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Abstract

Background: An alteration of autophagy and mitophagy, two highly conserved lysosome-dependent degradation
pathways involved in the maintenance of cellular homeostasis, has been associated with multiple sclerosis (MS).

Objective: To search the level of autophagy-related 5 (ATG5) and Parkin proteins, as markers of autophagy and
mitophagy respectively, and lactate in a cohort of MS patients.

Methods: Cerebrospinal fluid (CSF) and serum samples from 60 MS patients were analyzed: 30 with magnetic
resonance imaging (MRI) evidence of disease activity, gadolinium (Gd)-based contrast agent positive (Gd+), and 30
without MRI evidence of disease activity (Gd—). ATG5, Parkin, and lactate were measured using commercially
available products.

Results and conclusions: Serum levels of ATG5, Parkin, and lactate were more elevated in Gd+ than in Gd— MS

patients (p < 0.0001), and CSF concentrations of ATG5 and Parkin were greater in Gd+ than in Gd— MS (p < 0.0001).
Our results demonstrated that molecular markers of autophagy and mitophagy are increased in CSF of MS patients
during the active phases of the disease and that these catabolic markers, together with lactate, are also remarkably

molecules as biomarkers of disease activity.

augmented in blood suggesting a role of these processes in MS pathogenesis and the possible use of these
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Introduction
Autophagy, a lysosome-dependent degradation pathway,
is a highly conserved complex cellular mechanism
involved in the maintenance of cellular homeostasis
through the degradation of senescent subcellular organ-
elles, infectious agents, and misfolded proteins [1].
Increasing evidence indicates that autophagy is
involved in various physiological processes and in the
pathogenesis of complex diseases, such as autoimmune
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disorders, tumors, and metabolic disorders [2]. In the
immune system, autophagy can act on four main levels:
(i) in the removal of intracellular pathogens [3], (ii) in
the development of T and B lymphocytes [4, 5], (iii) in
the pro-inflammatory signal cascade [6], and (iv) in the
secretory pathway [7]. Based on its functions within the
immune system, autophagy may play a pathogenic and/
or therapeutic role in autoimmune diseases. Previous
studies have shown an implication of autophagy in
systemic lupus erythematosus, psoriasis, rheumatoid
arthritis, inflammatory bowel disease, and MS [2]. In
confirmation of this, immunohistochemical analysis has
unveiled the presence of autophagic features in MS brain
tissue samples [8]. Furthermore, a gain of expression of
autophagic markers was found in experimental auto-
immune encephalomyelitis (EAE) animal models [9] and
conditional knockdown of genes related to autophagy
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has shown therapeutic effects in the animal model of
MS [10].

A selective form of autophagy is also involved in the
elimination of damaged mitochondria in a process called
mitophagy [11]. Suppression of mitophagy leads to accu-
mulation of aberrant mitochondria, reactive oxygen spe-
cies (ROS) overload, and consequent mitochondrial
malfunction [12].

In the immune system, proper mitochondrial function
is a fundamental prerequisite for inflammatory responses
and host defense [13, 14]. Accordingly, impairments in
the correct functioning of the mitochondrial population
can lead to activation of inflammatory signaling
pathways [15] with the consequent establishment of a
chronic inflammatory condition that could result in the
development of autoimmune diseases [16].

Mitochondrial dysfunctions are also implicated in nor-
mal and physiological aging processes as well as in a
broad spectrum of age-related disorders, including some
neurodegenerative diseases such as Parkinson’s and
Alzheimer’s [17]. Regarding the MS, it is possible to list
specific hallmarks of mitochondrial anomalies during
the development and the progression of the disease.
Oxidative damage and anomalous mitochondrial protein
functions are the most common cause of mitochondrial
dysfunction found in MS [18]. Several studies showed
that mtDNA mutations and cell death mechanisms, like
apoptosis and necrosis, are involved during the patho-
physiology of MS [19]. Recently, we also demonstrated
that mitochondrial impairments observed in MS might
be caused by alteration of cellular clearing mechanism.
Indeed, in MS-like inflammatory conditions, we found a
sustained alteration of mitochondrial functioning accom-
panied by adenosine monophosphate-activated protein
kinase (AMPK) activation [20]. Of note, AMPK is the
main positive regulator of the autophagic machinery [1].
Most importantly, we proved that molecular markers of
autophagy and mitophagy were elevated in the central
nervous system (CNS) of MS patients compared to
neurological controls, suggesting a role of these two
mechanisms in the pathogenesis and/or development of
MS [21]. Moreover, in the same work, we found that
with respect to other neurological diseases and healthy
individuals, autophagy- and mitophagy-related molecules
were also elevated at the systemic level in MS patients,
suggesting a potential use of these molecules as a diag-
nostic/prognostic biomarker in the course of MS.

The present study aimed to investigate the potential
role of ATG-5 and Parkin proteins, as biomarkers of
autophagy and mitophagy, respectively, in a cohort of
MS patients stratified according to MRI activity. More-
over, in the same population, serum levels of lactate
were measured as an indicator of mitochondrial dys-
function [22].
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Materials and methods

Study design

This study retrospectively included 60 patients with
relapsing-remitting MS according to the currently
accepted criteria [23]. At the time of sample collection, (a)
disease severity was scored using Kurtzke’s Expanded
Disability Status Scale (EDSS) [24] and (b) the presence of
relapse was recorded as a clinical activity. Lumbar punc-
ture was performed as part of the diagnostic work-up for
a suspect of MS, and subsequently, all patients were
“naive” for disease-modifying treatment. Moreover, none
of the study subjects underwent treatment with immuno-
suppressants or immune-modulating drugs, including
steroids, during the period of 6 months before the study.
The study was approved by the Committee for Medical
Ethics in Research of Ferrara, and written consent to study
participation was obtained from all subjects.

Sample handling

Paired CSF and serum samples were collected from MS
patients for purposes of diagnosis and measured under
the same conditions. CSF samples were obtained
through atraumatic lumbar puncture. CSF cell count
was performed on untreated samples within 2h from
the withdrawal, and the threshold of 4 white blood cells
(WBC)/ul was used to indicate a “normal cell count”
[25]. Cell-free CSF and serum were obtained after centri-
fugation at 3000g at 20 °C for 15 min. Supernatants were
collected, under sterile conditions in aliquots of 500 l,
coded, frozen, and stored at — 80°C until assay. Serum
and CSF albumin levels of were determined by immuno-
chemical nephelometry with the Beckman Immage 800
system (Beckman Instruments, Fullerton, CA, USA), and
the blood-brain barrier permeability was measured
through the calculation of the CSF/serum albumin quo-
tient (QAIb) [25]. Intrathecal immunoglobulin synthesis
was investigated through isoelectric focusing followed by
IgG-specific immunoblotting in paired CSF and serum
samples [26].

Magnetic resonance imaging analysis

All MS patients underwent brain MRI scans within 48 h
from lumbar puncture on a 1.5-Tesla MRI unit (GE
Signa Horizon, General Electric Medical Systems, Mil-
waukee, WI, USA). Routinely used T1-weighted axial
spin echo images were obtained approximately 10 min
after intravenous injection of 0.1 mmol/kg of gadopente-
tic acid (Gd-DTPA) in each patient. Lesions showing Gd
enhancement on T1-weighted scans were defined as
indicative of MRI activity, since they occur only at sites
of active inflammation, are considered a powerful tool to
detect disease activity in MS, and are more sensitive in
measuring disease activity than clinical examination [27].
Accordingly, MS patients with one or more Gd-
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enhancing lesions (Gd+) were classified as MRI active
and MS patients without Gd-enhancing lesions (Gd-)
were classified as MRI inactive. Two neuroradiologists
independently reviewed all neuroimaging data (with 15
and 20years experience, respectively) blinded to the
patients’ clinical and laboratory data. Discrepancies
between readers were resolved by consensus adjudica-
tion (Fig. 1).

ATG-5 and Parkin level determination

According to our previous study [21], CSF and serum
levels of ATG-5 and Parkin were determined using two
commercially available ELISA kits (My Biosource, San
Diego, California, USA; codes MS7209535 and
MBS732278, respectively) following the instructions of
the manufacturer.

Lactate level determination

After collection, serum samples were immediately parti-
tioned into sterile cryovials tubes and transported at —
80°C. To prevent detrimental of serum components, re-
peated freeze-thaw cycles were avoided. Serum levels of
lactate were determined using a colorimetric L-Lactate
Assay Kit according to the manufacturer’s protocol (L-
Lactate Assay Kit Colorimetric, Abcam, ab65331).
Briefly, 10 ul of serum sample plus 40 pl of Lactate Assay
Buffer was added to 96-plate wells with a reaction mix
composed of Lactate Assay Buffer, Lactate Substrate
Mix, and Lactate Enzyme Mix. After incubation for 30°,
the OD at 450 nm was measured on a microplate reader.
Each sample was analyzed in triplicate.
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Statistical analysis
The categorical variables were expressed in frequencies
(percentages) and compared with the mean chi-square
tests. The distribution of continuous variables was ana-
lyzed with the Kolmogorov-Smirnov test. (i) In the case
of normal distribution of the variables, the values were
presented as mean and standard deviations, the com-
parison between two groups by means of the student
test, and the correlation between two variables was eval-
uated using the Pearson index. (ii) In the case of non-
normal data distribution, a non-parametric statistic was
used: data were presented as median and interquartile
range, the comparison between two groups by the
Mann-Whitney test, and the correlation between two
variables was evaluated using the Spearman index.
Two-tailed tests were calculated, and a p value of less
than 0.05 was considered significant. The SPSS° statis-
tical package for Windows and OSX (SPSS Inc., IBM?,
Somers, NY, USA) and Prism® (GraphPad Software Inc.)
were used for statistical analysis.

Results

The study was conducted on 60 MS individuals: 30 with
MRI evidence of disease activity (Gd+) and 30, age and
sex matched, without MRI evidence of disease activity
(Gd-). The main clinical-demographic features of the
study population are reported in Table 1.

Serum and cerebrospinal fluid levels of ATG-5

Serum concentrations of ATG-5 were more elevated in
Gd+ MS (mean + standard deviation (SD) 40.41 + 11.49
ng/ml) than in Gd- MS patients (mean+SD 16.53 +

patients included in the study

Fig. 1 Magnetic resonance imaging (MRI) scan in a 35-year-old woman with relapsing-remitting multiple sclerosis (MS) imaged at 36 h after lumbar
puncture showing bilateral multiple and partially confluent hyperintense lesions in periventricular white matter on fluid-attenuated inversion recovery
(FLAIR) axial images (). The ring enhancement characterizing the lesion located in the left hemisphere, at the level of centrum semiovale, was
recognized on contrast-enhanced T1-weighted axial spin echo images (b) by one neuroradiologist, but not by the other. After consensus, this lesion
was classified as Gadolium (Gd) enhanced and the patient as MRI active (Gd+). The consensus was needed for the same reasons in 5/60 (8.3%)
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Table 1 Clinical and demographic main features of multiple sclerosis (MS) study population grouped according to magnetic

resonance imaging (MRI) evidence of disease activity

Gd— MS (n=30) Gd+ MS (n=30)
Sex (F), N (%) 21 (70.0) 21 (70.0)
Mean (SD) age (years) at study time 453 (11.9) 428 (11.3)
Median (IQR) EDSS at study time 23(1.0-34) 1.8 (1.0-2.8)
Clinical activity at study time, N (%) 21/30 (70) 26/30 (86.7)
CSF characteristics
Median (IQR) QAIb 4.5 (3.3-5.8) 4.7 (3.9-5.9)
Normal cell count (<4 WBC/ul), N (%) 29 (97) 24 (80)
CSF-restricted 1gG OCB (pos), N (%) 22 (73.3) 23 (76.7)

CSF cerebrospinal fluid, EDSS expanded disability status scale, Gd+ magnetic resonance imaging (MRI) evidence of disease activity, Gd— no MRI evidence of
disease activity, /QR, interquartile range, MS multiple sclerosis, OCB oligoclonal bands, QAlb CSF/serum albumin quotient, SD standard deviation, WBC white

blood cells

6.80 ng/ml) (unpaired t test; p <0.0001) (Fig. 2a). CSF
levels of ATG-5 were increased in Gd+ MS (mean *
SD 42.10 + 11.22 ng/ml) with respect to Gd-— MS sub-
jects (mean + SD 14.93 + 6.54 ng/ml) (unpaired t test;
p <0.0001) (Fig. 2b).

Serum and cerebrospinal fluid levels of Parkin

Serum concentrations of Parkin were higher in Gd+ MS
(median, interquartile range (IQR) 32.03, 23.10-41.94
pg/ml) than in Gd- MS patients (median, IQR 12.29,
9.90-18.61 pg/ml) (Mann-Whitney; p < 0.0001) (Fig. 2c).
CSF levels of Parkin were greater in Gd+ MS (median,
IQR 34.08, 29.02-42.56 pg/ml) than in Gd- MS subjects
(median, IQR 11.34, 9.55-15.32 pg/ml) (Mann-Whitney;
p<0.0001) (Fig. 2d).

Serum levels of lactate

Serum concentrations of lactate were more elevated in
Gd+ MS (median, IQR 2.01, 1.57-2.33 nmol/ml) than in
Gd- MS patients (median, IQR 1.09, 0.51-1.29 nmol/ml)
(Mann-Whitney; p < 0.0001) (Fig. 2e).

Serum levels of lactate were positively correlated to
ATG-5 and Parkin in MS patients analyzed as a whole
(both Pearson; p < 0.0001), while no statistical significant
correlations were found by grouping MS patients
according to MRI evidence of disease activity (Table 2).

Discussion
In the present study, we demonstrated that molecular
markers of autophagy and mitophagy are increased in the
CNS of MS patients during the active phases of the dis-
ease. Furthermore, our data indicated that concentrations
of these catabolic markers, together with lactate (a reliable
indicator of mitochondrial malfunctioning), are remark-
ably augmented in peripheral blood of the same patients.
Our results provide new information on these bio-
logical markers that we had previously shown to be
increased, within the CNS and at the systemic level, in

patients with MS compared to other neurological disor-
ders and healthy individuals [21].

At today, the role of autophagy in autoimmune dis-
eases and in particular in MS is still debated. Autophagy
exerts a complex function in cell life, acting either as a
pro-survival or as a cell death mechanism. ATG5-
deficient CD4+ and CD8+ T cells have a normal growth
in the thymus, but fail to repopulate the periphery due
to massive cell death and fail to proliferate after stimula-
tion efficiently [4]. On the other hand, T regulatory
(Treg) cell-specific deletion of ATG5 and ATG?7 resulted
in a reduction in frequencies and survival of these cells
causing a defective self-tolerance [28]. These data depict
a critical role of autophagy in the development and func-
tion of lymphocytes by suggesting that this cellular
mechanism may be essential for (i) survival, (ii) prolifer-
ation, and (iii) activation of T lymphocytes. Our results
strongly confirm that an increase of ATG5 could be as-
sociated with demyelination as it was described in MS
lesions and the animal model of MS, the EAE [9].
Similarly, increases in ATG5 levels (mRNA and protein
amount) were also found in peripheral blood mono-
nuclear cell (PBMC) obtained from MS patients who are
treatment naive [29]. In this work, the authors also
found a direct correlation among ATG5 and pro-
inflammatory cytokines levels, suggesting a strong rela-
tionship among ATG5 and inflammation, but they did
not observe any change in the expression of other au-
tophagy genes. In contrast to this, significant variations
in the expression of several autophagic regulators were
recognized in a different and larger population which
comprised treated and untreated MS patients [30].
Future studies investigating the role of MS therapeutic
protocols may help to solve this issue.

A particular form of autophagy is called mitophagy: a
mechanism by which damaged or dysfunctional mito-
chondria are addressed to lysosomal degradation.
Accumulation of damaged mitochondria can lead an
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Fig. 2 Autophagy-related 5 (ATG5), Parkin, and lactate serum and cerebrospinal fluid (CSF) levels in 30 multiple sclerosis (MS) patients with
magnetic resonance imaging (MRI) evidence of disease activity (Gd+) and 30 MS patients without MRI evidence of disease activity (Gd—). ATG5
serum and CSF levels were higher in Gd+ MS patients than in Gd— (unpaired t test; p < 0.0001) (a, b). Parkin serum and CSF concentrations were
increased in Gd+ MS patients than in Gd— (Mann-Whitney; p < 0.0001) (c, d). Lactate serum levels were more elevated in Gd+ MS than in Gd—
(Mann-Whitney; p < 0.0001) (e). Each point represents a single observation. Horizontal bars indicate means (a, b) or medians (c-e)
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excessive ROS production, elevated cytoplasmic calcium
levels, and mitochondrial DNA release, which may acti-
vate immune signaling pathways with the final conse-
quence of causing a release of inflammatory cytokines
[13, 31, 32]. Furthermore, the release of these cytokines
may subsequently promote the release of other soluble
inflammation mediators including IL-23 and IL-17 [33].
All these data indicate that in addition to being essential
for normal cellular homeostasis, mitophagy may also
represent a crucial mechanism in regulating and control-
ling inflammatory responses.

Recently, we described an increase of mitophagic-
related protein, Parkin, in CSF and serum of MS patients
compared to other subjects affected by inflammatory
and non-inflammatory CNS diseases as well as to

healthy donors (only in serum). Parkin is a ubiquitin
ligase, with an amino-terminal ubiquitin-like domain
and a carboxyl-terminal ubiquitin ligase domain [34],
that is recruited from the cytosol to depolarized mito-
chondria to promote the selective removal of the dam-
aged organelle [35]. The presence of augmented levels of
Parkin in CSF levels was recently confirmed by Kristofi-
kova and colleagues, who found increased levels of the
kinase bound to the mitochondrial protein 17p-
hydroxysteroid dehydrogenase type 10 (17p-HSD10) in
CSF of MS-affected patients [36]. Interestingly, no differ-
ence was found when 17B-HSD10 was dissociated with
Parkin, confirming the importance of the kinase during
MS. Moreover, according to the results of that paper,
CSF levels of 17B-HSD10 were not considered a valuable
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Table 2 Comparison between serum levels of lactate and
autophagy-related 5 (ATG-5) and Parkin in multiple sclerosis
(MS) patients analyzed as a whole and grouped according to
magnetic resonance imaging (MRI) evidence of disease activity

Serum lactate levels (nmol/ml)

MS (n = 60)

Serum ATG-5 levels (pg/ml) r=0.5897; p < 0.0001 (Pearson)
Serum Parkin levels (ng/ml) r=04855; p <0.0001 (Pearson)
Gd— MS (n=30)

Serum ATG-5 levels (pg/ml) r=0.1213; p=5233 (Spearman)
Serum Parkin levels (ng/ml) r=—0.3246; p=0.0801 (Spearman)
Gd+ MS (n=30)

Serum ATG-5 levels (pg/ml) r=-0.01697; p=0.9291 (Spearman)

Serum Parkin levels (ng/ml) r=—0.08174; p=0.6565 (Spearman)

Gd+ MRI evidence of disease activity, Gd— no MRI evidence of disease activity

biomarker for the early diagnosis or for the progression
of MS.

Mitophagy impairment is associated with aging and to
a wide spectrum of age-related diseases, including
neurodegenerative disorders such as Parkinson’s disease
and Alzheimer’s disease [17].

Our previous data indicated that an increase in mito-
phagic activity was associated to MS, and the present
results showed for the first time that this increase is as-
sociated explicitly to the active phase of the disease as
demonstrated by the presence of contrast-enhancing
lesions at the MRI analysis.

Recently, serum lactate has been indicated as a potential
biomarker of mitochondrial dysfunction in MS patients
and that this molecule is associated with the progression
of the disease and to the disability accumulation [22].

Our data add further information on the role of lactate
in MS subjects. In fact, in our population, serum levels
of lactate, together with the autophagy- and mitophagy-
related molecules, were increased in MS patients with
gadolinium contrast enhancement, suggesting that these
metabolic imbalances are more pronounced during the
active phase of the disease. These findings corroborated
with studies showing that during differentiation events,
oligodendrocyte cells consumed lactate to ameliorate
hypomyelination induced by low energetic conditions
[37, 38]. Similar observations were also found in matur-
ating oligodendrocytes exposed to inflammatory condi-
tions, where increased lactate levels were accompanied
by a progressive loss of mitochondrial functioning [20].
Considering all these aspects, it is possible to
hypothesize that during the active state of the pathology,
the auto/mitophagic events are activated by loss of the
proper mitochondrial functions as denoted by increased
lactate levels. Similarly, increases in ATG5 levels (nRNA
and proteic amount) were also found in PBMC obtained
from treatment-naive MS patients [29]. In that work,
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authors also found a direct correlation among ATG5
and pro-inflammatory cytokines levels, suggesting a
strong relationship among ATG5 and inflammation, but
not observed any change in the expression of other
autophagy genes. In contrast to this, significant varia-
tions in the expression of several autophagic regulators
were recognized in a different and larger population
which comprised treated and untreated MS patients
[30]. Future studies investigating the role of MS
therapeutic protocols may help to solve this issue.

Overall, our results started to bring new lights on the
role of autophagy and mitophagy in CNS pathology and
in particular in MS. If on the one hand it is accepted
that the reduction of autophagy and mitophagy pro-
cesses within the CNS is mainly related to neurodegen-
erative diseases, such as Alzheimer’s disease and
Parkinson’s disease [17], on the other hand, our studies
show that an increase of soluble markers of these two
metabolic processes is related to the presence of a
chronic CNS inflammation and that these markers fur-
ther increase during the acute phase of the inflammatory
reaction. Moreover, the serum increase we observed of
autophagy, mitophagy, and mitochondrial malfunctions
biomarkers seems to indicate that these metabolic pro-
cesses are correlated to the immune response that starts
in the periphery and enters the CNS in an “outside-in”
model of autoimmune reaction. Most importantly, the
presence of these molecules in blood, an easier access-
ible biological fluid, and their correlation with the
disease activity together suggest a potential role as
markers of the natural history of the disease that corre-
lates longitudinally with known clinical indices, follow-
ing the definition of “type 0 biomarker” [39].

Conclusions

Our study indicates that in the CNS of MS patients, au-
tophagic and mitophagic markers are increased during
the active phase of the disease as a consequence of the
inflammatory reaction that occurs within the brain. In
parallel, we denoted that these molecules, together with
lactate, are also increased in peripheral blood, probably
reflecting an immune activation taking place in periph-
ery. The presence of these metabolic markers not only
in CSF but also in an easily accessible body fluid like
blood suggests a potential role of these molecules as
biomarkers for disease activity and progression in course
of MS. Thus, as was the case for other biomarkers [40],
further studies are warranted to validate the use of these
promising molecules, in particular (i) on patients
presenting clinically isolated syndromes and on healthy
controls to evaluate the capability to guide an early
diagnosis of MS, and (ii) during immunomodulating
treatment for the monitoring of disease activity and
progression.
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