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ABSTRACT

Objectives: The International Classification of Childhood Cancer (ICCC) facilitates the effective classification of a

heterogeneous group of cancers in the important pediatric population. However, there has been no develop-

ment of machine learning models for the ICCC classification. We developed deep learning-based information

extraction models from cancer pathology reports based on the ICD-O-3 coding standard. In this article, we de-

scribe extending the models to perform ICCC classification.

Materials and Methods: We developed 2 models, ICD-O-3 classification and ICCC recoding (Model 1) and direct

ICCC classification (Model 2), and 4 scenarios subject to the training sample size. We evaluated these models

with a corpus consisting of 29 206 reports with age at diagnosis between 0 and 19 from 6 state cancer registries.

Results: Our findings suggest that the direct ICCC classification (Model 2) is substantially better than reusing

the ICD-O-3 classification model (Model 1). Applying the uncertainty quantification mechanism to assess the

confidence of the algorithm in assigning a code demonstrated that the model achieved a micro-F1 score of

0.987 while abstaining (not sufficiently confident to assign a code) on only 14.8% of ambiguous pathology

reports.

Conclusions: Our experimental results suggest that the machine learning-based automatic information extrac-

tion from childhood cancer pathology reports in the ICCC is a reliable means of supplementing human annota-

tors at state cancer registries by reading and abstracting the majority of the childhood cancer pathology reports

accurately and reliably.
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LAY SUMMARY

ICCC is the coding standard designed to categorize childhood cancers. However, machine learning-based ICCC classification

has not been extensively studied, mainly owing to the limited volume of the pediatric cancer corpus; pediatric cancer is

much less prevalent than adult cancers. Under the oversight of the National Childhood Cancer Registry project, we devel-

oped a deep learning-based text comprehension model for classifying ICCC from childhood cancer pathology reports. We

performed a comparison study between (1) classifying ICD-O-3 codes and then recoding into ICCC and (2) classifying ICCC

codes directly. We observed that the second approach exhibited a substantially higher accuracy score.

We are aware that the low-precision models are not appropriate for this exercise because they will degrade the credibility

of the model-based decisions. We applied an uncertainty quantification algorithm to the ICCC classification model. We

achieved nearly perfect accuracy scores, while the model passed over 14.8% of ambiguous cases. This result means our ma-

chine learning model can serve human annotators at state cancer registries by processing 85.2% of the childhood cancer pa-

thology reports automatically.

INTRODUCTION

Cancer is the leading cause of death by disease in American children

ages 0–19 years.1 Each year, nearly 16 000 children in the United

States and over 300 000 children globally are diagnosed with can-

cer.2,3 Analysis of the population-level data for childhood cancers

will increase the understanding of the factors that cause cancer and

shed light on factors that may help protect against cancer, thus pro-

viding evidence to guide public health recommendations and iden-

tify and develop improved treatments. Further rapid identification

and classification of cases might be used to enhance enrollment for

clinical trials for ultra-rare pediatric cancers, thereby enabling access

to state-of-the-art care to a wider set of childhood cancer patients.

Cancer pathology reports are an excellent resource for such studies.

A pathology report is a medical document written by a pathologist that

contains the diagnosis determined by examining cells and tissues under

a microscope. The reports include information about the topography

(site of origin) and the morphology (histology and behavior) of the tu-

mor. Automatic information extraction is the machine learning (ML)-

based method that abstracts the findings using the standardized codes.

We have been researching automatic information extraction and

abstraction from cancer pathology reports based on the Interna-

tional Classification of Diseases for Oncology, third edition (ICD-

O-3)4–7 coding standard. Recent advances in AI have enabled us to

establish robust natural language processing and text comprehen-

sion algorithms, which could help mitigate the overhead of manually

curating data. We have demonstrated that the deep learning (DL)

models exhibited state-of-the-art performance compared against tra-

ditional ML-based and rule-based approaches. However, to the best

of our knowledge, the efficacy of using the existing automatic infor-

mation extraction models for childhood cancer pathology reports

has not been studied.

The difficulties of applying the existing automatic information

extraction model to the cancer pathology reports from childhood

cancers originated from the differences of prevalent cancer types be-

tween adult and pediatric cancer cases. The most prevalent adult

cancers are breast, lung and bronchus, prostate, and colorectal can-

cers.8 In contrast, the most common childhood cancers are leuke-

mia, lymphoma, and tumors of the central nervous system.9 Cancers

more prevalent in adults are underrepresented among the children,

and—likewise—the cancers that are more prevalent in children are

underrepresented among the adults. Because the number of adult

cancers is substantially higher than the number of childhood can-

cers, the ML model trained using the entire cancer pathology data

corpus is likely biased toward adult cancers. Consequently, this dis-

crepancy may manifest downstream as a classification performance

decrease for the childhood cancer model.

Also, studies3,9,10 suggest that the classification of childhood

cancers should be based on morphology rather than topography.

The ICD-O-3 is designed to categorize primarily by the site of ori-

gin, which is suitable for representing adult cancers. The Interna-

tional Classification of Childhood Cancer (ICCC),9 developed under

the auspices of the International Agency of Research of Cancer

(IARC), the International Association of Cancer Registries, and the

Soci�et�e Internationale d’Oncologie P�ediatrique (SIOP), is designed

to emphasize the histology of tumors and leverages a combination

of site and histology to characterize and classify childhood cancers.

The information extraction from childhood cancer pathology

reports should emphasize the morphology rather than the primary

site of origin for these cancers.

The present study aims to develop an optimal ML model for au-

tomatic information extraction for pediatric cancer pathology

reports based on ICCC coding and to establish a high-precision

model by applying the uncertainty quantification (UQ) mechanism,

which is critical for state cancer registries.

To that end, this article (1) developed a model of automatic infor-

mation extraction from childhood cancer pathology reports based on

ICCC, which—to the best of our knowledge—is the first AI/ML model

for pediatric cancers; (2) presents results of a model trained on a large

volume (29206 cases) of pediatric cancer cases from 6 state cancer

registries; (3) optimized the model for classifying childhood cancer pa-

thology reports; and (4) describes the model calibration using UQ to

support human annotators with high precision.

MATERIALS AND METHODS

Data sources
This study’s data set consisted of unstructured text in pathology

reports from 6 state cancer registries: the Kentucky Cancer Registry

(KCR), Louisiana Tumor Registry (LTR), New Jersey State Cancer

Registry (NJSCR), New Mexico Tumor Registry (NMTR), Seattle

Cancer Registry (SCR), and the Utah Cancer Registry (UCR). KCR,

LTR, NMTR, SCR, and UCR participate in the National Cancer Insti-

tute’s (NCI’s) Surveillance, Epidemiology, and End Results (SEER)

program. The study was executed according to the institutional review

board protocol DOE000619, approved by the US Department of En-

ergy (DOE) Institutional Review Board on April 6, 2021 (initial ap-

proval on September 23, 2016). From the data of millions of e-path

reports from the cancer registries, we selected cases in which a cancer

patient was diagnosed before they were 20 years old.

The gold standard of the abstraction of information extracted

from e-path reports is the Cancer/Tumor/Case (CTC) database,

which stores all diagnostic, staging, and treatment information for
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reportable cancers in the SEER Data Management System. Notably,

the CTC provides the abstraction of the e-path reports in terms of

the ICD-O-3, such as primary cancer site, laterality, histology, and

behavior, but does not contain ICCC coding of the cases. Instead,

the ICCC codes are being recoded from the ICD-O-3.

ICCC recoding
The NCI SEER provides tables that list ICCC codes and their corre-

sponding ICD-O-3 site and histology codes.11 Notably, a few slight

modifications were made to the coding standards to allow for new

and expanded coding of cancers. The latest ICCC recode standard is

the “ICCC, Third Edition, based on ICD-O-3/IARC 2017,” which

we used in our studies. We chose the ICCC regular recoding as our

truth labeling and inference protocol, which consists of 12 main

groups and 46 subgroups. Table 1 lists the codes and descriptions

for the 12 main groups and 46 subgroups.

Childhood cancer pathology report data corpus
The total number of childhood cancer pathology reports in our data

corpus is 29 206 from 11 274 patients. Figure 1 illustrates the num-

ber of cases per each ICCC code. Leukemias (01) and lymphomas

(02) represent more than half of all childhood cancers. Leukemia is

the most prevalent cancer in children, and this finding is consistent

with existing research.12 Lymphoid leukemia (011) is the most prev-

alent leukemia and represents more than 25% of childhood cancer

cases. Among lymphomas, non-Hodgkin lymphoma (022) is the

most prevalent type. Note that the figure illustrates the severe class

imbalance within this data set.

Figure 2 illustrates the number of cases per ICCC code sorted by

a patient’s age at diagnosis. Leukemia (01) is more common in

younger patients (ages 0–4) but diminishes among older children.

Similar patterns occurred for patients with neuroblastoma (04). In

contrast, the incidence of lymphomas (02) was highest among ado-

lescents. Germ cell tumors (10) and other malignant epithelial

tumors and melanomas (11) are also most common among young

adolescents. Note that the number of cancer cases between ages 5

and 11 is considerably lower than for the other age groups. The

observations and findings are consistent with the reports and statis-

tics from other studies,8,13 which implies that the data set from the 6

population-based registries in SEER included in this study reflects

the real-world situation.

Table 1. ICCC (a) main and (b) subgroup codes and definitions

based on the ICCC third edition

(a)

Code Description

01 Leukemias, myeloproliferative, and myelodysplastic diseases

02 Lymphomas and reticuloendothelial neoplasms

03 CNS and miscellaneous intracranial and intraspinal neoplasms

04 Neuroblastoma and other peripheral nervous cell tumors

05 Retinoblastoma

06 Renal tumors

07 Hepatic tumors

08 Malignant bone tumors

09 Soft tissue and other extraosseous sarcomas

10 Germ cell tumors, trophoblastic tumors, and neoplasms of gonads

11 Other malignant epithelial neoplasms and malignant melanomas

12 Other and unspecified malignant neoplasms

999 Not classified by SEER or in situ

(b)

Code Description Code Description

011 Lymphoid leukemias 081 Osteosarcomas

012 Acute myeloid leukemias 082 Chondrosarcomas

013 Chronic myeloprolifera-

tive diseases

083 Ewing tumor and re-

lated sarcomas of

bone

014 Myelodysplastic syn-

drome and other mye-

loproliferative diseases

084 Other specified malig-

nant bone tumors

015 Unspecified and other

specified leukemias

085 Unspecified malignant

bone tumors

021 Hodgkin lymphomas 091 Rhabdomyosarcomas

022 Non-Hodgkin lympho-

mas

092 Fibrosarcomas, periph-

eral nerve sheath

tumors, and other

fibrous neoplasms

023 Burkitt lymphoma 093 Kaposi sarcoma

024 Miscellaneous lymphore-

ticular neoplasms

094 Other specified soft tis-

sue sarcomas

025 Unspecified lymphomas 095 Unspecified soft tissue

sarcomas

031 Ependymomas and cho-

roid plexus tumor

101 Intracranial and intra-

spinal germ cell

tumors

032 Astrocytomas 102 Malignant extracranial

and extragonadal

germ cell tumors

033 Intracranial and intraspi-

nal embryonal tumors

103 Malignant gonadal

germ cell tumors

034 Other gliomas 104 Gonadal carcinomas

035 Other specified intracra-

nial and intraspinal

neoplasms

105 Other and unspecified

malignant gonadal

tumors

036 Unspecified intracranial

and intraspinal neo-

plasms

111 Adrenocortical carcino-

mas

041 Neuroblastoma and gan-

glioneuroblastoma

112 Thyroid carcinomas

042 Other peripheral nervous

cell tumors

113 Nasopharyngeal carci-

nomas

050 Retinoblastoma 114 Malignant melanomas

(continued)

Table 1. continued

(b)

Code Description Code Description

061 Nephroblastoma and

other nonepithelial re-

nal tumors

115 Skin carcinomas

062 Renal carcinomas 116 Other and unspecified

carcinomas

063 Unspecified malignant re-

nal tumors

121 Other specified malig-

nant tumors

071 Hepatoblastoma and

mesenchymal tumors

of the liver

122 Other unspecified ma-

lignant tumors

072 Hepatic carcinomas 999 Not classified by SEER

or in situ

073 Unspecified malignant he-

patic tumors
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ML models for text classification
TextCNN4,14 is one of the most successful and widely used convo-

lutional neural network (CNN) models for text comprehension

and classification. It consists of 3 parts: word embedding, 1D con-

volution, and a fully connected decision layer. Word embedding is

a learned representation of terms and words to map a set of words

onto vectors of numerical representations with the same semantic

meaning and similar observation. The 1D convolution layer has a

series of 1D convolution filters that have latent representations to

articulate the features in the word vectors of documents. The fea-

tures found are passed to the fully connected layer to make infer-

ences. MT-CNN5 extends TextCNN by adding a multitask

learning (MTL) mechanism15 to the decision layer. A classifier

learns multiple tasks simultaneously and finds an optimal latent

representation to solve a series of related tasks. The MTL helps

find more generalized solutions than single-task models, thus yield-

ing higher task performance. We have successfully developed an

MT-CNN model for automatic information extraction based on

ICD-O-3 and verified that the CNN model has competitive task

performance while exhibiting prompt training and inference

time.16

Automatic information extraction based on ICCC
The following subsections describe 2 models that we designed and

tested for this study along with 2 scenarios for each model.

Model 1: ICD-O-3 classification then ICCC recoding approach

The first model involves the classification of ICD-O-3. Generally,

the ICCC coding is a recoding based on the site, histology, and be-

havior from the ICD-O-3 codes. Therefore, the automatic informa-

tion extraction from childhood cancer pathology reports can be

accomplished using the existing classification model5 for cancer

patients of all ages. This approach saves the time and effort required

to develop a new model for classifying cancer pathology reports

based exclusively on the ICCC coding.

However, some factors may cause a decrease in classification

accuracy. First, ICCC includes 47 codes, whereas ICD-O-3 con-

Figure 1. Number of childhood cancer pathology reports by ICCC main and subgroup codes.
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sists of more than 300 site codes and 600 histology codes.17 De-

signing and training an ML/DL model with that many labels could

be overly complex and prone to error. Second, as stated earlier,

certain cancer types are more prevalent in adults than in children

and vice versa; moreover, cancer is more prevalent in adults, gen-

erally. Consequently, the model trained on the entire corpus of

cancer patients could be skewed more toward the reports from

adult patients.

We developed 2 scenarios to evaluate if we can achieve better ac-

curacy by limiting the scope to pathology reports of childhood can-

cers.

1. Model 1(a): ICD-O-3 classification model is trained by cancer

pathology reports from all age groups and then recoded for

ICCC

2. Model 1(b): ICD-O-3 classification model is trained by the

childhood cancer pathology reports only and then recoded for

ICCC

Model 2: Direct ICCC classification approach

The second model involves classifying ICCC codes directly from

the cancer pathology reports. The new model was trained on

ICCC data and may have higher classification accuracy because it

only deals with 47 classes, whereas the ICD-O-3-based models

must contend with numerous class labels. This approach required

us to train and deploy another ML model specifically for child-

hood cancer pathology reports, which required extra effort and

resources.

In addition, we conducted a further study based on the consensus

recommendation from the Childhood Cancer Data Initiative’s

(CCDI’s) advisory group that the upper age limit of diagnosis be up

to 39 years old for certain childhood/pediatric cancers. Table 2 lists

the cancer types to be regarded as pediatric cancers at this upper age

limit per CCDI’s suggestion. Note that 1055 cases fall into these cat-

egories, which is a relatively small number.

We developed 2 scenarios to quantify the effect of augmenting

the data per CCDI’s recommendation.

1. Model 2(a): ICCC classification model is trained by the child-

hood cancer pathology reports

2. Model 2(b): ICCC classification model is trained by the childhood

cancer pathology reports with augmentation suggested by CCDI

Figure 3 illustrates the architectures of the 2 models (and 4 sce-

narios) that we designed and evaluated.

Uncertainty quantification
The purpose of automatic information extraction is to either assist hu-

man observers with a second opinion or automate coding where feasi-

ble to enable humans to focus on cases that are more complex or

challenging. To this end, the most important feature that the model

should possess to achieve the objective is a highly reliable and accurate

decision from the model. Inaccurate second opinions (from the model)

may distract human observers and even degrade the process’ perfor-

Figure 2. Number of childhood cancer pathology reports by ICCC main codes and age at diagnosis.

Table 2. List of cancers diagnosed between ages 20 and 39 that

could be regarded as pediatric cancers per CCDI and the number of

cases that are augmented to the training of Model 2(b)

Code Description No. of cases

061 Nephroblastoma and other nonepithelial renal

tumors

26

071 Hepatoblastoma and mesenchymal tumors of

the liver

11

081 Osteosarcoma 301

082 Chondrosarcoma 232

083 Ewing tumors and related sarcoma of the bone 193

084 Other specified malignant bone tumors 90

085 Unspecified malignant bone tumors 23

091 Rhabdomyosarcomas 179

JAMIA Open, 2022, Vol. 5, No. 2 5



mance. If the model’s decision is incorrect, then review is needed,

which limits the efficiency and benefit of using an automated process.

UQ, which is vital to the process, assigns a confidence estimate to the

machine-assigned code to allow a human to determine whether addi-

tional review is necessary, thus minimizing human labor.

In this article, we propose a post-training threshold approach based

on the estimation of a confidence score from the softmax-predicted

probabilities in the validation set (rather than the training set).

Let Y ¼ ðy1; . . . ; ynÞ be the softmax-predicted probabilities for

the n classification labels. The confidence score is estimated as the

conditional distribution of a correct classification via the Bayes theo-

rem for a binary variable (in which being correct and incorrect are

mutually exclusive outcomes):

p correctjyð Þ ¼ p yjcorrectð Þ � p correctð Þ
p yjcorrectð Þ � p correctð Þ þ p yjincorrectð Þ � p incorrectð Þ

The marginal probabilities pðcorrectÞ and pðincorrectÞ are called

priors and are estimated as the corresponding relative frequencies

(ie, the total number of correct or incorrect decisions divided by the

total number of cases).

The conditional probabilities pðyjcorrectÞ and pðyjincorrectÞ are

estimated from the data by modeling the conditional quantile func-

tions F�1
yjcorrectðsjcorrectÞ and 1� F�1

yjincorrect sjincorrectð Þ for a selected

percentile point, s.

Experimental setup
We designed a comparison study to determine the classification ac-

curacies of the models described above. F1 scores, a widely accepted

metric for information retrieval, are used as the performance bench-

mark. Because of the severe class imbalance of the data corpus, we

employed both micro-averaged and macro-averaged F1 scores. The

micro-F1 is weighted equally to the individual cases, whereas the

macro-F1 is weighted equally to the class label. If the ML model

was favorable to the prevalent class labels but did not work well

with the samples from minor classes, then the macro-F1 score would

be lower than the micro-F1 score.

Figure 3. Model architecture for ICCC classification from childhood cancer pathology reports. (A) Model 1: ICD-O-3 classification then ICCC recoding. (B) Model 2:

direct ICCC classification.
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To compensate for the limited availability of childhood cancer

pathology reports in the data corpus, we chose to perform 10-fold

cross-validation tests. We utilized the StratifiedKFold function avail-

able in the scikit-learn library.18 The TextCNN and MT-CNN

model training used the Keras/TensorFlow platform.19,20

RESULTS

We performed 2 experiments: the first experiment aimed to develop

an optimal classification model for information extraction based on

ICCC, and the second experiment aimed to establish a reliable

model by adopting the UQ mechanism.

Developing an optimal classification model
Table 3 lists the associated task performance for classifying ICCC

codes from the childhood cancer pathology reports for both micro-

averaged and macro-averaged F1 scores. Model 2 recorded substan-

tially higher scores than Model 1, which implies that the models

trained by the ICCC codes performed better than the models for

classifying ICD-O-3 codes and recoding them to ICCC. Macroscores

(0.701–0.843) showed more improvement than microscores (0.882–

0.936), which indicates that Model 2 performed better for the un-

derrepresented class labels. Model 1(b), trained only on the child-

hood cancer cases, performed slightly better than Model 1(a), which

incorporated adult cancer cases. However, the difference was negli-

gible. Performance differences between Models 2(a) and 2(b) were

also negligible.

The classification accuracy for each ICCC code was analyzed

further, and the results are listed in Table 3. Overall, Model 2

recorded higher scores across the ICCC codes. The difference was

higher for the underrepresented ICCC codes (eg, 015: Model 1[a]

0.33, Model 2[b] 0.75) than for the more prevalent codes/types (eg,

001: Model 1[a] 0.94, Model 2[b] 0.97). Also, the models per-

formed better for the prevalent ICCC codes (eg, 021 [1530 cases]:

Model 2[b] 0.96) than for the minor ones (eg, 025 [25 cases]: Model

2[b] 0.17). However, there were no significant differences between

Models 1(a) and 1(b) or between Models 2(a) and 2(b).

Establishing a reliable model
The UQ was applied to Model 2(b), which recorded the highest ac-

curacy score. The abstention classifier was tuned to abstain on cases

with confidence scores that were associated with softmax-predicted

probabilities lower than 0.9. With the UQ mechanism, Model 2(b)

achieved a micro-F1 score of 0.987 and a macro-F1 score of 0.935,

and the model discarded only 14.8% of cases from the data corpus.

Table 3 lists the accuracy scores for each ICCC code. With the

softmax-based UQ, we achieved high accuracy scores across all

ICCC labels while maintaining a low abstention rate. Still, there

were a few ICCC code outliers in the table for which the model with

UQ did not achieve high accuracy scores: unspecified lymphomas

(025), unspecified malignant bone tumors (085), Kaposi sarcoma

(093), and adrenocortical carcinomas (111).

DISCUSSION

In terms of classification accuracy, the results in Table 3 support the

argument that training the models for classifying ICCC codes

showed improved accuracy and reliability over the method of using

existing ICD-O-3 classification models and then performing ICCC

recoding. Presumably, the lower performance on Model 1 is caused

by the complexity of the ICD-O-3 classifications, which consist of

more than 300 class labels associated with subsites and more than

600 class labels with histology. Moreover, in our data corpus, many

of the ICD-O-3 class labels are severely underrepresented. In con-

trast, the ICCC consists of only 47 class labels. Note that even the

ICCC distribution remains imbalanced because of the high preva-

lence of certain cancer types (leukemias and lymphomas) and the oc-

Table 3. Classification accuracy scores per each ICCC code in F1

metric

Code 1(a) 1(b) 2(a) 2(b) # cases UQ # UQ

011 0.94 0.95 0.97 0.97 8042 0.99 7171

012 0.88 0.91 0.93 0.93 1694 0.98 1450

013 0.90 0.89 0.94 0.93 294 0.98 248

014 0.62 0.57 0.71 0.66 137 0.92 61

015 0.33 0.49 0.76 0.75 212 0.92 127

021 0.94 0.94 0.96 0.96 1530 0.99 1380

022 0.75 0.80 0.87 0.88 1993 0.96 1498

023 0.84 0.86 0.90 0.90 801 0.98 641

024 0.96 0.96 0.98 0.97 316 1.00 299

025 0.07 0.00 0.15 0.17 25 0.25 14

031 0.89 0.89 0.93 0.93 391 0.99 333

032 0.88 0.90 0.92 0.93 1441 0.99 1238

033 0.90 0.90 0.93 0.92 803 0.99 681

034 0.52 0.58 0.76 0.76 278 0.93 156

035 0.82 0.85 0.91 0.92 881 0.98 704

036 0.00 0.24 0.60 0.61 36 0.90 16

041 0.96 0.97 0.98 0.98 1639 1.00 1558

042 0.64 0.55 0.73 0.74 26 1.00 12

050 0.92 0.95 0.99 0.99 71 1.00 68

061 0.97 0.97 0.98 0.98 736 1.00 694

062 0.87 0.89 0.94 0.95 99 0.99 87

071 0.96 0.96 0.98 0.97 334 0.99 315

072 0.89 0.87 0.92 0.92 87 0.98 73

081 0.96 0.97 0.98 0.98 617 1.00 581

082 0.80 0.53 0.81 0.80 40 0.93 35

083 0.79 0.83 0.87 0.89 627 0.97 433

084 0.73 0.45 0.76 0.85 30 0.98 20

085 0.16 0.23 0.38 0.60 25 0.82 10

091 0.93 0.93 0.96 0.95 840 0.99 764

092 0.71 0.74 0.83 0.82 159 0.97 102

093 0.83 0.00 0.29 0.50 6 0.00 1

094 0.72 0.73 0.83 0.84 772 0.97 508

095 0.57 0.58 0.77 0.78 225 0.96 128

101 0.70 0.72 0.84 0.85 155 0.99 105

102 0.77 0.83 0.86 0.87 152 0.98 101

103 0.94 0.94 0.96 0.96 688 1.00 619

104 0.56 0.65 0.80 0.84 44 0.96 24

105 0.44 0.36 0.80 0.73 18 1.00 6

111 0.64 0.73 0.80 0.76 16 0.77 8

112 0.99 0.99 0.99 0.99 1112 1.00 1096

113 0.92 0.89 0.95 0.93 46 0.99 40

114 0.95 0.89 0.98 0.97 427 0.99 392

115 0.59 0.59 0.86 0.77 23 1.00 9

116 0.88 0.92 0.96 0.96 715 1.00 639

121 0.59 0.58 0.88 0.82 75 0.99 44

122 0.00 0.09 0.58 0.54 20 1.00 3

999 0.75 0.72 0.90 0.89 508 0.97 400

Micro-F1 0.882 0.896 0.935 0.936 29 206 0.987 24 892

Macro-F1 0.701 0.719 0.837 0.843 29 206 0.935 24 892

Note: Column 1(a) is the scores from Model 1(a), 1(b) is from Model 1(b),

2(a) is from Model 2(a), and 2(b) is from Model 2(b), “# cases” is the number

of classified cases in the data corpus, UQ is the scores from Model 2(b) but

without abstained cases based on the softmax UQ, and “# UQ” is the number

of classified cases by the UQ model. Micro-averaged and macro-averaged F1

scores are at the bottom of the table.
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currence of “ultra-rare” pediatric tumors. However, the severity of

this imbalance is substantially smaller than for the ICD-O-3 system

as applied to pediatric cancers.

Performance degradation in information extraction models caused

by underrepresented class labels in the data corpus is a critical issue in

developing algorithms for automation in cancer surveillance. There is

no definitive way to increase the sample size of cancer pathology

reports from rare cancers given the rarity of pediatric tumors in gen-

eral (16000 cases in the United States per year). One might suggest

special ML techniques, such as data synthesis, but it is well known

that synthesizing free-form text data is not a trivial task.

One possible solution is to augment the training corpus with the

reports from the subjects of age 20–39, as some ICCC sites are consid-

ered pediatric tumors even when occurring in adolescents or young

adults. The results listed in Table 3 show the effects of adding those

reports based on expert consensus in the CCDI community. The class

labels that already had more than 100 samples in the corpus did not

benefit from the augmentation because the model had already

achieved high classification accuracy scores for those labels. However,

substantial improvements were made for code 084—Other specified

malignant bone tumors (from 0.76�F1 to 0.85�F1) and for code

085—Unspecified malignant bone tumors (from 0.38�F1 to

0.60�F1). Those 2 labels had a relatively small number of samples in

the corpus: 30 cases for code 084 and 25 cases for code 085. Adding

90 cases for code 084 and 23 cases for code 085 increased the chance

of learning features for correct decisions for those class labels.

Note, however, that Model 1(b) recorded higher accuracy scores

than Model 1(a), which implies that simply adding adult cancer pa-

thology reports did not improve accuracy. This makes sense because

the corpus contained many more adult cancers than childhood can-

cers, and the prevalent adult cancers (eg, breast cancer) are rare in

childhood. Thus, this simple addition may not improve the ML mod-

el’s performance for childhood cancer cases, which leads to the follow-

ing question: can we improve the accuracy score if we curate the

augmented data set by undersampling the breast and lung cancers or

by downselecting the cancer types that are more prevalent in children?

This would make an excellent future research topic. This solution of

expanding the corpus based on codes, combined with expanding the

training corpus by bringing in additional registries, might serve as a

partial but nontrivial solution to reduce the class imbalance.

The application of the softmax-based UQ mechanism was suc-

cessful. We demonstrated that Model 2(b) with the softmax-based

UQ achieved 0.987—a nearly perfect micro-F1 score—while it

abstained in only 14.8% of the cases. This result implies that the sys-

tem could serve human annotators at state cancer registries. The

model can process more than 85.2% of the childhood cancer pathol-

ogy reports with confidence. Further manual review is needed for

only 14.8% of the incoming data, which indicates that the model is

highly reliable and potentially ready to use.

Several factors contribute to abstention of cases, such as the case dif-

ficulty, incompleteness of information on the data samples, or not

enough information supplied to the classification model owing to a lack

of training samples. One clue is that the abstention rate (ie, the number

of abstained cases divided by the total number of cases in the class label)

is considerably lower for the prevalent classes. For example, the absten-

tion rate of code 011 was 0.108 (871/8042), whereas the abstention

rate for code 014 was 0.555 (76/137). Increasing performance for those

underrepresented classes is key to achieving a more reliable model.

Some questions remain. The choice of 0.9 as the threshold of

probability for correct decision-making is entirely arbitrary and un-

likely to be sufficiently robust to meet the high-quality standards of

the surveillance community. The threshold value is subject to the

tolerance level of wrong decisions by the state cancer registries and

will determine the credibility of the data products from the regis-

tries. Follow-up statistical analyses of this threshold are required.

CONCLUSION

In this article, we described our study of the classification of child-

hood cancer pathology reports in terms of the ICCC coding and

established an automatic information extraction system for process-

ing a massive volume of pathology reports suitable for state cancer

registries. We tested the 2 models: (1) reusing the existing model for

extracting ICD-O-3 codes and recoding them into ICCC and (2) de-

veloping a new model for extracting ICCC coding. We also experi-

mented with a softmax-based UQ algorithm to evaluate model

performance when discarding the minimum amount of ambiguous

cases. Our findings suggest that the model for classifying ICCC cod-

ing with UQ is suitable for alleviating the workload of human anno-

tators at state cancer registries.
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