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Meiothermus ruber (Loginova et al. 1984) Nobre et al. 1996 is the type species of the genus 
Meiothermus. This thermophilic genus is of special interest, as its members share relatively 
low degrees of 16S rRNA gene sequence similarity and constitute a separate evolutionary li-
neage from members of the genus Thermus, from which they can generally be distinguished 
by their slightly lower temperature optima. The temperature related split is in accordance 
with the chemotaxonomic feature of the polar lipids. M. ruber is a representative of the low-
temperature group. This is the first completed genome sequence of the genus Meiothermus 
and only the third genome sequence to be published from a member of the family Therma-
ceae. The 3,097,457 bp long genome with its 3,052 protein-coding and 53 RNA genes is a 
part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain 21T (= DSM 1279 = ATCC 35948 = VKM B-
1258) is the type strain of the species Meiother-
mus ruber, which is the type species of the genus 
Meiothermus [1]. Strain 21T was first described as 
a member of the genus Thermus by Loginova and 
Egorova in 1975 [2], but the species name to 
which it was assigned was not included on the 
Approved Lists of Bacterial Names [3]. Conse-
quently Thermus ruber was revived, according to 
Rule 28a of the International Code of Nomencla-
ture of Bacteria [4] in 1984 [5]. It received its cur-
rent name in 1996 when transferred from the ge-

nus Thermus into the then novel genus Meiother-
mus by Nobre et al. [1]. Currently, there are eight 
species placed in the genus Meiothermus [6]. The 
genus name derives from the Greek words ‘meion’ 
and ‘thermos’ meaning ‘lesser’ and ‘hot’ to indicate 
an organism in a less hot place [1,6]. The species 
epithet derives from the Latin word ‘ruber’ mean-
ing red, to indicate the red cell pigmentation [5,6]. 
Members of the genus Meiothermus were isolated 
from natural hot springs and artificial thermal en-
vironments [1] in Russia [5], Central France [7], 
both Northern and Central Portugal [8,9], North-
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Eastern China [10], Northern Taiwan [11] and 
Iceland [12]. Interestingly, the genus Meiothermus 
is heterogeneous with respect to pigmentation. 
The yellow pigmented species also form a distinct 
group on the basis of the 16S rRNA gene sequence 
similarity, with the red/orange pigmented strains 
forming two groups, one comprising M. silvanus 
and the other the remaining species [9,10]. Like all 
members of the Deinococci the lipid composition 
of the cell membrane of members of the genus 
Meiothermus is based on unusual and characteris-
tic structures. Here we present a summary classi-
fication and a set of features for M. ruber 21T, to-
gether with the description of the complete ge-
nomic sequencing and annotation. 

Classification and features 
The 16S rRNA genes of the seven other type 
strains in the genus Meiothermus share between 
88.7% (M. silvanus) [13] and 98.8% (M. taiwanen-
sis) [14] sequence identity with strain 21T, whe-
reas the other type strains from the family Ther-
maceae share 84.5 to 87.6% sequence identity 
[15]. Thermus sp. R55-10 from the Great Artesian 
Basin of Australia (AF407749), as well as other 
reference strains, e.g. 16105 and 17106 [12], and 
the uncultured bacterial clone 53-ORF05 from an 

aerobic sequencing batch reactor (DQ376569) 
show full length 16S rRNA sequences identical to 
that of strain 21T. A rather large number of iso-
lates with almost identical 16S rRNA gene se-
quences originates from the Great Artesian Basin 
of Australia, clone R03 (AF407684), and various 
hot springs in Hyogo, Japan (strain H328; 
AB442017), Liaoning Province, China (strain 
L462; EU418906, and others), Thailand (strain 
O1DQU (EU376397), a Finnish paper production 
facility (strain L-s-R2A-3B.2; AM229096) and oth-
ers), but also the not validly published ‘M. rosa-
ceus’ (99.9%) [16] from Tengchong hot spring in 
Yunnan (China). Environmental samples and me-
tagenomic surveys do not surpass 81-82% se-
quence similarity to the 16S rRNA gene sequence 
of strain 21T, indicating a rather mixed impression 
about the environmental importance of strains 
belonging to the species M. ruber, as occurring on-
ly in very restricted extreme habitats (status Au-
gust 2009). 
Figure 2 shows the phylogenetic neighborhood of 
M. ruber 21T in a 16S rRNA based tree. The se-
quences of the two 16S rRNA gene copies in the 
genome are identical and differ by only one nuc-
leotide from the previously published sequence 
generated from ATCC 35948 (Z15059). 

 

 
Figure 1. Scanning electron micrograph of M. ruber 21T 
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A detailed physiological description based on five 
strains has been given by Loginova et al. [5]. The cells 
are described as Gram-negative nonmotile rods that 
are 3 to 6 by 0.5 to 0.8 µm (Table 1), have rounded 
ends, and are nonsporeforming [5]. In potato-
peptone-yeast extract broth incubated at 60°C, fila-
mentous forms (20 to 40 µm in length) are observed 
along with shorter rods (Figure 1) [5]. No filamentous 
forms are observed after 16 h of incubation. M. ruber 
is obligately thermophilic [5]. On potato-peptone-
yeast extract medium, the temperature range for 
growth is approx. 35-70°C, with an optimum temper-
ature at 60°C (the generation time is then 60 min) [5]. 
A bright red intracellular carotenoid pigment is pro-
duced, which resembles retro-dehydro-γ-carotene 
(neo A, neo B) in its spectral properties [2]. The ab-
sorption spectra of acetone, methanol-acetone (l:l), 
and hexane extracts show three maxima at 455, 483, 
and 513 nm. The major carotenoid has since been iden-
tified as a 1‘-β-glucopyranosyl-3,4,3‘,4‘-tetradehydro-
1‘,2‘-dihydro-β,ψ-caroten-2-one, with the glucose ace-
tylated at position 6 [30]. One strain (strain INMI-a) 
contains a bright yellow pigment resembling neuros-
poraxanthine in its spectral properties [5], although it 
may well have been misidentified, since other species 
within the genus Meiothermus are yellow pigmented 

[8,9]. M. ruber is obligately aerobic [5]. It grows in mi-
nimal medium supplemented with 0.15% (wt/vol) 
peptone as an N source, 0.05% (wt/vol) yeast extract, 
and one of the following carbon sources at a concen-
tration of 0.25% (wt/vol): D-glucose, sucrose, mal-
tose, D-galactose, D-mannose, rhamnose, D-cellobiose, 
glycerol, D-mannitol, acetate, pyruvate, succinate, fu-
marate, or DL-malate (sodium salts). No growth oc-
curs if the concentration of D-glucose in the medium 
is raised to 0.5% (wt/vol) [5]. Only moderate growth 
occurs when ammonium phosphate (0.1%, wt/vol) is 
substituted for peptone as the N source. No growth 
occurs in the control medium without a carbon 
source. No growth occurs on minimal medium sup-
plemented with 0.25% (wt/vol) D-glucose, 0.05% 
(wt/vol) yeast extract and one of the following nitro-
gen sources at a concentration of 0.1% (wt/vol): L-
alanine, glycine, L-asparagine, L-tyrosine, L-
glutamate, ammonium sulfate, nitrate, or urea. Fur-
ther lists of carbon source utilization, which differ in 
part from the above list, are published elsewhere 
[7,10-12]. Nitrates are not reduced and milk is not 
peptonized [5], but M. ruber strain 21T is positive for 
catalase and oxidase [10]. The most comprehensive 
and updated list of physiological properties is proba-
bly given by Albuquerque et al [7]. 

 

 
Figure 2. Phylogenetic tree highlighting the position of M. ruber 21T relative to the type strains of the 
other species within the genus and to the type strains of the other species within the family Therma-
ceae. The trees were inferred from 1,403 aligned characters [31,32] of the 16S rRNA gene sequence 
under the maximum likelihood criterion [33] and rooted in accordance with the current taxonomy 
[34]. The branches are scaled in terms of the expected number of substitutions per site. Numbers 
above branches are support values from 1,000 bootstrap replicates [35] if larger than 60%. Lineages 
with type strain genome sequencing projects registered in GOLD [36] are shown in blue, published 
genomes in bold (Thermus thermophilus; AP008226). 



Tindall et al. 

http://standardsingenomics.org 29 

 
Table 1. Classification and general features of M. ruber 21T according to the MIGS recommendations [17] 

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [18] 

Phylum Deinococcus -Thermus TAS [1, 19-23] 

Class Deinococci TAS [24,25] 

Order Thermales TAS [25,26] 

Family Thermaceae TAS [25,27] 

Genus Meiothermus TAS [1] 

Species Meiothermus ruber TAS [1,5] 

Type strain 21 TAS [5] 

 Gram stain negative TAS [5] 

 Cell shape rod TAS [5] 

 Motility non motile TAS [5] 

 Sporulation not reported TAS [5] 

 Temperature range 35°C–70°C TAS [5] 

 Optimum temperature 60°C TAS [5] 

 Salinity growth with 1% NaCl TAS [7] 

MIGS-22 Oxygen requirement obligately aerobic TAS [5] 

 Carbon source a diverse set of sugars TAS [5] 

 Energy source carbohydrates TAS [5] 

MIGS-6 Habitat hot springs TAS [5] 

MIGS-15 Biotic relationship free-living TAS [5] 

MIGS-14 Pathogenicity not reported  

 Biosafety level 1 TAS [28] 

 Isolation hot spring TAS [5] 

MIGS-4 Geographic location Kamchatka Peninsula, Russia TAS [5] 

MIGS-5 Sample collection time 1973 or before TAS [2] 
MIGS-4.1 
MIGS-4.2 

Latitude  
Longitude 

unknown 
unknown 

 

MIGS-4.3 Depth unknown  

MIGS-4.4 Altitude unknown  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author 
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not 
directly observed for the living, isolated sample, but based on a generally accepted property for the 
species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [29]. If 
the evidence code is IDA, then the property was directly observed by one of the authors or an expert 
mentioned in the acknowledgements 

Chemotaxonomy 
Initial reports on the polar lipids of M. ruber indi-
cated that they consist of two major glycolipids GL1a 
(~ 42%) and GL1b (~ 57%) and one major phospho-
lipid PL2 (~ 93%), with small amounts of two other 
phospholipids PL1 and PL3 [37]. Detailed work indi-
cates that in strains of Thermus oshimai, T. thermo-
philus, M. ruber, and M. taiwanensis the major phos-
pholipid is a 2’-O-(1, 2-diacyl-sn-glycero-3-phospho) 
–3’-O-(α-N-acetyl-glucosaminyl)-N-glyceroyl alky-
lamine [38]. This compound is related to the major 

phosphoglycolipid reported from Deinococcus radi-
odurans [39] and can be considered to be unambi-
guous chemical markers for this major evolutionary 
lineage. The glycolipids are derivatives of a Glcp -> 
Glcp-> GalNAcyl -> Glcp -> diacyl glycerol [40]. 
Based on mass spectral data it appears that there 
may be three distinct derivatives, differing in the 
fatty acid amide linked to the gatactosamine [40]. 
These may be divided into one compound contain-
ing exclusively 2-hydroxylated fatty acids (mainly 2-
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OH iso-17:0) and a mixture of two compounds that 
cannot be fully resolved by thin layer chromatogra-
phy carrying either 3-hydroxylated fatty acids or 
unsubstituted fatty acids. The basic glycolipid struc-
ture dihexosyl – N-acyl-hexosaminyl – hexosyl – di-
acylglycerol is a feature common to all members of 
the genera Thermus and Meiothermus examined to 
date. There is currently no evidence that members of 
the family Thermaceae (as currently defined) pro-
duce significant amounts of polar lipids containing 
only two aliphatic side chains. The consequences of 
having polar lipids containing three aliphatic side 
chains on membrane structure has yet to be ex-
amined. Such peculiarities also indicate the value of 
membrane composition in helping to unravel evolu-
tion at a cellular level. The major fatty acids of the 
polar lipids are iso-C15:0 (30-40%) and iso-C17:0 
(13-17%), followed by anteiso-C15:0, C16:0, iso-C16:0, 
anteiso-C17:0, iso-C17:0-2OH, and, at least in some stu-
dies, iso-C17:1 ω9c (the values range from 3-10%). 
Other fatty acid values are below 2%, including 3-OH 
branched chain fatty acids. The values vary slightly 
between the different studies [7,9,11,12,37]. De-
tailed structural studies suggest that long chain diols 
may be present in small amounts, substituting for 

the 1-acyl-sn-glycerol [38]. Although not routinely 
reported the presence of alkylamines (amide linked 
to the glyceric acid of the major phospholipid) can 
be deduced from detailed structural studies of the 
major phospholipid [38]. Menaquinone 8 is the ma-
jor respiratory quinone, although it is not clear 
which pathway is used for the synthesis of the naph-
thoquinone ring nucleus [41]. Ornithine is the major 
diamino acid of the peptidoglycan in the genus Meio-
thermus [1]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [42], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [43]. The genome project is depo-
sited in the Genome OnLine Database [36] and the 
complete genome sequence is deposited in Gen-
Bank. Sequencing, finishing and annotation were 
performed by the DOE Joint Genome Institute 
(JGI). A summary of the project information is 
shown in Table 2. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one Sanger 8 kb 
pMCL200 library, one fosmide libraryand 
one 454 pyrosequence standard library 

MIGS-29 Sequencing platforms ABI3730, 454 Titanium 
MIGS-31.2 Sequencing coverage 9.84× Sanger; 27.4× pyrosequence 
MIGS-30 Assemblers Newbler version 1.1.02.15, PGA 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP001743 
 Genbank Date of Release March 3, 2010 
 GOLD ID Gc01235 
 NCBI project ID 28827 
 Database: IMG-GEBA 2501651201 
MIGS-13 Source material identifier DSM 1279 
 Project relevance Tree of Life, GEBA 

 
Growth conditions and DNA isolation 
M. ruber 21T, DSM 1279, was grown in DSMZ me-
dium 256 (Nutrient Agar) [44] at 50°C. DNA was 
isolated from 0.5-1 g of cell paste using Qiagen 
Genomic 500 DNA Kit (Qiagen, Hilden, Germany) 
following the standard protocol as recommended 
by the manufacturer, with modification L for cell 
lysis as described in Wu et al. [43]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing can be found at the JGI website. Pyrosequenc-
ing reads were assembled using the Newbler as-
sembler version 1.1.02.15 (Roche). Large Newbler 
contigs were broken into 3,428 overlap ping 
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fragments of 1,000 bp and entered into assembly 
as pseudo-reads. The sequences were assigned 
quality scores based on Newbler consensus q-
scores with modifications to account for overlap 
redundancy and adjust inflated q-scores. A hybrid 
454/Sanger assembly was made using PGA as-
sembler. Possible misassemblies were corrected 
and gaps between contgis were closed by primer 
walks off Sanger clones and bridging PCR frag-
ments and by editing in Consed. A total of 431 
Sanger finishing reads were produced to close 
gaps, to resolve repetitive regions, and to raise the 
quality of the finished sequence. Illumina reads 
were used to improve the final consensus quality 
using an in-house developed tool (the Polisher 
[45]). The error rate of the completed genome se-
quence is less than 1 in 100,000. Together, the 
combination of the Sanger and 454 sequencing 
platforms provided 37.24× coverage of the ge-
nome. The final assembly contains 30,479 Sanger 
reads and 371,362 pyrosequencing reads. 

Genome annotation 
Genes were identified using Prodigal [46] as part 
of the Oak Ridge National Laboratory genome an-

notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [47]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [48]. 

Genome properties 
The genome consists of a 3,097,457 bp long chro-
mosome with a 63.4% GC content (Table 3 and 
Figure 3). Of the 3,105 genes predicted, 3,052 
were protein-coding genes, and 53 RNAs; thirty 
eight pseudogenes were also identified. The ma-
jority of the protein-coding genes (71.8%) were 
assigned with a putative function while the re-
maining ones were annotated as hypothetical pro-
teins. The distribution of genes into COGs func-
tional categories is presented in Table 4. 

 
 
 

Table 3. Genome Statistics 

Attribute Value % of Total 
Genome size (bp) 3,097,457 100.00% 
DNA Coding region (bp) 2,807,535 90.64% 
DNA G+C content (bp) 1,963,304 63.38% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,105 100.00% 
RNA genes 53 1.71% 
rRNA operons 2  
Protein-coding genes 3,052 98.29% 
Pseudo genes 38 1.22% 
Genes with function prediction 2,229 71.79% 
Genes in paralog clusters 390 12.56% 
Genes assigned to COGs 2,286 73.62% 
Genes assigned Pfam domains 2,394 77.10% 
Genes with signal peptides 1,079 34.75% 
Genes with transmembrane helices 697 22.45% 
CRISPR repeats 6  
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Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other 
RNAs black), GC content, GC skew. 

Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 146 5.8 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 131 5.2 Transcription 

L 117 4.7 Replication, recombination and repair 

B 2 0.1 Chromatin structure and dynamics 

D 30 1.2 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 
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Table 4 (cont.) Number of genes associated with the general COG functional categories 

Code value %age Description 

V 47 1.9 Defense mechanisms 

T 103 4.1 Signal transduction mechanisms 

M 114 4.5 Cell wall/membrane/envelope biogenesis 

N 21 0.8 Cell motility 

Z 1 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 45 1.8 Intracellular trafficking and secretion, and vesicular transport 

O 103 4.1 Posttranslational modification, protein turnover, chaperones 

C 148 5.9 Energy production and conversion 

G 190 7.6 Carbohydrate transport and metabolism 

E 290 11.5 Amino acid transport and metabolism 

F 81 3.2 Nucleotide transport and metabolism 

H 102 4.1 Coenzyme transport and metabolism 

I 95 3.8 Lipid transport and metabolism 

P 139 5.5 Inorganic ion transport and metabolism 

Q 61 2.4 Secondary metabolites biosynthesis, transport and catabolism 

R 342 13.6 General function prediction only 

S 208 8.3 Function unknown 

- 819 26.4 Not in COGs 
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