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Abstract

Plasmodium falciparum thymidylate kinase (PfTMK) showed structural and catalytic distinc-

tions from the host enzyme rendering it a hopeful antiprotozoal drug target. Despite the com-

prehensive enzymologic, structural, inhibitory and chemical synthesis approaches targeting

this enzyme, the elucidation of the exact mechanism underlying the recognition of the atypi-

cal purine substrates remains to be determined. In this study, molecular dynamics (MD) sim-

ulation of a broad range of substrates and inhibitors as well as the inhibitory properties of

deoxyguanosine (dG) derivatives were used to assess the PfTMK substructure molecular

rearrangements. The estimated changes during the favourable binding of high affinity sub-

strate (TMP) include lower interaction with P-loop, free residue fluctuations of the lid domain

and the average RMSD value. The RMSD of TMP complex was higher and more rapidly sta-

bilized than the dGMP complex. The lid domain flexibility is severely affected by dGMP and

β-thymidine derivatives, while being partially fluctuating with other thymidine derivatives.

The TMK-purine (dGMP) complex was slowly and gradually stabilized with lower over all

structure flexibility and residue fluctuations especially at the lid domain, which closes the

active site during its catalytic state. Thymidine derivatives allow structure flexibility of the lid

domain being highly fluctuating in α- and β-thymidine derivatives and TMP. dG derivatives

remains less efficient than thymidine derivatives in inhibiting TMK. The variations in the

structural dynamics of the P-loop and lid domain in response to TMP or dGMP might favour

thymidine-based compounds. The provided MD simulation strategy can be used for predi-

cating structural changes in PfTMK during lead optimization.

Introduction

During the search for new drug targets against world health hazardous protozoal diseases, we

identified PfTMK as a new promising drug target [1]. Mutational, biochemical and biophysical
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approaches revealed broad spectrum substrate binding efficiency of PfTMK [2]. PfTMK is a

pyrimidine metabolizing enzyme; unexpectedly, it was able to bind the guanylate, deoxyguany-

late and inosinylate compounds, which are purine derivatives [3, 4]. This unique feature was

proposed as a starting point for finding protozoal specific inhibitors since the human thymidy-

late kinase (hTMK) is a very specific pyrimidine only binding enzyme.

The structure basis of substrates recognition by PfTMK by using X-ray crystallography

revealed significant structure rearrangements in PfTMK that ensures wider substrate spectrum

and faster metabolism of AZT (3’-azido-3’-deoxythymidine)-MP (monophosphate), which is a

feature of prokaryotic TMKs [5].

Based on the provided unique biochemical and structural features, several scaffolds of

inhibitors were designed and tested against PfTMK. At first, 2’,3’ dideoxycarbocyclic derivative

of thymidine showed strong PfTMK inhibition in the low micromolar range [6]. Additionally,

the fluorinated dideoxy derivative (-)-7 exhibited improved inhibition efficiency [7]. Several

5’-urea-α- and β-thymidine derivatives were synthesized and showed moderate inhibitory

potency against PfTMK [8]. QSAR, pharmacophore mapping and docking studies for α- and

β-thymidine analogs binding with PfTMPK revealed the importance of–NH fragment and

urea derivative of thymidine in the inhibition of PfTMK [9]. More recently, a trial was made to

improve the moderate PfTMK inhibitory effect of α-thymidine derivatives. N-(5’-deoxy-α-

thymidin-5’-yl)-N’-(4-(2-chlorobenzyloxy)phenyl)urea was used as a parent compound owing

to its effective inhibition of P. falciparum growth. However, the new derivatives were only

effective in the micromolar range [10].

Despite the application of various biochemical, structural and chemical synthesis tech-

niques in PfTMK inhibition, the exact molecular mechanisms underlying the recognition of

inhibitors, especially the guanosine and α-thymidine inhibitors, is still not well understood.

Resolving the molecular changes during each substrate interaction with PfTMK will be impor-

tant in optimizing new inhibitors. In order to perform this task, we used the molecular dynam-

ics approach. MD simulation would resolve the facts hidden within PfTMK and reveal the

substructure responses to different inhibitors. Understanding such mechanism is expected to

help in the design of stronger PfTMK inhibitors. Most PfTMK inhibitory studies were using

thymidine derivatives. Due to lack of inhibitor data by using dG derivatives, several com-

pounds were analysed by inhibitory assays, docking studies and ligand-protein interactions.

Overall, thymidine and deoxyguanosine derivatives interactions with PfTMK were evaluated.

Materials and methods

PfTMK structures preparation

The structures of PfTMK bound with different compounds were retrieved from the protein

data bank (PDB). The PDB IDs and their ligands contents are presented in Table 1. The

retrieved structures were prepared by correction for missing atoms, bonds or side chains.

Table 1. The protein data bank IDs and ligand contents in PfTMK structures.

PDB ID ligand abbreviation

2WWF TMP and ADP TMK-TMP

2WWG dGMP and ADP TMK-dGMP

2WWH Ap5dT TMK-Ap5dT

2WWI AZTMP and ADP TMK-AZTMP

2YOF (thio)urea- β-deoxythymidine inhibitor TMK-TUBdT

2YOG (thio)urea- α-deoxythymidine inhibitor TMK-TUAdT

https://doi.org/10.1371/journal.pone.0212065.t001
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During MD simulation, two replicates of structures were used, either monomer or dimers of

each PDB structure file. In every structure file, monomer no. B is removed followed by energy

minimization.

Molecular dynamics simulation

YASARA Structure software (version 14.12.2) was used for all MD simulations by opting for

the use of AMBER14 as a force field. The simulation cell was allowed to include 20 Å sur-

rounding the protein and filled with water at a density of 0.997 g/ml. Initial energy mini-

mization was carried out under relaxed constraints using steepest descent minimization.

Simulations were performed in water at constant pressure with temperature at 298 K. In order

to mimic physiological conditions, counter ions were added to neutralize the system; Na or Cl

was added in replacement of water to give a total NaCl concentration of 0.9%. pH was main-

tained at 7.4. The simulation was run at a constant pressure and temperature (NPT ensemble)

for 50 ns. All simulation steps were run by a preinstalled macro (md_runfast.mcr) within the

YASARA package. Data were collected every 250 ps. MD simulation results were estimated for

both monomers and dimers of PfTMK. The enzyme naturally exists as dimer. Momoners were

obtained by deletion of one unit from the obtained structure file.

Calculation of secondary structure content

The secondary structure contents of PfTMKs were analysed before and after MD simulation

using the secondary structure content estimation implemented in the YASARA software. The

results comprise the percentage of contribution of helix, sheet, turn, or coil to the total struc-

ture composition.

Expression and purification of PfTMK

Expression and purification were carried out as previously described [1, 4]. Briefly, ampicillin

treated LB medium was used to grow recombinant E. coli overnight. The primary culture was

used to infuse 2 liters of LB medium. Growth of E. coli was continued for 4 h before the addi-

tion of IPTG (isopropyl β-D-1-thiogalactopyranoside) to a final concentration of 1 mM.

Expression was induced and LB medium was incubated for 4h following collection of cells by

centrifugation at 5000 rpm for 15 min. Extraction and purification steps were implemented in

25 mM Tris-HCl buffer pH 7.2 containing 150 mM NaCl. Purification of PfTMK was by two

affinity and gel filtration steps.

Thymidylate kinase inhibitor assay

The TMP kinase activity was measured spectrophotometrically using an enzyme-coupling

assay. The assay is based on the decrease in absorbance at 335 nm due to conversion of NADH

to NAD. The activity solution contained essential activity elements as KCL, MgCl2 as well as

coupling enzymes 2U pyruvate kinase, 2U lactate dehydrogenase and their forerunner phos-

phoenolpyruvate [1, 2]. For assessment of inhibitors, the initial reaction rates were measured

in the presence and absence of inhibitors as previously described [2, 6, 7].

Docking of dG derivatives

Several dG compounds (Table 2) were prepared by Chem3D software for the Molegro 5.5

docking module. The compounds were 3D optimized and saved as SD files. At first, the dock-

ing template was prepared by Molegro 5.5 software, based on the coordinates of dGMP
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binding of PDB ID 2WWG. Docking was then run using the default parameters in the Mole-

gro docking wizard.

Results

Stability of trajectories during MD simulation

The mean RMSD value for PfTMK structures (Table 3) showed that TMK-dGMP was the low-

est (0.75 Å), while TMK-AZTMP and TMK-TUBdT were the highest (1.28 Å). The mean

value of receptor RMSD during MD is the lowest in TMK-TUAdT, which indicating the low-

est conformational change and better ligand interaction with PfTMK. This value is greatly

improved over TMK-TUBdT, which indicates that there would be more stable interactions of

α-thymidine over β-thymidine derivatives. The RMSD of TMK-AZTMP is the highest among

all complexes, indicating lower interaction efficiency of PfTMK with AZTMP.

Fig 1 shows the backbone alpha carbon RMSD of PfTMK complexes. In Fig 1A, TMK-TMP

and TMK-dGMP were plotted with ApoTMK. All structures reached stability within 17 ns and

remained stable throughout the rest of the simulation. Tracing changes in RMSD throughout

the MD simulation time highlights the general strength of both TMP and dGMP in producing

lower RMSD and lower conformational changes, compared with ApoTMK (blue line). While

dGMP demonstrated lower RMSD during most of the simulation time, the RMSD plot was

almost similar to TMK at the end of the simulation (Fig 1A). A5PdT showed a very stable pro-

file starting from the first few ns at the beginning of the simulation (Fig 1B). By contrasting the

α- and β-thymidine derivatives RMSD profile, it would be clear that β-thymidine derivatives

retained a stable profile throughout the simulation time, while the alpha derivative showed

abrupt thrills of RMSD fluctuations in the middle of simulation time (Fig 1B). Surprisingly,

AZTMP, which is a unique substrate for PfTMK, showed abrupt drift and instability at 28 ns

and continued to the end of simulation time.

Structure flexibility analysis

PfTMK backbone flexibility analysis during MD simulation was evaluated by plotting RMSF

of all residues of PfTMK against simulation time (Figs 2 and 3). Fig 2 shows the comparison of

Table 2. dG derivatives used in docking and inhibitory studies.

Compound name Docking score Interaction energy Ki (μM)

deoxyguanosine -133 -145 270

8-Hydroxy-2’-deoxyguanosine -137 -144 180

Guadecitabine -220 -242 90

Guanosine diphosphate mannose -199 -227 >1000

https://doi.org/10.1371/journal.pone.0212065.t002

Table 3. Mean backbone and receptor RMSD.

TMK complex Mean backbone RMSD (Å) Receptor RMSD (Å)

TMK-TMP 0.88 0.77

TMK-dGMP 0.75 0.68

TMK-Ap5dT 1.13 1.15

TMK-AZTMP 1.28 1.32

TMK-TUBdT 1.28 0.82

TMK-TUAdT 1.02 0.67

ApoTMK 1.2 —

https://doi.org/10.1371/journal.pone.0212065.t003
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Fig 1. RMSD of PfTMK complexes. The RMSD (Å) is plotted over the simulation time in ns. The time (X axis) is represented in ps units.

https://doi.org/10.1371/journal.pone.0212065.g001
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Fig 2. RMSF of all residues in ApoTMK or bound with TMP or dGMP.

https://doi.org/10.1371/journal.pone.0212065.g002
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Fig 3. RMSF of all residues in ApoTMK or TMK bound with AZTMP, Ap5dT, TUBdT and TUAdT.

https://doi.org/10.1371/journal.pone.0212065.g003
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RMSF values in Apo-TMK compared with the natural substrates TMP and dGMP. RMSF

showed conserved and different values among aligned PfTMK complexes. With respect to the

RMSF changes, there are four observed regions with noticeable RMSF changes. The greater

RMSF changes were in the range between ALA142 to ILE162 with RMSF value up to 6 Å.

Additionally, there are three more regions with minor RMSF changes including Leu28-Leu42,

Lys60-Ser66 and His168-Asp173. The most important changes were observed in ALA142-

ILE162, which are located in the lid domain. The magnitude of fluctuations was the highest in

ApoTMK, followed by TMP and lastly dGMP. This implies that there are lower flexibility of

PfTMK side chains, especially the lid domain, during the binding of dGMP.

A surprising finding is that AZT shows asymmetric changes across the two monomer of

PfTMK dimer (Fig 3). The lid domain and N-terminal region showed higher RMSD values.

Compared with ApoTMK and TMP-TMK, TUBdT showed lower RMSD of lid domain resi-

dues (<4 Å) and comparatively high RMSDs at the N-terminal region. Peaks of high RMSDs

at the N-terminal region were observed with Leu32-ASN34 (~4.1Å) and Arg47 (5.8 Å).

TUAdT displayed a profile similar to TUBdT in its N-terminal region (Fig 3). However, the

fluctuations in lid domain residues were higher in TUBdT. Therefore, the amplitude of lid

domain movement was in the following order ApoTMK> TMP> AZT> TUBdT> Ap5dT>

TUAdT> dGMP. Therefore, the lid domain undergoes little structural arrangements in the

presence of guanylate substrate compared with thymidylate.

Secondary structure content

The secondary structure content of PfTMK is composed of a combination of helix, sheet, trun

and coil with a varying contribution. In all PfTMK structures bound with compounds, there is

a 2–5 fold increase in turn content compared with ApoTMK with a corresponding decrease in

helical and coil % (Table 4). TMK-dGMP showed the highest helix % and lowest sheet and coil

content.

Conformational changes in PfTMK domains and loops

Conformational changes in PfTMK were most observed in the lid domain and in the loops

connecting PfTMK‘s helices and sheets. Comparison of PfTMK structures before and after

MD simulation reveals changes in the lid domain in TMK-TMP (Fig 4A) and ApoTMK (Fig

4C). Such changes were not observed with TMK-dGMP (Fig 4B). A similar finding was

observed in PfTMK‘s loops. The most important P-loop was more or less stabilized with

ApoTMK and TMK-dGMP and showed little changes in RMSDs in TMK-TMP. Fig 4D shows

the alignment of ApoTMK, TMK-TMP and TMK-dGMP after the end of 50 ns MD. The lid

domain was closer to the P-loop and closing the active site with dGMP followed by TMP and

lastly the ApoTMK. In both urea derivatives of thymidine, there was an outward orientation of

the lid domain especially with the α-thymidine derivatives (Fig 4E and 4F).

Table 4. Secondary structure contents (%) of PfTMK bound with different compounds.

ApoTMK TMK-TMP TMK-dGMP TMK-Ap5dT TMK-AZTMP TMK-TUBdT TMK-TUAdT

helix 45.8 41.3 45.7 41.4 44 45.2 42.2

sheet 19.2 19.2 15.2 18.1 18 19.3 20.1

turn 2.8 9.6 11.4 11.4 8 6.1 10.1

coil 33.2 29.8 25.7 29 30 29.4 25.6

3–10 helix 1.9 2

https://doi.org/10.1371/journal.pone.0212065.t004
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Ligand interaction profiles

For further investigation of substrate binding preferences of PfTMK, the ligand interaction

profiles were analysed (Fig 5). Both TMP and dGMP retained similar hydrogen bonding pro-

file (Fig 5A and 5B) except for interactions with P-loop, where dGMP interacts with Asp17. All

compounds interact with almost one residue in the lid domain, Tyr153 except TUBdT and

TUAdT which showed multiple interactions with several residues in the lid domain and P-

loop (Fig 5D and 5E).

Inhibitory studies

Thymidine derivatives were used in most PfTMK assays [2, 6–8, 10]. To gain more insights

into the interaction of dG derivatives with PfTMK, a set of compounds were checked for their

inhibitory profile (Table 2). dG and 8-Hydroxy-2’-deoxyguanosine showed moderate

Fig 4. Changes in PfTMK folding and structure after MD. (A) Alignment of TMK-TMP before (green) and after (brown) MD (B) Alignment

of TMK-dGMP before (green) and after (brown) MD (C) Alignment of ApoTMK (brown), TMK-TMP (grey) and TMK-dGMP (green) after 50

ns MD (D) Alignment of ApoTMK (green) and TMK-TUBdT (brown) after 50 ns MD (E) Alignment of ApoTMK (green) and TMK-TUAdT

(brown) after 50 ns MD. The brown/green spheres represent the bound magnesium ion.

https://doi.org/10.1371/journal.pone.0212065.g004
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Fig 5. Ligand interactions of substrates and inhibitors with PfTMK. Arrows indicate hydrogen bonding (backbone). Dashed

arrows indicate hydrogen bonding (side chain). The direction of the arrow is toward the recipient side.

https://doi.org/10.1371/journal.pone.0212065.g005
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inhibition, ki = 270 and 180 μM, respectively. The most potent inhibition was by guadecitabine

(Ki = 90 μM). Guanosine diphosphate mannose, which is a ribonucleotide derivative, was

unable to inhibit PfTMK, implying the importance of dG derivatives as PfTMK inhibitors.

Discussion

TMK has been introduced as a potential drug target against several microorganisms e.g. Myco-
bacterium tuberculosis [11, 12], Vaccinia virus [13] and Gram positive bacteria [14, 15].

PfTMK showed structural features which suggest using it as a target to develop new anti-plas-

modial drugs [1, 5, 10]. Yet, further investigations are required to improve the inhibitors effi-

ciency and understand the mechanisms underlying PfTMK recognition of substrates and

inhibitors [8, 10]. We used the MD approach to further investigate the structural bases of

inhibitors interactions as well as suggesting future optimization experiments. Docking and

MD simulation are the gold standards in estimating the recognition of small molecules by pro-

tein targets which can help in sampling, confirmation and analysis of proteins complexes [16–

18].

Lid domain is the most reactive substructure by MD

The lid domain showed variable orientations and fluctuations in response to the nature of the

bound compound. The higher RMSD in the lid domain of free PfTMK is due to the free move-

ment of loops, beta sheets and helices in the absence of bound substrates. The changes in resi-

dues fluctuation weredependent on the type of bound substrate. The most sensitive region

with respect to residue fluctuations was the residues of the lid domain. While several other

regions of residue fluctuation were observed, this might be due to the trial of PfTMK side

chains to reach a stable energy state. The observed decrease in the fluctuation of lid domain

residues movement is therefore due to the strength of interaction with the bound compound

to PfTMK active site.

The natural substrates have different PfTMK structural dynamics

TMP is the default substrate for TMKs. The unique feature of PfTMK is its ability to bind

dGMP and catalyze its phosphorylation with high efficiency comparable to TMP. Previous

studies revealed a common binding site for both TMP and dGMP. In this study, MD revealed

different binding and structural dynamic profiles. In comparison with TMP, dGMP showed

i) more stable trajectories and lower RMSD during the simulation time ii) lower receptor

RMSD iii) lower RMSD of lid domain iv) lid domain is closer to the active site or more firmly

closing the active site v) lower changes in P-loop dynamics vi) dGMP interacts with Asp17 in

P-loop.

The changes in PfTMK after MD reveal considerable changes at P-loop and lid domain,

which are the most important partners in catalytic activity. In order to pack the guanine ring

instead of the thymine ring, dGMP interacts with the P-loop through hydrogen bonds and elu-

cidates lower packing of the lid domain toward closing the active site. This conformation is

reflected by stable trajectories during MD, lower RMSD values, lower RMSF and generalized

structure stability.

PfTMK inhibitory studies indicated that thymidine derivatives have lower ki values com-

pared with guanine derivatives and were more efficiently inhibiting both TMK and dGMP cat-

alytic pathways [1, 2, 6, 7]. This may be due to the observed slight outward orientation of the

lid domain with TMP-TMK in this study, which might not be favourable for guanine deriva-

tives by esteeming more closed site conformation.
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Conformational instability with AZTMP

PfTMK can efficiently phosphorylate AZTMP, which is a feature of prokaryotic enzymes but

not in eukaryotic TMKs [5]. However, by MD simulation, it is evident that the PfTMK struc-

ture is more unstable with large mean backbone and receptor RMSDs. Additionally, there

were large flaws in RMSF in residues in one monomer implying asymmetric changes across

PfTMK dimer residues.

The catalytic properties of PfTMK is derived by a unique structural

plasticity

The proteins structure plasticity affects their adaptation to perform various catalytic activities

and extreme conditions [19, 20]. By MD, PfTMK bears prominent structure plasticity. Despite

noticeable distinctions in catalytically important PfTMK substructures e.g. P-loop and lid

domain, PfTMK was able to efficiently phosphorylate different substrate families such as TMP,

dGMP and AZTMP.

Hyper branched and urea derivatives of thymidine

5’-urea-α- and β-thymidine derivatives were moderate inhibitors of PfTMK [8]. Ap5dT is a

strong inhibitor of thymidylate kinases [21]. It drives its inhibitory potency by showing con-

served interactions of thymidine moiety as well as a strong interaction network with the P-

loop residues, Glu14-Lys21 (Fig 5C). The obtained lower IC50 of α-thymidine derivatives

might be due to its larger size and extension to the phosphorylating site without significant

interactions with the P-loop residues (Fig 5D and 5E). After MD simulation, there was a signif-

icant reorientation of the P-loop and lid domain in the substituted urea derivatives of thymi-

dine, resulting in the loss of some significant interactions with Gly20 and Lys21.

α-thymidine derivatives formed more stable complexes with PfTMK in comparison with

beta derivatives. They showed lower total and receptor RMSD. A constant feature in both

TUAdT and TUBdT is the high residue fluctuations at the N-terminal portions of PfTMK that

are noticeably higher than other compounds as well as the prominent deviation of the lid

domain away from the active site after MD. Both TUAdT and TUBdT were moderate inhibi-

tors of PfTMK [8]. However, TUAdT were more potent against the growth of plasmodium

cultures [8]. In the view of the obtained MD profiles, the stronger antimalarial effects of

TUAdT are supported by more stable complexes and favourable conformational changes dur-

ing their interaction with PfTMK.

dG derivatives

Guanosine diphosphate mannose did not produce any decrease in PfTMK. This confirms the

previous finding that ribonucleotides and their derivatives cannot inhibit PfTMK [2]. dG and

8-Hydroxy-2’-deoxyguanosine showed moderate inhibition, which is noticeably improved by

guadecitabine. The binding profiles indicate that all compounds were showing conserved

interaction with PfTMK including interaction with the P-loop and lid domain (Fig 6). Despite

the high docking score and strong network of the interaction of guadecitabine (Fig 6), the

observed Ki value is still within a moderate inhibitory range. This might be due to loss of inter-

action with P-loop Asp17.

Guadecitapine produced the lowest inhibitory potential. Additionally, in docking studies, it

showed the highest energy of interaction of -242. The correlation between the estimated exper-

imental and theoretical values suggests the importance of further modifications of this com-

pound to get stronger inhibitors. The purine ring of guadecitabine significantly contributed to
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Fig 6. The ligand binding interactions of dG derivatives. Arrows indicate hydrogen bonding (backbone). Dashed arrows indicate hydrogen bonding (side

chain). The direction of the arrow is toward the recipient side.

https://doi.org/10.1371/journal.pone.0212065.g006
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the recognition of the compound at the thymidine binding. The 6–OH group makes hydrogen

bonds with the side chain of ARG18 (Fig 6). Since stronger hydrogen bonds evolve between

the hydroxyl and amino group, this might be an additional factor for the strength of guadecita-

bine as compared with adenine derivatives. The stronger inhibition produced by guadecitabine

as compared with deoxyguanosine and 8-Hydroxy-2’-deoxyguanosine could be attributed to

the presence of phosphorus and the extension of its interaction to the phosphorylation as well

as ATP binding sites. There was an almost conserved interaction of guadecitabine and Guano-

sine diphosphate mannose. Additionally, Guanosine diphosphate mannose showed high bind-

ing energy. However, the experimentally found weak inhibitory properties could be attributed

to the loss of the unfavourable steric interaction between the ribose 3-OH with PHE34, which

favours the selection of deoxyribonucleotides over ribonicleotides.

Conclusions

PfTMK binds several substrate families comprising thymidylate, guanylate and deoxyguanylte.

We used MD simulation to discuss the structural bases and changes in PfTMK structure in

response to different ligands. Additionally, we used inhibitory studies to evaluate the inhibi-

tory effects of a set of purine compounds. PfTMK has structural plasticity to adapt several sub-

strates and undergo several structural conformation while bearing efficient catalytic power.

Interaction with the P-loop and lid domain residues accounts for the major changes associated

with structure arrangement and substrate binding. dG derivatives remains less efficient than

thymidine derivatives in the inhibition of PfTMK. The binding of PfTMK with purine com-

pounds was associated with stable and lower RMSD change along simulation time, fixation of

the lid domain and limited reorientation of the P-loop residues. This might be due to the con-

siderable variations in PFTMK structure, especially in the lid domain, and in the presence of

thymidine or guanine derivatives.
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