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Quantitative analysis and prediction can help to reduce the risk of cardiovascular disease. Quantitative prediction based on
traditional model has low accuracy. )e variance of model prediction based on shallow neural network is larger. In this paper,
cardiovascular disease prediction model based on improved deep belief network (DBN) is proposed. Using the reconstruction
error, the network depth is determined independently, and unsupervised training and supervised optimization are combined. It
ensures the accuracy of model prediction while guaranteeing stability. )irty experiments were performed independently on the
Statlog (Heart) andHeart Disease Database data sets in the UCI database. Experimental results showed that themean of prediction
accuracy was 91.26% and 89.78%, respectively. )e variance of prediction accuracy was 5.78 and 4.46, respectively.

1. Introduction

Cardiovascular disease has become themost pathogenic disease
in our country [1]. )e establishment of a prediction model of
cardiovascular disease and the quantitative analysis of the risk
of disease can effectively reduce the incidence of the disease [2].

In the past few decades, researchers have conducted a lot
of research on the computer classification of ECG, such as
support vector machines (SVMs), artificial neural networks
(ANNs), decision trees, Bayesian networks, support feature
machines (SFMs), and regression analysis. Cardiovascular
disease prediction model is divided into two categories; one
is the traditional prediction model based on probability. For
example, in Framingham Heart Study (FHS) [3], the model
is characterized by the adoption of a mathematical formula,
which has good stability, but its effect is poor and the ac-
curacy is low in the multiclassification and nonlinear
complex factors. And the other is based on shallow neural
network prediction model of cardiovascular disease. In

Munster Heart Study (PROCAM) [4], two neural network
models are used: a multilayer perceptron network with one
hidden layer (MLP) [5] model and a probabilistic neural
network (PNN) [6]. )e characteristics of this kind of model
are that it can effectively expand the forecasting factor,
quickly process the fuzzy data and nonlinear data, and
provide high rate of accuracy[7]. However, due to the
randomness of initialization of shallow neural network
parameters, the prediction results will be much lower than
the average accuracy, and the variances of multiple pre-
diction results will be larger.

Recently, deep learning has been widely used in different
fields and has made great progress [8–11]. )e deep learning
model uses multiple samples to extract high-level features
and learns hierarchical representations by combining low-
level inputs more effectively. )e learned features charac-
terize more intrinsic features of the data, avoiding the
process of artificial feature design and selection, and have the
characteristics of many varieties and high accuracy [12].
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)is paper takes deep learning as the point of penetration
and uses multilayer network architecture to abstract the
characteristics of layers and establish a cardiovascular dis-
ease prediction model based on deep belief network. At the
same time, the prediction model based on deep trust net-
work is improved by using reconstruction error to achieve
better prediction.

Overall, the major contributions of this work can be
summarized in three aspects. First, we use the deep belief
network to build predictive models of cardiovascular dis-
ease, skip the morphological feature extraction step, and
classify the original ECG data directly, thus solving the
problem that the cardiovascular disease prediction model is
not robust due to the large difference in waveform char-
acteristics between patients with the same disease. Second,
we adopt the best network parameters trained to initialize
the neural network, so as to solve the instability problem
caused by stochastic initialization. Finally, we use re-
construction error to improve the prediction model which is
based on the deep trust network, so that it can independently
determine the network depth and achieve better predicted
results.

2. Related Work

)e literature related to this classification application was
studied, and it can be seen that a great variety of methods
were used, which reached high classification accuracies.

Algorithms for R-peak extraction tend to use wavelet
transforms to compute features from the original ECG
followed by a fine-tuned threshold-based classifier. Since the
accurate estimation of heart rate and heart rate variability
can be extracted from the R-peak feature, the specially
designed algorithm is usually used for the classification of
coarse-grained heart rhythm. Sundar et al. [13] proposed
a prototype using data mining techniques, namely, Näıve
Bayes and WAC (weighted associative classifier). )e rec-
ognition rate of 84% and 78% was obtained from weighted
associative classifier and Näıve Bayes. Iftikhar et al. [14]
present a hybrid approach using a supervised learningmodel
based on a well-known classifier SVM and evolutionary
optimization techniques (genetic algorithm (GA) and par-
ticle swarm optimization (PSO)). )e results have shown
considerably improved accuracy of more than 88%.

However, because of the differences in the ECG wave-
forms of different people and the great differences in ECG
waveform characteristics of different diseases, the feature
extraction of the waveform is inaccurate. )erefore, these
characteristics are not sufficient to distinguish most car-
diovascular diseases.

With the rapid development of artificial intelligence,
inspired by automatic speech recognition, hidden Markov
model with Gauss observation probability distribution has
been applied to the beat detection task [15], and the hottest
artificial neural network is also used for the task of beat
detection [16]. Elsayad proposed an approach which used
the learning vector quantization (LVQ) neural network to
establish the ECG positive anomaly model and obtained an
accuracy of 74.12% [17]. Olaniyi et al. [18] designed a neural

network for diagnosis of heart diseases with the heart disease
sample obtained fromUCI machine learning repository.)e
system is a multilayer neural network model based on
backpropagation training and is simulated on a feed-forward
neural network. )e recognition of 85% was obtained from
testing of the network.

Although the self-learning ability of backpropagation
(BP) neural network is strong, the convergence speed is slow,
and the result is easily affected by the random initialization
of network parameters. In particular, there has been no
unified and complete theoretical guidance for the selection
of BP neural network structure. Generally, it can only be
selected by experience.

)e DBN model not only has the self-adaptive ability of
the self-adjustment of the general neural network but also
avoids the defects of the BP neural network, which is easy to
fall into the local minimum. DBN uses a network structure
composed of multiple RBM networks, which is more ef-
fective for modeling one-dimensional data [19].

3. Description of the Proposed Approach

3.1. Deep Belief Network. Deep belief network (DBN) is one
of the main tools for deep learning, which is based on the
restricted Boltzmann machine (RBM) [20], to propose. )e
structure of RBM includes only the visible layer and the
hidden layer; the neurons between two layers are fully
connected, and the neurons in the same layer are not
connected [21].

In Figure 1, v(v1, v2, . . . , vn) represents the visible layer, vi

is the visible unit; h(h1, h2, . . . , hm) denotes the hidden layer,
hj is the hidden unit; and W is the connection weight matrix
between two layers. )e data are input from the visible layer,
(v1, v2, . . . , vn) represents the feature set of the data, and the
hidden layer data are generated by the random initialization
of the weight value w and the state of each neuron. Due to the
disconnection between neurons at the same level, when de-
termining the neuron state, it has the following properties:
when the visible cell state is determined, the hidden unit
condition is activated independently; otherwise, if the state of
the hidden cell is determined, the conditions of the visible
units are activated independently.
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Figure 1: Restricted Boltzmann machine undirected configuration
diagram.
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Given a set of states (v, h), the energy function of the
RBM model can be defined by the following equation:

E(v, h) � − 􏽐
n

i�1
aivi − 􏽐

m

j�1
bjhj − 􏽐

n

i�1
􏽐
m

j�1
viwijhj,

� −aTv− bTh− hTwv,

(1)

where a � (a1, a2, . . . , an) denotes the offset vector of the
visible unit, b � (b1, b2, . . . , bm) denotes the bias vector of
the hidden unit, and v � (v1, v2, . . . , vn) denotes the state
vector of the visible layer, h � (h1, h2, . . . , hm) denotes the
state vector of the hidden layer, w � (wi,j) denotes the con-
nection weight matrix, and wi,j denotes the weight of the ith
visible unit and the jth hidden element.

For the state (v, h), according to (1), the joint probability
distribution can be given as follows:

P(v, h; θ) �
1
z

e
−E(v,h)

,

z � 􏽘
v

􏽘
h

e
−E(v,h)

,

(2)

where θ � a, b, w{ } is the RMB network parameters and Z is
called the normalization factor or the partition function.

In practical applications, the probability distribution
p(v) of training data v is generally used, that is, the edge
probability distribution of P � (v, h, θ):

P(v) �
1
Z

􏽘
h

e
−E(v,h)

. (3)

Similarly, the edge probability distribution P � (h) of the
hidden layer state can be obtained:

P(h) �
1
Z

􏽘
v

e
−E(v,h)

. (4)

RBM training data are obtained by solving the model
optimal parameters in (3), so that the model can better fit the
distribution of training data even if the sample reaches the
maximum probability in the distribution. Constructing log-
likelihood functions:

lnP(v) � ln 􏽘
h

e
−E(v,h)⎛⎝ ⎞⎠− ln 􏽘

v

􏽘
h

e
−E(v,h)⎛⎝ ⎞⎠. (5)

)e model parameters are respectively solved by the
maximum likelihood function method:

z lnP(v)

za
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T
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(6)

where EPd denotes the expectation of the input conditional
probability distribution of training data, and EPm denotes
the expectation of the joint probability distribution of the

model. )e expected computation is done by the Gibbs
sampling method, while the computation cost is too large in
the computation process of each iteration. Hinton proposed
the contrastive divergence (CD) algorithm [21] for the
approximate calculation after sampling.

According to the above formula, when the neuron state
of the given layer is given, it can be inferred that the acti-
vation probability of hidden units is

P hj � 1 ∣ v􏼐 􏼑 � σ 􏽘
i

viwij + bj
⎛⎝ ⎞⎠. (7)

After obtaining the hidden element state matrix, the
reconfigurable visible element state probability can be cal-
culated according to the CD algorithm:

P vi � 1 | h( 􏼁 � σ 􏽘
j

hjwij + ai
⎛⎝ ⎞⎠, (8)

where σ is a sigmoid function σ(x) � 11/(1 + exp(−x)).
)e maximum value of the likelihood function is

gradually approximated by gradient ascent. )e formula of
the RBM parameter is updated as follows:

θi+1
� θi

+ η
z lnP(v)

zθ
, (9)

where η is the parameter learning rate for the model, and i is
the current iteration. )e parameters θ are iteratively
updated according to the rules of (9), and the maximum
value of the gradient of the likelihood function is reached
quickly, which is the optimal parameter.

DBN is composed of a plurality of RBM units connected
to the bottom layer of the RBM visible layer as the input
layer, the underlying RBM hidden layer of the upper RBM
visible layer. )e tuning of global training parameters is
carried out by the BP neural network.

RBM is a probabilistic neural network that determines the
probability generation of DBNs, this is establishing a joint
probability distribution between the feature and the lables:

P v, h1, h2, . . . , hl( 􏼁

� P v ∣ h1( 􏼁P h1 ∣ h2( 􏼁, . . . , P hl−2 ∣ hl−1( 􏼁P hl−1 ∣ hl( 􏼁,

(10)

where P(hk ∣ hk+1) is the conditional probability distribution
of hk for the given hk+1 state; P(hl−1, hl) is the joint prob-
ability distribution of hl−1 and hl. P(v, h) is the joint
probability distribution of a single RBM.)e hidden layer of
low-level RBM in DBN is the visual layer of high-level RBM.
So (10) is the probability distribution for the whole model.

)e use of DBN to establish a deep learning-based
cardiovascular disease prediction model is an important
entry point to solve the problem of accuracy and stability of
prediction models.

3.2. Phase 1: ForecastingModel Based onDeep Belief Network.
)e use of deep trust network to establish a cardiovascular
disease prediction model is divided into two stages, as shown
in Figure 2, respectively, upward training and downward
adjustment.
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(1) Training section: use the greedy layer-by-layer
training algorithm to learn the parameters of each
layer of RBM θ � a, b, w{ } in turn by unsupervised
learning. First, the training data are received by the
visible layer of the first layer RBM, and the state v1 is
generated. )e hidden state h1 is generated upwards
by the initialized weight matrix w1, and the visible
layer state v1′ is reconstructed by h1. Generating new
hidden units, the new layer is generated by w1
remapping to the hidden unit h1′. )e parameters are
updated using the CD algorithm until the re-
construction error is least, that is, to complete the
first layer RBM training. Stacked RBMs are trained
layer by layer according to greedy learning rules,
each layer maps different feature spaces )e topmost
RBM bidirectional connections make up the asso-
ciative memory layer, which can be associated with
the optimal parameters of memory layers. By un-
supervised learning, the DBNs gains a prior
knowledge, obtains more abstract features at the top
level, and better reflects the real structure in-
formation of the training data. Stacked RBM pre-
training input is as follows: training data x, DBN;
and output is as follows: unsupervised DBN.

(2) Tuning section: taking the pre-trained parameters
of the network as initial values, the labeled samples
are used to supervise the DBN model and the top-
down reverse propagation error of the network is
used as the standard to further optimize the RBM
parameters of various layers. )e initial value of BP
network is the high abstract feature set obtained by
the pretraining of DBN, which solves the problem
of falling into local optimum and overfitting caused
by random initialization of the traditional neural

network.)e parameters are finetuned based on the
BP algorithm, and the input is the parameters of
each layer of the DBN pretraining and the output
vector of the top RBM; the output is the DBN after
finetuning the parameters.

)rough the above steps, a globally optimal DBN model
is constructed and fully trained. To sum up the above
learning phase, a complete DBN model is established, and
the input is as follows: number of DBN structure layers,
training samples; output is as follows: fully trained DBN.

Cardiovascular disease training samples without label
values were entered into the visible layer of the bottom RBM
without any characteristics of supervised learning data. )e
top RBM will learn the optimal characteristic parameters as
the initial value of the neural network solves the defects
caused by random initialization and improves the stability of
the model prediction.

3.3. Phase 2: Improved Deep Belief Network Forecasting
Model. )e more complex the network structure of DBN,
the stronger the ability to solve complex problems. Simul-
taneously, the higher the number of network layers, the
harder the training will be, the greater the training error
accumulates, and the lower the correctness of the model
[22]. In application, in order to establish suitable DBN
structure for specific tasks, due to lack of corresponding
theoretical support and effective training mode, the depth of
network and the number of hidden units need to be set by
experience, which leads to the deviation in the modeling
process and the high cost [23].

Aiming at the problem of determining the number of
layers of DBN, based on the reconstruction error of each
RBM training, this paper improves the prediction model of
deep trust network and establishes a DBN which can au-
tomatically select the network depth to improve the auto-
matic analysis ability of the cardiovascular disease prediction
model. Specific methods are as follows.

In each RBM, the input data of the visible layer are
reconstructed andmapped to the hidden layer again, and the
reconstruction error is calculated based on the difference
between the reconstructed output data and the initial
training data.

Rerror �
􏽐

n
i�1 􏽐

m
j�1 pij − xij

nmpx

, (11)

where Rerror denotes the reconstruction error, n denotes the
number of training samples, m denotes the number of
features in each group of samples, Pij denotes the recon-
structed value of RBM training sample per layer, xij denotes
the true value of the training sample, and Px denotes the
calculation of the number of values.

In order to prevent the training data from overfitting or
reconstructing large deviation of the data and at the same
time to balance the training cost of the network model,
when the difference between the two reconstruction errors
is less than the present value, the depth accumulation is
stopped.
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Figure 2: DBNs training flow chart.
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L � NRBM + 1,

Rerror(k− 1)−Rerror(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> ε,

L � NRBM,

Rerror(k− 1)−Rerror(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< ε,

(12)

where L denotes the hidden layer number of DBN, Rerror (k)
denotes Rerror of current layer, and ε denotes the default
value. )e selection of the preset value is one of the keys to
determining the accuracy of the model. )e value of the
default value ε is too large, which can cause inaccurately
finding the optimal number of network layers. If the value is
too small, the number of layers in the deep neural network
may be too large and the calculation amount is too large. For
the number of cardiovascular disease prediction model
parameters and the performance of laboratory equipment,
we determined that ε ∈ [0.01, 0.05]. Compared with many
experimental results, when ε � 0.03, the prediction model
can determine the network depth independently.

In the pretraining phase of the unsupervised, when it
reaches the number of layers of target value, the top-level
trained output is used as input of the BP algorithm and the
reverse fine-tuning parameters are started. )e process of
building a network relies on Rerror, as shown in Figure 3.

Rerror is positively related to the network energy E(v, h),
and this coupling characteristic also proves feasibility of
DBN depth with the reconfiguration error as the standard. It
is proved as follows.

Let P be the calculated value, and X be the actual label
value, then P � P(v) and X � P(v1); according to the
conditional probability formula, there is

P � P(v) � P v1( 􏼁P h ∣ v1( 􏼁P(v ∣ h). (13)

According to the total probability formula, there is

P(v ∣ h) �
P(v, h)

P(h)
. (14)

According to (14), to rewrite (13), there is

P � P v1( 􏼁
P v1, h( 􏼁

P v1( 􏼁

P(v, h)

P(h)
,

� P v1, h( 􏼁
P(v, h)

P(h)
.

(15)

According to (14) again, there is

P � P v1 ∣ h( 􏼁P(h)
P(v, h)

P(h)
,

� P v1 ∣ h( 􏼁P(v, h).

(16)

Substituting the above formula in (11) to reconstruct the
error:

Rerror �
􏽐

n
i�1 􏽐

m
j�1 pij −xij􏼐 􏼑

nmpx

,

� P−X,

� P v1 ∣ h( 􏼁P(v, h)−P v1( 􏼁,

� P v1( 􏼁[P(v, h)− 1].

(17)

As the energy of the neural network is proportional to the
probability distribution, that is, P(v, h)∞E(v, h), there is

Rerror∞P(v, h)∞E(v, h). (18)

Equation (18) shows that there is a coupling relationship
between Rerror and network mechanism, and it is reasonable
to rely on reconstruction error to determine the network
depth of DBN autonomously. )e number of neurons in
each layer also has an impact on the network. At present,
there is a lack of a clear theory to prove that the appropriate
number of cells is set and the improvement is achieved. )e
DBN structure focuses on the ability to determine the depth of
a network, and the number of neurons in each layer is fixed.

4. Experiment Analysis

4.1. Database Description. Experimental data select the
Statlog (Heart) data set and the Heart Disease Database data
set for the UCI Machine Learning Library. )e Statlog
(Heart) data set contains 270 sets of instances and the Heart
Disease Database data set contains 820 sets of instances. )e
properties of both data sets contain continuous, two-
category, ordered multiclass, and unordered multiclass
variables. As shown in Table 1, select the same 13 attributes
and 1 classified label values in two data for experiments.

)e physical meaning, data unit, and order of magnitude
of each attribute in the selected data set are different and need
to be normalized before the experiment. Text-based data are

Begin

Enter training data

Use CD algorithm
for training

Rerror satisfies
(13)

BP algorithm finetuning
network parameters

End

Parameter
initialization

Figure 3: Calculation flowchart of DBNs depth.

Journal of Healthcare Engineering 5



directly converted to numeric data.)e reference standard for
medicine is the data attribute of the hierarchical classification
structure. )e normalized assignment is the corresponding
discrete arithmetic progression or geometric progression. For
the data attributes of the range type, we proposed improved
min-max normalization due to the existence of data imbal-
ances: take the average of the first k large values of the feature
term as the maximum value, and take the average of the first k
small values as the minimum value. )e feature item is
normalized to the interval (0, 1) as min-max.

In the two data sets, 70% of the instances are selected as
training samples, and the remaining instances are test
samples. )e data set is divided into two mutually exclusive
collections, and the consistency of data distribution is
maintained as much as possible.

4.2. Improved DBN Model Network Depth
Analysis Experiment

4.2.1. Improved DBNs Model Experiment. Using training
data, improved DBN models are built and tested with test

data. Inputs are as follows: training sample risk factor data x{ },
training sample tag value y􏼈 􏼉, and testing samples x′, y′􏼈 􏼉; the
output is the forecast results. )e steps are as follows:

(1) Set the initial value of the network, the learning rate
is set to 1, the initial error is 0, the setting error of the
reconstruction error ε is set to 0.03, the maximum
training period of each RBM is set to 10 times. )e
weight (w), the visible layer bias (a), and the hidden
layer offset (b) are all randomly generated values that
are smaller, and the training batch is set to 100.

(2) )e training data x{ } with the label value removed is
input as the first layer network and the unsupervised
pretraining phase is started. )e number of neurons
in the input layer automatically takes the value of the
sample feature dimension, that is, 13 risk factors in
the data set. Perform the following steps using Gibbs
sampling and CD algorithms, as shown in Table 2.

Update the parameters and calculate the error and repeat
the above steps until the end conditions are met. In this case,
the first layer of RBM is trained, and the principle of

Table 1: Data set attributes.

Features Description Data types Normalization Value

Age Age Continuous
data Min-max scaling 16–80; 0∼1

Sex Gender Text-based data Direct mapping 0: female
1: male

Cp Chest pain type Text-based data Direct mapping

0: typical angina
1: typical type angina
2: nonangina pain
3: asymptomatic

Trestbps Trest blood pressure Range data Improved min-max
scaling

MmHg on admission to the
hospital

Chol Serum cholesterol Range data Improved min-max
scaling (mg/dl)

Fbs Fasting blood sugar Hierarchical
data Hierarchical mapping 0: <120mg/dl

1: >120mg/dl

Restecg Resting electrographic results Text-based data Direct mapping

0: normal
1: having ST-T wave abnormality
2: showing probable or definite left

ventricular hypertrophy

)alach Maximum heart rate achieved Range data Improved min-max
scaling —

Exang Exercise-induced angina Text-based data Direct mapping 0� no
1� yes

Oldpeak ST depression induced by
exercise relative to rest Range data Improved min-max

scaling

Slope Slope of the peak exercise ST segment Text-based data Direct mapping
0: unsloping

1: flat
2: downsloping

Ca Number of major vessels colored by
fluoroscopy Text-based data Direct mapping 0–3

)al Text-based data Direct mapping
0: normal

1: fixed defect
2: reversible defect

Num Predicted attribute — — 0, 1, 2, 3, 4
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reconfiguring the error method to determine the depth of
the network is used to calculate whether the condition is met;
if it is satisfied, it stops; if it is not, h1′ is used as the input for
the next layer of training.

(3) Use step (2) to determine the final depth of the
network, and remember the optimal parameters of
each layer. )e trained DBN structures and the
parameters are passed to the BP network to build the
same depth of backpropagation network.

(4) )e top RBM output for the BP network input, while
inputting the training data label value, began to
monitor the tuning phase and further adjust the
parameters of the DBN layers.

(5) Put the unlabeled test data into the constructed
improved DBN, and compare the value of the label
value of the network to the true label value to cal-
culate the prediction accuracy.

(6) )e algorithm ends.

4.2.2. Standard DBNs Model Experiment. In order to im-
prove the correctness of the network depth determined by
DBN autonomously, a standard DBN is established and the
optimal network layer number is determined by experiment.
)e optimal number of cells in each layer is experimentally
selected according to

N � ⌈
���
mn

√
⌉ + k, (19)

where m denotes the dimension of the input data, that is,
the number of CVD risk factors; n denotes the number of
output layer units and CVD predicts the probability as the
output, that is, n � 1; N is the number of hidden units; ⌈ ⌉ is
the uplift symbol; and k is an integer between [1, 5], which is
used to increase the interval of units selection and avoid
blind selection.

4.2.3. Experimental Results and Analysis. )e improved
DBN prediction model was tested in two data sets and
stopped increasing when Statlog (Heart) was added to the
third layer, with a depth of 4; the Heart Disease Database
stopped increasing when it increased to the fourth level with
a model depth of 5. )e Rerror curve in the RBM computing
process of each layer is shown in Figures 4 and 5.

In order to improve the performance of DBN, a standard
DBN model with the same structure was established, that is,
a 4-layer neural network was established for Statlog (Heart)
and a 5-layer neural network was established for the Heart
Disease Database. )e number of network units per layer was
based on (19), and the best number of units is selected by the

experimental method. )e number of input layer units is
equal to 13 feature latitudes of the data set, that is, m � 13; the
network output is a label probability obtained by regression
calculation, that is, n � 1; and the number of second layer
units ranges from 5 to 9 experiments to select the smallest
reconstruction error as the optimal unit number, the number
of units under the reconstruction error shown in Figure 6.

Table 2: Algorithm implementation steps.

h1 � sigm(vT
1 w1 + b)

Use the input data to construct
a hidden unit state

v1′ � sigm(hT
1 w1 + a)

Reconstruct the input using
the hidden layer structure

h1′ � sigm(v′T1 w1 + b)
Construct the hidden layer with
the reconstructed input again
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As shown in Figure 6, the Rerror of RBM1 in the Statlog
(Heart) data set is the smallest at the 7th implicit unit, and
the number of units is determined to be 7.)e Heart Disease
Database has the smallest Rerror at the 9th implicit unit, and
the number of units is determined to be 9. Similarly, the
DBN structure finally determined according to the above
method is Statlog (Heart): 4-layer network, the number of
units of per layer is 13-7-6-4; Heart Disease Database: 5-layer
network, the number of units of per layer is 13-9-8-5-4.

To further improve the correctness of the network depth
determined by DBN, we increase the hidden layer number of
the standard DBN model in Figure 6.

Reconstruction error of RBM1 with different numbers of
hidden units turns and judges the correctness of the test
data. To ensure that the number of layers is the only in-
dependent variable, the number of units in each layer is the
same as that of the improved DBN model. )e results are
shown in Table 3.

Analysis of Table 3 shows that increasing the network
hierarchy reduces Rerror and training time will increase. )e
accuracy of the test data was maximized for Statlog (Heart)
at depth 4, maximum for the Heart Disease Database at
depth 5, and in line with the improved network depth that
DBN automatically determines; it further proves that the
prediction model of cardiovascular diseases based on im-
proved DBN has better performance.

Table 4 presents the overall results of the proposed
Statlog (Heart) data set evaluation using the UCI Machine

Learning Library for the proposed improved DBN pre-
diction model and other different hybridization and non-
hybrid techniques for cardiac classification and
identification of relevant risk factors.

From the comparison of the tables, we can see that the
traditional feature extraction algorithm is more specific to
a specific data set. Based on the experimental accuracy rate,
a special manually set feature combination is used. )is
method is to dig out the characteristics of the data set itself,
not the essential characteristics of ECG data; the general-
ization ability of the method is weak, the portability is poor,
and the accuracy is relatively poor.

)e traditional classification model based on proba-
bility uses a combination of multiple feature extraction
methods. However, the deep learning method can learn
a kind of deep-level nonlinear network structure and can
effectively obtain the deep-level essential feature repre-
sentation of ECG from the sample. )e effectiveness of the
model based on deep learning is better than that of the
traditional classification models based on probability and
shallow neural networks.

)is paper constructs a deep confidence network which
can independently determine the network structure. )e
performance of the model is evaluated on two data sets, and
the highest accuracy is achieved. )e algorithm has strong
generalization ability, and it can fully tap the deep-level
characteristics of ECG and achieve an accurate and stable
automatic classification of cardiovascular diseases in
complex individuals and complex environments. )e
performance of heart disease classification is superior to
other technologies.

5. Conclusion

For these issues, the probabilistic-based predictive model
cannot integrate multiclass and nonlinear factors, and the
stability of shallow neural network is poor. A prediction
model based on deep learning is proposed and improved to
enable it to independently determine the network param-
eters. )e proposed prediction model was validated with the
Statlog (Heart) data set and the Heart Disease data set, which
proves that the predictionmodel has high accuracy and good
stability.

Our further research is to apply the prediction model
based on improved depth learning to actual cardiovascular
disease predictions. By analyzing the prediction results in
detail, we can quantify the proportion of each risk factor to
the risk of cardiovascular disease and provide personalized
advice to reduce the risk of cardiovascular disease.
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