generated.

2.7. Transcriptome Data Analyses

Raw data (raw reads) of FASTQ format were firstly processed through in-house perl
scripts. Clean data (clean reads) were obtained by removing reads containing adapter,
reads containing ploy-N and low-quality reads from raw data. Q20, Q30, and GC content
of the clean data were calculated and listed in Table S1. The datasets were functionally
annotated by pitaya genome using Hisat2 (version 2.0.5) [35]. The quantification of each
gene expression level (fragments per kilobase millions (FPKM)) was counted using fea-
tureCounts (version 1.5.0-p3). The differential expression analyses of two libraries were
performed using the DESeq2 package (version 3.10) of R software (version 4.1.2). Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed us-
ing KofamKOALA (https://www.genome.jp/tools/kofamkoala/, accessed on 5 February
2022). The transcript abundance of candidate genes was drawn by Tbtools software [36].
The accuracy of the RNA-Seq data was verified by RT-qPCR with specific primers (Table S2)
according to the method of Xie et al. [32].

2.8. Statistical Analysis

Comparisons of the groups were performed by a one-way analysis of variance (One-
way ANOVA) with a Duncan test (p < 0.01). The correlation coefficients were calculated
by the SPSS 25 software (SPSS Inc., Chicago, IL, USA) through Pearson’s correlation and a
two-tailed t test (p < 0.05 and p < 0.01).

3. Results
3.1. Changes in Total Phenol, Total Flavonoid and Ascorbic Acid Contents during Fruit
Development

Phenol, flavonoid, and ascorbic acid belong to the bioactive compounds which play
important roles in plant antioxidant activity [37]. The change in total phenol, total flavonoid,
and ascorbic acid contents were analyzed during fruit development of ‘WCHL’ and ‘YCHL’
pitayas. Total phenol and flavonoid contents reached their maximum at stage 1 during
fruit development of ‘WCHL’ and ‘YCHL’ pitayas (Figure 2A,B). Higher contents of total
phenols and flavonoids were detected in ‘WCHL’ pitaya than that of ‘YCHL’ pitaya at
ripening stages. Meanwhile, higher contents of ascorbic acid were detected in ‘WCHL’
pitaya than that of ‘YCHL pitaya (Figure 2C). These data suggested that ‘WCHL’ pitaya
accumulates more bioactive compounds than that of ‘YCHL’ pitaya.

https://www.genome.jp/tools/kofamkoala/
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3.2. Changes in Sugar Contents during Fruit Development

Sugar contents were analyzed in pulps during fruit development of ‘WCHL’ and
‘YCHL’ pitayas. Starch showed an increasing pattern from stage 1 to stage 3, and declined
from stage 3 to stage 5 and kept low levels thereafter (Figure 3A), suggesting that starch
was synthesized from stage 1 to stage 3 and degraded after stage 3. Soluble sugar showed
an upward trend and higher contents were detected in pulps of ‘WCHL’ pitaya than that of
‘YCHL’ pitayas during fruit development (Figure 3B). These results suggested that starch
was mainly accumulated before stage 4 while soluble sugar was highly accumulated after
stage 5, indicating that starch synthesis and degradation resulted in the accumulation of
soluble sugars during fruit development of the two pitaya cultivars.

The sugar components including glucose, sucrose, fructose, galactose, inositol, and sor-
bitol were assayed during fruit development of the two yellow-peel pitayas (Figure 3C–H).
Glucose, fructose, sorbitol, and galactose kept increasing tendency while sucrose and inosi-
tol began to highly accumulated after stage 5 during fruit maturation. Sucrose, fructose,
and glucose were the dominant soluble sugars that highly accumulated at the later stages
(from stage 5 to stage 9) in ‘YCHL’ pitayas (Figure 3J), while the main soluble sugar was
glucose in ‘WCHL’ pitayas (Figure 3I). These results suggested that the sweetness of ‘YCHL’
pitaya is mainly determined by sucrose, fructose, and glucose compared with only glucose
for ‘WCHL’ pitaya.

3.3. Changes in Organic Acids during Pitaya Fruit Development

The changes in six organic acids, i.e., oxalic, malic, fumaric, succinic, citric, and citra-
malic acids during fruit development of ‘WCHL’ and ‘YCHL’ pitayas were presented in
Figure 4. Malic and citric acid contents were increasing until stage 4 and then gradually
decreased during pitaya fruit development of ‘WCHL’ and ‘YCHL’ pitayas (Figure 4A,B).
However, citramalic acids were mainly accumulated in the unripe stages and rapidly
degraded in the ripe stages of ‘WCHL’ pitaya (Figure 4C). Higher contents of malic, cit-
ramalic and fumaric acid were detected in pulps of ‘WCHL’ pitaya than that of ‘YCHL’
pitaya while citric acid was higher accumulated in ‘YCHL’ pitaya than that of ‘WCHL’
pitaya (Figure 4A,C,E). Oxalic and succinic acids kept at lowly levels without significant
difference between two pitayas (Figure 4D,F). Thus malic and citric acids were respectively
the dominant organic acids in ‘WCHL’ and ‘YCHL’ pitayas, and contribute to sourness of
pitaya pulps (Figure 4G,H).
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contents; (E) sucrose contents; (F) sorbitol contents; (G) galactose contents; (H) inositol contents;
(I) major sugar contents in pulps during fruit developmental stages of ‘WCHL’ pitaya; (J) major sugar
contents in pulps during fruit developmental stages of ‘YCHL’ pitaya. Data represent the mean ± S.E.
of three biological replicates. Lowercase indicates the comparison between groups using one-way
ANOVA (Duncan test, p < 0.01).
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and ‘YCHL’ pitayas. (A) Malic acid contents; (B) citric acid contents; (C) citromalic acid contents;
(D) oxalic acid contents; (E) fumaric acid contents; (F) succinic acid contents; (G) main acid contents
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fruit developmental stages of ‘YCHL’ pitaya. Data represent the mean ± S.E. of three biological
replicates. Lowercase indicates the comparison between groups using one-way ANOVA (Duncan
test, p < 0.01).
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3.4. Analyses of Differentially Expressed Genes (DEGs)

A total of 6.45 G, 6.42 G, 6.50 G, 6.37 G, 6.78 G, and 6.53 G clean data were obtained
from 17 d (S2), 25 d (S5), and 29 d (S7) of ‘WCHL’ and 35 d (S2), 65 d (S5), and 75 d (S7)
of ‘YCHL’ pitaya pulps, respectively (Table S1). Based on the analyses of differentially
expressed genes (DEGs) (padj ≤ 0.05), totally 10,420 and 9060 DEGs were respectively
found in the three developmental stages of ‘WCHL’ and ‘YCHL’ pitaya pulps. Among
them, most genes (9053 DEGs) were differentially expressed both in ‘WCHL’ and ‘YCHL’
pitaya pulps during fruit maturation (Figure 5A). A total of 4823 and 4111 DEGs were up-
regulated while 5597 and 4949 DEGs were down-regulated in ‘WCHL’ and ‘YCHL’ pitayas,
respectively (Figure 5B). Moreover, most genes were enriched in the metabolic pathway,
especially for secondary metabolites of sugar and acid, including carbon metabolism,
glycolysis/gluconeogenesis, and starch and sugar metabolism (Figure 5C,D). Besides, the
Pearson’s correlation coefficient R2 between RNA-seq results and RT-qPCR results was
0.8078, which was higher than the threshold of 0.7, indicating that the FPKM values from
RNA-Seq is reliable and can be used for subsequent experiments (Figure S1).
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Figure 5. DEGs analyses of ‘WCHL’ and ‘YCHL’ pitaya pulps during three developmental stages.
(A), Comparison of DEGs between ‘WCHL’ and ‘YCHL’ pitaya pulps; (B), the number of up- and
down-regulated genes in ‘WCHL’ and ‘YCHL’ pitaya pulps; (C,D), the KEGG enrichment analysis of
DEGs from ‘WCHL’ (C) and ‘YCHL’ (D) pitaya pulps.

3.5. Candidate Genes Involved in Ascorbic Acid Metabolism

Based on the ascorbic acid biosynthesis and regeneration pathway, candidate genes
encoding its key enzymes were investigated in ‘WCHL’ and ‘YCHL’ pitayas. The L-
galactose, L-gulose, myo-inositol and D-galacturonate pathways were proposed to be
involved in ascorbate biosynthesis in plants [5,38]. In the two yellow-peel pitayas, all
enzymes associated with the L-galactose pathway were found and 61 candidate genes were
obtained from the pathway (Table S3). Among these candidate genes, 27 genes were highly
expressed in fruit development of yellow-peel pitayas, especially APX2 and MDAR3 that
showed a downward trend in ‘YCHL’ pitayas and highly expressed at stage 5 in ‘WCHL’
pitaya (Figure 6; Table S3). According to the correlation analyses between the ascorbic acid
contents and expression patterns of these candidate gene, PMM1, GMP3, GMP4, APX1,
APX9, and MDAR1 were down-regulated during fruit development, and showed negative
correlation relationship with ascorbic acid contents (Figure 6; Table S4). PMI1, PMI3 and
MDAR2 were up-regulated during fruit development and showed significant positive
correlation relationship with ascorbic acid contents. These results indicated that PMI1
and PMI3 are the potential key genes involved in ascorbic acid synthesis, while APXs
(APX1, APX2, and APX9), and MDARs (MDAR1, MDAR2, and MDAR3) are responsible
for ascorbic acid regeneration in ‘WCHL’ and ‘YCHL’ pitayas.



Plants 2022, 11, 694 10 of 18Plants 2022, 11, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 6. The transcript abundance of candidate genes involved in the proposed L-galactose path-
way of ascorbate biosynthesis and regeneration during fruit maturation of ‘WCHL’ and ‘YCHL’ 
pitayas. Gene abbreviations are shown in Table S3. The correlation analyses of ascorbic acid contents 
and gene expressions are labeled as * (p < 0.05, two-tailed) or ** (p < 0.01, two-tailed), red indicates 
positive relationship while blue is negative. 

3.6. Candidate Genes Involved in Starch Metabolism 
The starch synthesis and degradation pathway has been proposed in plants [5]. A 

total of 90 candidate genes involved in starch synthesis and degradation were obtained in 
pitayas (Table S5). Among them, 32 candidate genes were highly expressed in pulps, es-
pecially five starch degradation related genes (AMY6, BAM10, BAM12, PHS2, and PHS3) 
which highly expressed at stage 5 during fruit development (Figure 7). A total of 13 can-
didate genes showed significantly negative correlation, including PGM2, StSy6, GWD2, 
GWD4, PWD1, BAM10, DPE1, AGL8, AMY6, AMY7, PHS2, PHS3, and PHS4 (Table S6). 
Additionally, the expression of AGPS2 and AGPS5 exhibited a downward trend and 
showed positive correlation with starch contents during fruit development. These data 
demonstrated that AGPSs (AGPS2 and AGPS5) are key genes related to the starch synthe-
sis while AMY6, BAM10, PHS2, and PHS3 are important genes involved in starch degra-
dation in pitaya (Table S6). 

Figure 6. The transcript abundance of candidate genes involved in the proposed L-galactose pathway
of ascorbate biosynthesis and regeneration during fruit maturation of ‘WCHL’ and ‘YCHL’ pitayas.
Gene abbreviations are shown in Table S3. The correlation analyses of ascorbic acid contents and gene
expressions are labeled as * (p < 0.05, two-tailed) or ** (p < 0.01, two-tailed), red indicates positive
relationship while blue is negative.

3.6. Candidate Genes Involved in Starch Metabolism

The starch synthesis and degradation pathway has been proposed in plants [5]. A total
of 90 candidate genes involved in starch synthesis and degradation were obtained in pitayas
(Table S5). Among them, 32 candidate genes were highly expressed in pulps, especially five
starch degradation related genes (AMY6, BAM10, BAM12, PHS2, and PHS3) which highly
expressed at stage 5 during fruit development (Figure 7). A total of 13 candidate genes
showed significantly negative correlation, including PGM2, StSy6, GWD2, GWD4, PWD1,
BAM10, DPE1, AGL8, AMY6, AMY7, PHS2, PHS3, and PHS4 (Table S6). Additionally,
the expression of AGPS2 and AGPS5 exhibited a downward trend and showed positive
correlation with starch contents during fruit development. These data demonstrated that
AGPSs (AGPS2 and AGPS5) are key genes related to the starch synthesis while AMY6,
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BAM10, PHS2, and PHS3 are important genes involved in starch degradation in pitaya
(Table S6).
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3.7. Candidate Genes Involved in Sugar Metabolism

Totally, 73 candidate genes associated with sugar metabolism pathway were obtained
in the transcriptome data, of which 18 candidate genes (three SPSs, four Ivrs, three SuSys,
four HXKs, three FRKs, and one PGI) were highly expressed and probably coordinately
regulate the sugar metabolism in the two yellow-peel pitayas (Table S7; Figure 8). Among
them, higher expression levels of SuSy1, SuSy5, SuSy11, FRK5, FRK9, and FRK10 were
detected, of which SuSy5, SuSy11, FRK5, and FRK9 showed a downward trend while
SuSy1 and FRK10 were up-regulated during fruit development. The correlation analyses
suggested that up-regulated genes, i.e., SPS1 and FRK9 showed positive correlation with
sucrose and inositol contents while Ivr4 and HXK1 demonstrated positive correlation with
glucose, fructose, sorbitol, and galactose accumulation (Figure 8; Table S8). SuSy5, SuSy11,
Ivr10, FRK5, FRK10, HXK5, HXK9, and HXK12 had negative correlation with pitaya main
sugars. These results suggested that SuSys (SuSy1, SuSy5 and SuSy11) and FRKs (FRK5,
FRK9 and FRK10) are key genes to catalyze the pitaya sugar metabolism.

3.8. Candidate Genes Associated with Organic Acids Metabolism

The tricarboxylic acid (TCA) cycle was proposed to understand the major organic acids
metabolism in yellow-peel pitayas (Figure 9). Totally 92 candidate genes were obtained and
41 genes were highly expressed in pulps (Table S9). The expressions of PEPC13, PEPCK,
ACO1, ACO2, DLST3, OGDH3, and SDH3 were increased and followed with decreasing
during fruit development, consisting with the changes in malic acid contents (Table S10).
CS2, CS12, Eno5, FUM1, MDH1, PEPC14, SCS1, and SCS2 maintained a decreasing expres-
sion pattern and showed negative correlation relationship with malic acid contents (Table
S10). FUM1, OGDH2, PEPC3, and PEPC4 and SCS1 shared positive correlation relationship
with citric acid contents, of which PEPC3 and PEPC4 were highly expressed at stage 5
during fruit development with an extremely significant relationship (Table S10). Negative
correlations were found between citric acid contents and the expression of PEPC13, PK9,
PDH3, CMS1, CMS2, CMS3, DLST1, and OGDH3 with a higher expression level in ‘WCHL’
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than ‘YCHL’ (Table S10). These positive and negative correlations with gene expressions
were probably the main reason of more citric acid contents in ‘YCHL’ than ‘WCHL’. In
addition, only positive correlation relationships were detected between the citromalic acid
contents and expression of down-regulated genes, including PGK4, Eno5, PK6, PK9, PDH3,
PDH4, CMS1, CMS3, PEPC14, and CS1, CS2, CS4, CS6, CS10, and CS12 (Table S10). These
results revealed that PGK4, Eno5, PK6, PK9, PDH3, PDH4, PEPC3, PEPC4, PEPC13, PEPC14,
and PEPCK are key upstream genes which limited the carbon sources to enter the TCA
cycle. CMS1, CMS2, and CMS3 are key genes involved in controlling the citromalic acid
biosynthesis and competed acetyl-CoA with TCA cycle. Seventeen genes (CS1, CS2, CS4,
CS6, CS10, CS12, ACO1, ACO2, SCS1, SCS2, OGDH2, OGDH3, DLST1, DLST3, SDH3,
FUM1 and MDH1) are probably involved in organic acids metabolism of ‘WCHL’ and
‘YCHL’ pitayas.
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Figure 8. The proposed major sugar synthesis pathways and transcript abundance of their genes in
‘WCHL’ and ‘YCHL’ pitayas. Gene abbreviations are shown in Table S7. Letters a–f represent glucose,
fructose, sucrose, sorbitol, galactose and inositol, respectively. The correlation analyses of main sugar
contents and gene expressions are labeled as * (p < 0.05, two-tailed) or ** (p < 0.01, two-tailed), red
indicates positive relationship while blue is negative.
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4. Discussions

The metabolites and transcriptome profiling of red-peel and yellow-peel pitayas
are used to elucidate a betalain biosynthesis pathway [3,32,39]. Metabolites, including
phenol, flavonoid, starch, sugar and acid, are investigated in fruit development of red-
peel pitayas [3,4]. The transcriptome analyses of red-peel pitayas showed that the key
enzymes (invertase and sucrose synthase) and gene (HpVAI1) are involved in the sugar
metabolism [16]. Those results provide fundamental information for developing pitaya
quality and molecular breeding. However, little information is available about sugar and
organic acid metabolism in yellow-peel pitayas. In this study, sugars and organic acids, and
expression of metabolism-associated genes during fruit maturation of yellow-peel pitayas
were analyzed. DEGs related to sugar and acid metabolism from RNA-Seq were verified
by RT-qPCR (Pearson’s correlation coefficient R2 = 0.8078; Figure S1).

Phenolics and flavonoids are the antioxidant compounds which can decrease the
incidence of oxidative stress and associated with diseases in human health [33]. Phenolics
and flavonoids are highly produced in unripe fruits [22] and mature fruits [40]. Besides,
ascorbic acid is one of the most abundant antioxidants with various accumulation levels
in different species [27,41]. In this study, higher contents of phenols and flavonoids were
detected in pulps at the initial fruit development stages compared with low contents in
mature stages (Figure 2A,B and Figure 10). A higher content of ascorbic acid was detected in
‘WCHL’ pitaya than that of ‘YCHL’ pitaya (Figure 2C). The L-galactose pathway represents
the major route to L-ascorbic acid biosynthesis in higher plants. APX and MDHR are
the key components involved in the ascorbate-glutathione cycle which operates in plant
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chloroplasts for H2O2 detoxifications [29,42]. In our study, 27 candidate genes involved
in ascorbic acids synthesis and regeneration were obtained (Figure 6). APX2 and MDAR3
showed higher expression levels than the other genes during fruit development of yellow-
peel pitayas (Table S4). Compared with the expression profiling and ascorbic acid contents
in yellow-peel pitayas, MDAR2 were positively regulated the ascorbic acid contents while
APX1, APX9, and MDAR1 showed negative correlation. These results indicate that APX
and MDHR may play major roles in controlling the level of L-ascorbic acid in yellow-peel
pitaya fruits and their gene family members were also identified and characterized in
Arabidopsis thaliana [42,43].
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Figure 10. Schematic representation of sugar and organic acid metabolites during fruit developmental
stages in two yellow-peel pitayas. Phe: phenolic; Fla: flavonoid; AA: ascorbic acid; Glu: glucose;
Suc: sucrose; Fru: fructose; Gal: galactose; Ino: inositol; Sor: sorbitol; Mal: malic; Cit: citric; CM:
citromalic; Fum: fumaric.

Carbohydrate was first synthesized as starch and then transferred into soluble sugars
during fruit development of ‘WCHL’ and ‘YCHL’ pitayas (Figure 3A,B and Figure 10). The
starch-to-sugar conversion is not only responsible for fruit sweetness but it also provides
energy to coloration [3,44]. APS is a key enzyme of starch synthesis in seeds, tubers, and
fruits [45–47]. In this work, 32 candidate genes (four PGMs, four AGPSs, four StSy, four
GWDs, two PWDs, two AGLs, AMYs, two BAMs, four DPEs, and four PHSs) involved
in starch synthesis and degradation were obtained (Figure 7). Expression patterns of
most genes involved in starch degradation had a negative correlation with the changes
in starch contents (Table S6). AGPS2 and AGPS5 kept a downward trend and shared a
positive correlation with starch contents during fruit development of yellow-peel pitayas
suggesting that AGPS is also a key enzyme for pitaya starch synthesis. AMY and BAM play
a prominent role in starch breakdown and participate in the regulation of plant growth,
development, and stress responses [48]. PHS participates in phosphorolytic degradation
of starch [49]. In the present study, higher expression levels of AMY6, BAM10, PHS2,
and PHS3 related to starch degradation pathways were detected than other genes and
negative correlation with starch contents (Table S5), indicating that these genes probably
play important roles in transferring starch into sugar in pitayas.

Sugars and organic acids have strong influence on fruit pH, flavor, and taste [13].
Fructose, glucose, and sucrose were the main abundant sugar components reported in
pitaya fruits [3,4,16]. In detail, the major sugar of ‘WCHL’ pitaya was glucose (59.29 mg/g
FW) (Figure 3), consistent with the results in red-peel pitayas [3]. However, the dominant
sugars of ‘YCHL’ pitaya were sucrose (42.64 mg/g FW), fructose (33.28 mg/g FW), and
glucose (32.72 mg/g FW). Most sugars are highly produced at S7 except sucrose which
is rich in S4 and S5 of pitayas (Figure 10). The key enzymes, including SPS, SuSy, Ivr,
HXK, and FXK, showed various expression patterns for regulating sugar contents during
fruit developmental stages [13,16]. In our study, 18 candidate genes (three SPSs, three
SuSys, four Ivrs, four HXKs, three FXKs, and one PGI) involved in sugar metabolism
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were obtained from yellow-peel pitayas (Figure 8). SPS2, Ivr20, FRK10, and HXK9 had
a positive correlation while SuSy5, SuSy11, Ivr4, FRK5, FRK9, HXK1, HXK5 and HXK12
were negatively correlated with sugar accumulation during fruit development of yellow-
peel pitayas (Figure 8; Table S8), suggesting that these genes cooperatively regulate sugar
synthesis of yellow-peel pitayas.

Malic, citric, and citramalate acids were the three organic acids mainly accumulated at
S2 to S5 in pitayas (Figure 10). Due to the degradation of citramalate acid in maturation
stages, malic acid (15.06 mg/g FW) and citric acid (5.76 mg/g FW) were the most abundant
organic acids in ‘WCHL’ and ‘YCHL’ pitayas, respectively. CMS has been reported as a
key enzyme responsible for citramalate synthesis in Escherichia coli and apple [50,51]. In
yellow-peel pitayas, the expression patterns of CMS1 and CMS3 had positive correlation
with citromalic acid contents, indicating they probably responsible for citromalic acid
biosynthesis of pitaya fruits. PEPC catalyzes the irreversible carboxylation of phospho-
enolpyruvate (PEP) to form oxaloacetate which is the substrate for forming citrate [14,52].
In this study, the accumulation of citric acids was significant positive correlation with
the expression of PEPC3 and PEPC4 during pitaya fruit development. Furthermore, CS
catalyzes the reaction of oxaloacetate and acetyl-CoA convert into citrate and coenzyme A,
which is the first step in the TCA cycle [52]. However, no CSs show correlated relationship
with citrate in the two yellow-peel pitayas. This suggests that carbon fluxed into TCA
cycle mainly via PEPC3 and PEPC4 rather than CSs, probably because rich acetyl-CoA
fluxed into the irreversible step catalyzed by CMSs for citramalate acid biosynthesis. MDH
catalyzes the conversion between oxaloacetate and malate and FUM catalyzes the reversible
interconversion between malate and fumarate [53,54]. A higher content of malic acid in
‘WCHL’ pitaya were detected than that of ‘YCHL’ pitaya. Malic acid content had a negative
correlation with FUM1 and MDH1. Compared with ‘YCHL’ pitaya, MDH1 was strongly
down-regulated in ‘WCHL’ pitaya responsible for more malic acid in ‘WCHL’ pitaya than
‘YCHL’ pitaya. Further work such as enzyme activity analyses and genetic transformation
are necessary to elucidate their roles in modulating the fruit quality of pitayas.

5. Conclusions

In this study, higher total phenol and flavonoid contents were detected in the stage 1 of
yellow-peel pitaya pulps during fruit development. A higher content of ascorbic acid was
detected in ‘WCHL’ pitaya than ‘YCHL’ pitaya. Starch was mainly accumulated at early
stages and transferred to soluble sugars at S5. Six sugars components (glucose, sucrose,
fructose, galactose, inositol, and sorbitol) and six organic acids (oxalic, malic, fumaric,
glyceric, succinic, citric and citromalic acid) were detected in pitayas. Glucose and malic
acid were the key factors contributed to the taste and flavor quality of ‘WCHL’ pitaya.
Sucrose, fructose, and glucose were the main sugars, and citric acid was the dominant
acid responsible for fruit quality of ‘YCHL’ pitaya. Based on the expression profilings,
27 candidate genes probably involved in ascorbate biosynthesis and regeneration were
achieved, of which PMIs was vital for ascorbic acid synthesis, and APXs and MDHRs
played important roles in ascorbate accumulation. A total of 32 candidate genes probably
involved in starch synthesis and degradation pathway were isolated, of which AGPSs were
key genes for starch synthesis and AMY, BAM and PHSs were key regulators controlling
starch degradation. SPSs Ivrs, SuSys, HXKs, FRKs and PGI coordinately regulated sucrose,
fructose, and glucose synthesis, of which SuSys and FRKs were expressed more than the
other genes. Organic acids were lowly accumulated in ripening stages associated with
downward expression patterns of PGK, Enos, PEPCs, PKs, and PDHs which limited the
carbon flux into TCA cycle. Twenty candidate genes involved in organic acid production
and degradation (TCA cycle) were obtained in pitayas. The findings of this study provide
basic information for improving fruit quality of yellow-peel pitaya.
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Correlation analyses between the ascorbic acid contents and expression patterns of candidate genes
in ‘WCHL’ and ‘YCHL’ pitayas; Table S5: The transcript abundance of genes related to starch
synthesis and degradation pathways in ‘WCHL’ and ‘YCHL’ pitayas; Table S6: Correlation analyses
between the starch contents or total soluble sugar and expression patterns of candidate genes in
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