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Clustering drug-drug interaction 
networks with energy model 
layouts: community analysis and 
drug repurposing
Lucreția Udrescu1, Laura Sbârcea1, Alexandru Topîrceanu2, Alexandru Iovanovici2, 
Ludovic Kurunczi3, Paul Bogdan4 & Mihai Udrescu2

Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to 
the development of new drug discovery tools. We present a new approach to analyzing drug-drug 
interaction networks, based on clustering and topological community detection techniques that are 
specific to complex network science. Our methodology uncovers functional drug categories along with 
the intricate relationships between them. Using modularity-based and energy-model layout community 
detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 
1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with 
other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 
85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of 
pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological 
properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the 
predicted property. Also, by using network centralities, we can rank drugs according to their interaction 
potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach 
can be extended for applications such as analyzing drug-target interactions or phenotyping patients in 
personalized medicine applications.

Drug repositioning or repurposing is an emerging concept that consists of identifying new therapeutic indi-
cations for already existing active pharmaceutical ingredients1. Over the recent years, repositioning strategies 
have been intensely investigated, due to the outstanding advances in scientific and technological fields2,3. The 
motivation behind this trend is the fact that, despite the constantly growing resources invested in drug discovery4,  
the drug design process is still cumbersome, slow and prone to many errors5,6. As a result, the number of new 
approved bio-active molecules is not increasing anymore7; therefore, the pharmaceutical industry is forced to 
come up with alternative solutions8. The fact that the repurposing strategy can be the right answer for current 
challenges in the pharmaceutical industry is further stressed by a recent report, which states that 20% of the new 
drugs brought on the market in 2013 are actually repositionings9. Another motivation for drug repositioning is 
that it fits the aims and scopes of personalized and precision medicine10.

Traditionally, drug repositioning mostly relies on chance and it is achieved by experimentally exploring the 
link between molecular structure and biological activity11. The advent of big data gathering and analysis has 
spurred the use of computational approaches in many aspects of pharmacology and drug design, including drug 
repurposing. Indeed, computational models are used to uncover drug interactions which were not discovered 
during clinical trials12, or to predict drug safety13. Moreover, using in-silico tools creates a visual and intuitive 
system for representing drug interactions14, thus helping medical and pharmaceutical practice. In the case of 
drug repositioning, computational strategies explore the relationships between drug databases on one hand, and 
genomic, transcriptomic and phenotypic data on the other hand2. The computational approaches used to perform 
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the exploration of correlations between the large amounts of genomic, phenotypic and chemical data are data 
mining, machine learning and network analysis. All rendered repositioning solutions are validated by experimen-
tal methods (in vivo and in vitro) or by automated, computer-based searches in health databases2.

Capitalizing on the continuously increasing volume of drug interaction data, as well as on the recent advances 
in the field of network science, translational pharmacology uses the so-called drug-drug interactomes (DDI). 
A DDI is a complex network in which the nodes represent drugs and the links between them correspond to 
drug interaction relationships such as common mediation by a specific enzyme. The benefits of processing DDIs 
with network analysis are threefold. First, the researchers can predict potential interactions that were previously 
unknown12,15; this idea is behind the development of software tools for drug interaction alert16. Second, the 
computer-aided analysis of DDIs can assure, right from the drug design process, that certain interactions will be 
avoided17,18. Third, DDIs can be used to explore the relationships which link the pharmaceutical properties to drug 
interactions. Most such previous approaches start with already known pharmaceutical properties in order to pre-
dict drug-drug interactions19,20. However, recent research suggests that interaction information from DDI alone 
can be used in order to predict physiological drug effects and, consequently, to perform drug repositioning21.  
For instance, in ref. 22, the authors analyze the DDI drugs with Markov Clustering Algorithm, obtaining drug 
categories that are correlated with some drug functions. Another recent approach uses social media in order to 
keep track of adverse drug effects as they are reflected by social interaction and, subsequently, to build the DDI 
that suggests possible repositionings23.

Results
We take the drug-drug interaction data from DrugBank 4.124 (each individual drug has a corresponding list of 
drug interactions) to build a raw DDI in Gephi25, as presented on the top of Fig. 1. Each node corresponds to a 
distinct drug; a link between two drugs corresponds to an interaction between them according to the considered 
database. No information regarding the structural or functional properties of these drugs is used throughout 
the process. We opt not to discriminate between the types of drug interactions (i.e. synergistic or antagonistic), 
because any kind of interaction contributes to defining the functional profile of a drug category or cluster. Also, 
we use the older DrugBank 4.1 to build our DDI, so that a later version (DrugBank 4.3) can be used to validate the 
newly found pharmacological properties in a fair manner.

Then, we apply the procedure suggested in Fig. 1 to automatically assign distinct colors to distinct node mod-
ularity classes26 and to generate topological clusters (or communities) with energy-model layout algorithm Force 
Atlas 2. As a result of applying the procedure from Fig. 1, we generate our DDI: the Community Based Drug-Drug 

Figure 1.  The drug-drug interactome (DDI) analysis procedure for clustering drugs according to relevant 
pharmacological properties. Our processing procedure is based on modularity classes and energy model 
topological clustering (Force Atlas 2).
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Interaction Network (CBDDIN) from Fig. 2. The tools that generate CBDDIN are normally employed in social 
network analysis26,27, and the fact that we use them for DDIs is motivated by the topological similarity between 
our DDI and typical social networks. Indeed, the network statistics for CBDDIN are similar to typical social 
network statistics: small average path length L =​ 2.978 for a network diameter Dmt of 7, significant clustering 
coefficient C =​ 0.2, average degree 〈​k〉​ =​ 20.031, modularity Mod =​ 0.452 and density Dst =​ 0.017. Also, Fig. 3 pro-
vides the main network centrality distributions, which indicate a scale-free network due to the power-law degree 
distribution from Fig. 3A. As presented in Fig. 3B,D, betweenness and eigenvector distributions are power-law, 
while Fig. 3C shows a normal closeness distribution.

Figure 2.  Community-based drug-drug interaction network (CBDDIN) generated in Gephi with 
interaction data from DrugBank 4.1, containing 1141 nodes (representing drugs) and 11688 links 
(representing drug-drug interactions). Topological clusters and functional communities are highlighted by 
using the Force Atlas 2 layout and color labeling of modularity classes.

Figure 3.  Centrality metrics for the community-based drug-drug interaction network (CBDDIN): (A) degree 
distribution (B) betweenness distribution (C) closeness distribution, and (D) eigenvector distribution. The power 
law parameters, slope α and cutoff point Xmin, are provided for degree, betwenness and eigenvector distributions; for 
the closeness distribution, the best fit is Gaussian function = . + .
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Overall, when using statistical fidelity ϕ to measure the topological differences between networks, regardless 
of their size28, we obtain very good similarities with typical social networks: ϕ =​ 0.780 between CBDDIN and 
both Facebook and Twitter, and 0.740 between CBDDIN and G+.

Network centrality analysis.  The structure of CBDDIN is dictated by drug interaction relationships. 
Therefore, drugs that are the most prone to drug-drug interactions correspond to the CBDDIN nodes with the 
biggest network centrality values. Table 1 presents the top 10 drugs, in terms of drug-drug interaction central-
ity, based on degree, betweenness, closeness, page rank, and eigenvector. Analyzing degree and betweenness 
centrality distributions contributes to better assessing the interaction potential of each individual drug. Our 
Supplementary Information (section 1, Fig. 1) presents a visual representation of CBDDIN’s node degree and 
betweenness.

Interpretation of drug communities.  Topological communities highlighted in Fig. 2 are generated by Force Atlas 
227, whereas modularity classes (identified with distinct colors) are automatedly generated according to Girvan 
and Newman’s algorithm29. Both modularity classes and topological communities are labeled according to a com-
mon pharmacological property which characterizes the largest majority of drugs within a distinct community or 
class.

We assign a pharmacological property to the segregated topological community or modularity class according 
to DrugBank’s terminology, even if we do not use these properties for clusterization. In some cases the property 
label refers to an organ/system, in other cases to a medical indication, and in other cases to a chemical structure. 
However, we consider that we should not put functional restrictions to our annotation process; instead, we look 
only for the general property that identifies the largest number of drugs within the modularity class and topologi-
cal community. Indeed, there are several drug categories within each modularity class and topological community 
(as respectively presented in Tables 1 and 2 from the Supplementary Information file), but we generalized the 
included drug categories according to DrugBank terminology, referring to either pharmacodynamic or pharma-
cokinetic properties (see column Generalized label in Tables 1 and 2 from the Supplementary Information). If we 
consider smaller or larger distinct drug categories, then we will not have a unique label for each community or 
class.

The modularity-based labeling, as presented in Table 2, is very consistent with the allocated tag and its cor-
responding interpretation. This result is a consequence of modularity being a very good predictor of properties 
and functionality30. Also, modularity is directly linked to the distribution and density of links, which in our case 
represent drug interactions.

The accuracy of pharmacological labeling of the nine topological communities is reported, on average, in 
Table 3. Each community has nodes with one or several modularity classes which confirm the topological com-
munity tag. The accuracy percentage of color confirmation for the topological communities is provided in the 
fourth column (Conf. by mod. [%]). Although the initial confirmation percentages according to properties given 
in DrugBank 4.1 are not particularly high (i.e. the fourth column in Table 3), we are able to explain the allocated 
topological community labels by cross-validating with extensive literature survey (see supporting information 
provided as SupplementaryCBDDIN.xls file, tab Cross-checking references) and searching other databases, such 
as Drugs.com31, RxList32, as well as a later DrugBank version (i.e. DrugBank 4.324, last accessed April 2016.). The 
summarizing result of this cross-validating process is presented in the fifth column of Table 3, which contains the 
percentages of drug labels which are further confirmed. According to Noack26, force-directed energy layouts such 
as Force Atlas 2 are producing the same clustering as modularity but, at the same time, they contain additional 
information regarding the nodes’ positions (i.e. if nodes are central or eccentric within the topological cluster, if a 
node is at the border between topological clusters, etc.)

Taken together, the results show that, although the network is generated based on drug-drug interaction infor-
mation only, an average of 63% drug labels are found to be in agreement with the properties listed in DrugBank 
4.1, whereas 22% are not listed but are subsequently confirmed by an extensive cross-checking process. Thus, a 
low percentage of drugs (15%) seem to be out of place in their respective topological communities. As such, we 

Degree
Drug Value

Betweenness
Drug Value

Closeness
Drug Value

Page rank
Drug Value

Eigenvector
Drug Value

1. Voriconazole 250 Triprolidine 47.570 Voriconazole 2.077 Triprolidine 0.009 Voriconazole 1

2. Triprolidine 198 Trastuzumab 37.522 Ketoconazole 2.121 Voriconazole 0.009 Telithromycin 0.851

3. Telithromycin 198 Treprostinil 37.168 Phenytoin 2.128 Treprostinil 0.008 Trimipramine 0.845

4. Warfarin 181 Warfarin 34.129 Cyclosporine 2.141 Warfarin 0.008 Rifampin 0.683

5. Trimipramine 174 Cyclosporine 33.217 Telithromycin 2.142 Trastuzumab 0.007 Tramadol 0.682

6. Ketoconazole 161 Tacrolimus 30.491 Tacrolimus 2.155 Telithromycin 0.007 Tacrolimus 0.680

7. Rifampin 157 Tacrine 27.734 Warfarin 2.168 Cyclosporine 0.006 Trazodone 0.656

8. Cyclosporine 150 Phenytoin 22.018 Rifampin 2.171 Ketoconazole 0.006 Ketoconazole 0.656

9. Phenytoin 147 Ketoconazole 21.598 Trimipramine 2.180 Tacrine 0.006 Quinidine 0.623

10. Tacrolimus 147 Rifampin 21.288 Fosphenytoin 2.184 Rifampin 0.006 Clarithromycin 0.609

Table 1.   Community-based drug-drug interaction network (CBDDIN) top 10 drug hierarchies based 
on degree, betweenness, closeness, page rank, and eigenvector centralities. Values are provided for each 
centrality metric.
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can deliver repositioning hypotheses by considering these cases of drugs that seem not to comply with either 
topological or modularity labels; it is the case of drugs from column “Not expl. [%]” (not explained) in Table 3. 
Indeed, we suggest that the “not explained” drugs can be repositioned to a property that corresponds to either 
their modularity class or their topological community. Another repurposing strategy is to consider drugs that 
topologically lie at the border between two communities; this situation indicate that such drugs may have both 
pharmacological properties of the neighboring communities.
Community I: Immune system related drugs. This community contains antineoplastic agents, immunostim-
ulants and immunosuppressants. In this community, the nodes’ LB color indicates antineoplastic and immu-
nomodulatory properties. The presence of only one VM node in this community (busulfan) is based on its 
antineoplastic activity, besides being a substrate for cytochrome P450 3A4 (CYP3A4)24.
Community II: CYP P450 acting drugs. The community consists of substrates, inhibitors and inducers of spe-
cific cytochrome P450 enzymes and it includes VM, GB, G, DB, LB and M nodes. VM is directly related to CYP; 
however, the presence of different color nodes is justified by the fact that, although being characterized by other 
properties, they also have a CYP-related activity. For instance, oxaliplatin lays within community II because it is 
identified as a strong CYP2E1 inducer. Oxaliplatin is an antineoplatic agent–this property is indicated by the LB 
modularity class24.
Community III: Nervous system acting drugs. This cluster includes drugs that interfere with the metabolism 
of all neurotransmitters, inducing central as well as peripheral nervous effects. The node inspection reveals the 
presence of DB, M, LB, and GB colors. DB and M are directly related to the nervous system, while GB and LB 
correspond to drugs that have other primary properties but generate additional nervous system effects. One such 
example is guanabenz, a centrally acting antihypertensive that also pertains to modularity class LB because it 
inhibits 5-lipoxygenase, thus having anti-inflammatory effect33.
Community IV: Sympathetic nervous system acting drugs. Here we have the classes of drugs that directly and 
indirectly act on alpha- and beta- adrenoreceptors, including drugs mimicking or inhibiting the sympathetic 
nervous system (SNS) effects. The included node colors are M (the large majority), GB, G, and DB, because M 
is directly linked to SNS, and GB, G, DB are additionally acting on SNS (e.g. tolbutamide is placed in commu-
nity IV because it augments the vasoconstrictor effect of catecholamines34,35 and has GB modularity due to its 
anti-platelet aggregation activity36,37).

Modularity class (color) Code Modularity class interpretation No. of drugs Consistency [%]

Dark blue DB Central and peripheral nervous system acting drugs 232 96

Velvet maroon VM Substrates, inhibitors and inducers of specific CYP enzymes 210 91

Green G Drugs that interfere in different phases of hemostasis, 
anticonvulsant and epileptogenic drugs 191 85

Magenta M Drugs acting on sympathetic nervous system 166 93

Light blue LB Drugs targeting cancer, auto-immune disorders (i.e. rheumatoid 
arthritis), and musculoskeletal system 156 88

Golden brown GB Drugs interfering with platelet activity and plasma potassium levels 155 92

Purple P Bi-and trivalent cations, chelating agents 31 100

Table 2.   Interpretation of CBDDIN colors allocated by the modularity clustering algorithm. The tags 
are allocated to modularity classes according to pharmacological properties (column Modularity class 
interpretation). The number of drugs pertaining to each modularity class, along with the percentage of 
drugs that abide by the color interpretation, are also provided (columns No. of drugs and Consistency [%], 
respectively).

Comm. Colors No. Conf. by mod. [%] Expl. by propr. [%] Not expl. [%]

I LB, VM 80 77 19 4

II VM, GB, G, DB, LB, M 271 80 8 12

III DB, M, LB, GB 307 84 12 4

IV M, GB, G, DB 81 51 22 27

V GB 54 33 63 4

VI GB, G, LB, M, P 125 35 38 27

VII LB 58 26 31 43

VIII P, G, LB, GB 69 56 9 35

IX G, LB 96 30 57 13

1141 63 22 15

Table 3.   CBDDIN topological cluster labeling for each of the nine communities. The modularity classes 
(represented by colors) confirming the community tag are listed in the second column. The third column 
contains the total number of drugs (No.) for each community (Comm.), which is then apportioned to the 
following cases: properly described by the assigned modularity class (Conf. by mod.), explained by properties 
taken from drug databases and literature review (Expl. by propr.), and not explained (Not expl.).
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Community V: Kalemia and platelet activity related drugs. The majority of this community consists of 
renin-angiotensin system acting drugs and diuretics–with confirmed influence on kalemia and platelet activ-
ity–, as well as drugs that are used as platelet aggregation inhibitors. Because all nodes are GB, the community is 
described as platelet activity and plasma potassium level related drugs, thus confirming the strong connection 
between the serum potassium concentration and the platelet reactivity38.
Community VI: Hemostasis related drugs. There are two characteristic node colors, namely GB and G, both 
of them characterizing drugs that interfere in different phases of hemostasis. Other nodes are LB, M, and P; the 
presence of LB (pentoxifylline) and P (levothyroxine) nodes is justified by their properties related to hemostasis 
(both are platelet aggregation inhibitors). Apparently, the presence of the M node (exenatide) within this com-
munity has no explanation.
Community VII: Neuromuscular transmission acting drugs. All nodes have the same LB color, therefore the 
community mainly consists of drugs with neuromuscular-blocking activity, as a pharmacodynamic effect, as well 
as a pharmacotoxicologic effect. However, the community also contains immunosuppressive drugs (e.g. azathio-
prine) that are used in the treatment of myasthenia gravis (an autoimmune disease affecting the neuromuscular 
junction39,40). The same dominant modularity class nodes (labeled as LB) can be found in Community I; this 
observation is explained by the fact that modularity class LB corresponds to drugs that act on the immune system.
Community VIII: Metal cations complexes. The community is generally characterized by two colors, P and G. 
Bi- and trivalent metal cations are represented by some P nodes. At the same time, all G nodes and the other P 
nodes are the corresponding chelators. Most drugs (i.e. tetracycline antibiotics, biphosphonates) form unabsorb-
able complexes with cations such as Ca2+, Mg2+, Al3+ or other polyvalent cation24. Other drugs (i.e. ampicillin, 
amoxicillin, penicillins V and G) degrade under the catalytic influence of transition metal cations41. Two GB 
nodes are placed here because they are metal chelators: deferasirox for iron and penicillamine for copper24; their 
GB modularity class mirrors the platelet aggregation inhibitor effect42,43.
Community IX: Epilepsy related drugs. A portion of nodes colored with G within this community represent 
drugs which are used for the treatment of various epilepsy and seizure types; the other portion represents epilep-
togenic drugs. There are also five LB nodes, due to their direct relation with seizure manifestation; for instance, 
the neurotoxicity of anti-cancer drug cisplatin consists of epileptic seizures44,45.

Illustrating examples.  In order to demonstrate that our methodology is able to recover multiple pharma-
cological properties as well as known repositionings, using only information about drug-drug interactions, we 
present the following cases.

•	 Zafirlukast is an example for recovering multiple already known pharmacological properties. As such, zafir-
lukast is an oral leukotriene receptor antagonist used in asthma therapy. Its placement in topological com-
munity II (see Fig. 4A) is based on its CYP3A4 activity (substrate and inhibitor) according to DrugBank 4.124 
and RxList32. Unlike most other nodes within community II, zafirlukast is golden brown (GB), because it 
interferes with platelet activity by inhibiting the platelet-activating factor46.

•	 Thalidomide is a well-known example of successful drug repositioning; this drug was first used for prevent-
ing morning sickness in pregnant women, but then withdrawn because of its teratogenic effects. Nowadays, 
thalidomide is used in immunological and inflammatory diseases47. Indeed, as Fig. 4B presents, thalidomide 
is confirmed by our method as having anti-cancerous activity because it is a light blue (LB) node placed in 
Community I (Immune system related drugs).

Our Supplementary Information’s section 3 presents other illustrative examples, which are structured as: 
examples for recovering multiple well-known drug properties, examples for reconstructing some known drug 
repositionings, and two lists of possible new drug properties (Tables 3 and 4 in Supplementary Information), 
which can be developed as new drug repurposings or as new drug interaction discoveries.

Discussion
Our CBDDIN is characterizing drug’s interaction potential for therapies with a small number of associated 
pathologies. On the other hand, betweenness and closeness have a non-local character, making them appropriate 
in characterizing drug interactions in the case of therapies for polypathologies. Furthemore, due to the fact that 
degree and betweenness are power-law distributed, we are able to identify the drugs with the highest potential for 
drug-drug interactions (see Table 1).

By using our dual clustering methodology for drug-drug interaction network community analysis, we identify 
9 pharmacological characteristics (pointed by the community labels in Fig. 2); this may suggest that the 9 char-
acteristics are paramount in determining and interpreting drug-drug interactions. Unveiling that certain phar-
macological properties are more important than others in terms of drug-drug interactions is a clear contribution 
to the state-of-the-art.

The effectiveness of clustering CBDDIN drug communities according to specific pharmacological properties 
is confirmed for 85% of drugs from DrugBank 4.1., by cross-checking with other drug databases and extensive 
literature survey. Consequently, this high prediction accuracy indicates that, for the remaining 15% drugs, there 
is a high probability that the pharmacological properties predicted by our dual clustering methodology will be 
confirmed. We prefer the general term “property” because, according to the topological community or modular-
ity class label, the property can be of pharmacokinetic, pharmacodynamic or pharmacotoxicological nature; as 
such, confirming a predicted property can lead to discovering a new interaction, a new indication (repositioning) 
or a new possible side-effect, respectively. As possible repositioning examples, our method predicts that chlor-
zoxazone has immunological properties because it is placed in topological community I. Cefalosporins such as 
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cefalotin, cefamandole, cefixime, etc. also present certain effects on the immune system or neuromuscular junc-
tion, as they are placed in community VII. As possible new interaction examples are bevacizumab or lorazepam 
which possible interfere with CYP enzymes, due to their positioning within community II. The details for all 
15% drugs that have unexplained modularity classes and positions within the respective communities, leading to 
potential new properties, are provided in section 3.3 of our Supplementary Information file (Tables 3 and 4). We 
suggest that these drugs be further investigated with in vivo and in vitro techniques, in order to confirm possible 
repositionings or new interactions.

We observe that topological communities IX (Epilepsy related drugs) and I (Immune system related drugs) 
present a significant overlapping zone (see Figures 12 and 13 in Supplementary Information’s section 3.2); this 
overlapping suggests that there is a connection between the two drug categories, namely epilepsy-related and 
immune system acting. As a confirmation, recent research results indicate disulfiram as an anticancer drug48. 
Indeed, in our CBDDIN the epileptogenic disulfiram is placed in Community IX–Community I overlapping 
zone (Supplementary Information, Figure 12). Moreover, medroxyprogesterone and megestrol are also placed 
in Community IX–Community I overlapping zone (Supplementary Information, Figure 11), because they have 
anti-epileptic activity49,50 and, at the same time, are hormonal antineoplastic agents24. The connection between 
antineoplastic endocrine drugs and epilepsy is further strengthened by recent research51 which reports that anti-
cancer drugs letrozole and fadrozole substantially mitigate seizures.

Drug-drug interactions reflect the interference of drug behaviors. In order to infer possible repositionings, our 
strategy relies on the behavioral relationships between drugs rather than the structural similarities represented 
by chemical structure relationships or drug-target relationships. In order to reduce the complexity entailed by 
drug repurposing, we suggest that our behavioral perspective can be integrated with the complementary struc-
tural perspective52, which can rely on various sets of data (genome, phenome, drug-target combinations, etc.) 
Therefore, we indicate the Big Mechanism project53 as a possible integrator platform that can gather and process 
all repurposing information from different perspectives and tools.

Our CBDDIN is not the only bio-medical complex network that is similar to social networks; as such, our 
methodology is very useful for clustering patients in medical studies based on their compatibility, which is 
defined in terms of anthropometric measures, questionnaire results and simple clinical data (such as hyperten-
sion value, body temperature, oxygen desaturation, etc.) Thus, applications for cardiovascular diseases54, apnea55, 
and defining endophenotypes56 are using a similar dual clustering methodology in order to show that the multiple 
disease factors do not associate at random; instead, they converge towards defining patient phenotypes which are 
useful for designing personalized therapies.

Methods
Databases.  We build our CBDDIN by using drug interaction information from the public drug database 
DrugBank Version 4.124, which has 7739 drug entries (among them there are FDA drugs and biotech drugs, 
nutraceuticals, and experimental drugs.) We filter all the drugs which have no drug-drug interaction informa-
tion, obtaining 1141 drugs. The verification of interpretations and repositioning predictions obtained by our 
network-based methodology is performed by cross-checking functional properties in other databases: Drugs.
com, RxList, and DrugBank 4.3. In addition, the cross-checking verification of functional drug properties is also 
made by searching the literature in electronic format. The list of 309 retrieved papers which confirm the predicted 
drug properties is given as supporting information (tab Cross-checking references in SupplementaryCBDDIN.xls).

Complex network clustering.  The processing of our CBDDIN, including computation of statistics, mod-
ularity clustering and graphical layouts, is performed in Gephi25, a leading tool in visualization and analysis of 
large networks. The clustering algorithms that we use in this paper are based on modularity classes26 and on the 
energy-model layout Force Atlas 227.
Definition 1. An unweighted network consists of a set of vertices ∈v V  and a set of edges ∈e E which connect 
certain pairs of vertices from V.

Figure 4.  Zoomed details of our DDI indicating. (A) Zafirlukast placement within topological community II 
(B) Thalidomide placement within topological community I.



www.nature.com/scientificreports/

8Scientific Reports | 6:32745 | DOI: 10.1038/srep32745

The average path length L of a network (V, E) is the mean distance between two nodes, averaged over all pairs 
of nodes; the clustering coefficient C is defined as the average fraction of node’s neighbor pairs that are also neigh-
bors to each other57. The degree k of a node is defined as the total number of its incident edges. Thus, the network’s 
degree distribution is characterized by function P(k), whereas the diameter Dmt is the maximal distance among 
all distances between any pair of nodes in the (V, E) network57. The network density Dst is defined as the ratio of 
edges in the network to the total number of possible edges28. Modularity Mod is a measure that characterizes the 
strength of dividing the network into communities29.

Besides the degree, the main centrality metrics (expressing the importance of a node in the society) are: 
betweenness, closeness, page rank and eigenvector. The node betweenness is defined as the number of minimal 
paths from all vertices in the network to all other vertices that pass through the node, normalized over the total 
number of shortest paths. The inverse of the sum of shortest path lengths from one node to all other vertices is 
called closeness. The eigenvector centrality computes relative scores for all nodes in the network, by considering 
that the connections to high-influence vertices are more important than the connections to low-influence verti-
ces; the page rank is merely a variant of eigenvector used to rank websites30,58.

In order to measure the similarity between two complex networks, the network fidelity metric ϕ was 
introduced28:
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In equation 1, j represents the index of the network being compared to the reference network. The index of the 
network metric which describes the two compared models (e.g. average path length, average degree etc.) is 
denoted by = …i n{1, 2, }, where n is the total number of common metrics taken into consideration. Fidelity 
takes values between 0 and 1 (or as percentiles), with 1 representing perfect similarity. The metric measurements 
on the reference model are mi, respectively mi

j on the model being compared.
Definition 2. Given an unweighted network (V, E) and an Euclidean d-dimensional space d, a layout maps each 
vertex ∈v V  to a position ∈xv

d and assigns an Euclidean distance −x xv w  to each edge ∈v w E[ , ] .
Energy model layouts are layout algorithms that can be represented as force systems. Many energy model 

layouts are developed as attraction-repulsion or a-r force systems26. In a-r layouts, adjacent vertices attract 
whereas all other pairs of vertices repulse, thus forming groups of vertices with dense connections (i.e. communi-
ties or clusters). The a-r forces are proportional to the power (a or r) of the Euclidean distances between the 
nodes: the attraction between adjacent vertices v and w is − ⋅ →x x x xv w

a
v w  and the repulsion between any two 

vertices ∈v w V,  is − ⋅ →x x x xv w
r

v w  (with →x xv w  as the unit vector from v to w). Normally, ∈a r R, , are cho-
sen so that a ≥​ 0 and r ≤​ 0, so that attraction is not decreasing and repulsion is not increasing with the Euclidean 
distance. The most popular force-based layout systems are the model of Fruchterman and Reingold (a =​ 2, r =​ −​1)59, 
and the LinLog model (a =​ 0, r =​ −​1)60.

For all a-r energy models, the resulted layout corresponds to the situation where local energy minimum is 
attained26. As such, total energy for the a-r layout (a >​ r) is:
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Definition 3. Network clustering consists of classifying all the vertices ∈v V  in one of the disjoint vertex subsets 
(i.e. clusters) C, pertaining to the set of disjoint subsets VC

61.
Several network parameters are used for network clustering in complex networks, but one of the most useful 

is the modularity which was advocated by Newman and Girvan29. In an unweighted network, such as our DDI, 
the modularity of a clustering VC is defined as:

∑=
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In Equation 3, |EC| is the number of edges in cluster C, |E| is the total number of edges in the network, kC is the 
total degree of nodes in cluster C, while k is the total degree of nodes in the entire network. At the same time, E

E
C  

represents the fraction of intra-cluster edge density relative to the density of the entire network (which is assumed 
to be uniform), while k

k

C
1
2

2

1
2

2
 is the expected such fraction. Therefore, modularity grows as clustering produces clus-

ters with edge densities that are larger than expected.
Noack has demonstrated that, when a >​ −​1 and r >​ −​1, force-directed layout algorithms produce topo-

logical clusters which are equivalent with those rendered by modularity-based network clustering26. However, 
force-directed algorithms provide additional topological information about clusters, which leads to recom-
mending the usage of both modularity clustering and a-r force directed layouts for more accurate network 
analysis27.
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