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Machine learning with clinical and intraoperative
biosignal data for predicting postoperative
delirium after cardiac surgery

Changho Han,1,5 Hyun Il Kim,2,5 Sarah Soh,2 Ja Woo Choi,2 Jong Wook Song,2,* and Dukyong Yoon1,3,4,6,*
SUMMARY

Early identification of patients at high risk of delirium is crucial for its prevention. Our study aimed to
develop machine learning models to predict delirium after cardiac surgery using intraoperative biosignals
and clinical data. We introduced a novel approach to extract relevant features from continuously
measured intraoperative biosignals. These features reflect the patient’s overall or baseline status, the
extent of unfavorable conditions encountered intraoperatively, and beat-to-beat variability within the
data. We developed a soft voting ensemble machine learning model using retrospective data from
1,912 patients. The model was then prospectively validated with data from 202 additional patients,
achieving a high performance with an area under the receiver operating characteristic curve of 0.887
and an accuracy of 0.881. According to the SHapley Additive exPlanation method, several intraoperative
biosignal features had high feature importance, suggesting that intraoperative patientmanagement plays
a crucial role in preventing delirium after cardiac surgery.

INTRODUCTION

Delirium is an acute neurocognitive disorder characterized by fluctuating disturbances in attention, awareness, or cognition.1–3 Postoperative

delirium is a highly prevalent and serious complication of cardiac surgery.4 Delirium is associated with significant functional decline, higher

postoperative morbidity and mortality risks, prolonged hospital stay, and healthcare costs.5,6

However, owing to the lack of specific treatment, current management strategies for delirium only focus on its prevention and early detec-

tion.7–9 As such, risk stratification and identification of vulnerable patients are crucial. The pathogenesis of postoperative delirium is multifac-

torial, with risk factors including advanced age and preexisting cognitive impairment.10 Furthermore, intraoperative variables, including ce-

rebral perfusion and depth of anesthesia, are associated with postoperative delirium.11–13 However, the impact of perioperative factors

remains unclear, and a comprehensive predictive model encompassing both preoperative clinical data and intraoperative variables has

not been developed.

Several recent studies have attempted to predict postoperative complications using AI.14–17 The recent emergence of software such as

VitalRecorder has made it possible to store and analyze whole high-resolution biosignal data.18 AI enables the extraction of hidden informa-

tion and nonlinear relationships and provides efficient analysis of complicated, large-sized data.19 Using extensive perioperative clinical in-

formation and intraoperative biosignal data, this study aimed to developmachine learningmodels for predicting postoperative delirium after

cardiac surgery and prospectively validate the performance of these models.
RESULTS

Dataset characteristics

Patients agedR19 years who underwent cardiac surgery were included. Data used for developing machine learning models were collected

fromDecember 14, 2018 toDecember 22, 2021, whereas those for prospective validation were collected fromMarch 28, 2022 to June 28, 2022

(Figure 1). Extensive perioperative clinical data and intraoperative biosignal data were utilized for machine learning model development and

validation. Specific clinical variables, which were considered to be potential predictors of postoperative delirium and are used as machine

learning input, are listed in Table S1. For the continuously monitored intraoperative biosignals, we calculated features from these parameters

for use as inputs for the machine learning models (Table S2). These features were designed and selected to reflect the patients’ overall or
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Figure 1. Patient flow diagram
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baseline status (e.g., average, baseline, or lowest values), extent of unfavorable conditions encountered during surgery (e.g., duration and

area under the curve falling below or above a certain value), and beat-to-beat variability within the data (coefficient of variation [CV] and

average real variability [ARV]).20

Figure 1 shows the flow diagram of patient selection. In total, 2,179 adult patients were included: among them, 1,969 and 210 patients

belonged to the training and validation sets and to the prospective validation cohort, respectively. After excluding 62 patients (55 patients

from the training and validation sets and 7 patients from the prospective validation cohort) with missing cerebral oximetry or electroenceph-

alogram (EEG) data and 3 patients who were already included in the training set (2 patients from the validation set and 1 patient from the

prospective validation cohort), 2,114 patients were included. Table 1 shows the baseline clinicodemographic characteristics (demographic

data, medical history, cerebral oximetry and EEG) of the entire cohort. Overall, 260 patients had postoperative delirium, and these patients

were older (median [interquartile range (IQR)]: 72 $ 0 [65 $ 0, 76 $ 0] years vs. 65 $ 0 [56 $ 0, 72 $ 0] years, p < 0 $ 001) and included a higher

proportion of males (68 $ 5% vs. 61 $ 7%, p = 0 $ 041) than those who did not have delirium.

Moreover, the delirium group had a higher proportion of surgeries without cardiopulmonary bypass (CPB) (42 $ 3% vs. 27 $ 5%, p < 0 $

001) and with both CPB and total circulatory arrest (TCA) (11 $ 5% vs. 9 $ 8%, p < 0 $ 001). This group also had more comorbidities than the

non-delirium group, including hypertension (76 $ 5% vs. 57 $ 3%, p < 0 $ 001), diabetes mellitus (40 $ 0% vs. 27 $ 9%, p < 0 $ 001), chronic

kidney disease (30 $ 4% vs. 10 $ 4%, p < 0 $ 001), and previous cerebrovascular accidents (20 $ 4% vs. 12 $ 1%, p < 0 $ 001). Further, the

delirium group had a longer operation time (median [IQR]: 231 $ 0 [201 $ 0, 267 $ 2] min vs. 207 $ 0 [164 $ 0, 246 $ 0] min, p < 0 $ 001),

anesthesia time (median [IQR]: 305 $ 0 [270 $ 0, 345 $ 0] min vs. 275 $ 0 [230 $ 0, 320 $ 0] min, p < 0 $ 001), CPB duration (mean [standard

deviation, SD]: 132 $ 7 [64 $ 4] min vs. 104 $ 6 [53 $ 1] min, p < 0 $ 001), and aortic cross clamp (ACC) duration (mean [SD]: 86 $ 5 [42 $ 6] min

vs. 70 $ 3 [37 $ 9] min, p < 0 $ 001).

In addition, the delirium group had lower regional cerebral oxygen saturation (rSO2) (median [IQR]: 55 $ 9% [49 $ 4%, 60 $ 4%] vs. 58 $ 7%

[54 $ 2%, 62 $ 9%], p < 0 $ 001), higher anesthesia depth (bispectral index [BIS] duration <40 or patient state index [PSI] < 25; median [IQR]:

1025 $ 0 [333 $ 0, 2049 $ 2]/5 s vs. 535 $ 5 [169 $ 0, 1174 $ 0]/5 s, p < 0 $ 001), and higher suppression ratio (SR) (SR duration >1%; median [IQR]:

236 $ 0 [38 $ 8, 763 $ 0]/5 s vs. 102 $ 0 [21 $ 0, 332 $ 0]/5 s, p < 0 $ 001) than the non-delirium group. Other clinical and biosignal characteristics of

the entire cohort are presented Table S3. Notably, the delirium group had lower perfusion pressure (PP) (mean [SD]: 61 $ 2 [9 $ 6] mmHg vs.

64 $ 0 [6 $ 9] mmHg, p< 0 $ 001), highermean pulmonary arterial pressure (mPAP) (mPAP duration >20mmHg;mean [SD]: 1307 $ 6 [858 $ 5]/5 s

vs. 1079 $ 7 [770 $ 8]/5 s, p< 0 $ 001), and lower cardiac index (CI) (CI < 2; mean [SD]: 783 $ 1 [817 $ 2]/5 s vs. 581 $ 2 [680 $ 9]/5 s, p< 0 $ 001). The

characteristics of the patients in the training, validation, and prospective validation cohorts are shown in Tables S4 and S5. In the prospective

validation cohort, 29 of the 202 patients had postoperative delirium.
Model performance

Figures 2 and S1 show the receiver operating characteristics (ROC) and precision-recall (PR) curves of themachine learningmodels in the pro-

spective validation cohort and validation set, respectively. Eight distinct machine learning models were developed, namely XGBoost (XGB),

extra trees classifier (ET), light gradient boosting machine (LGBM), random forest (RF), gradient boosting classifier (GBC), logistic regression

(LR), artificial neural network (ANN), and support vectormachine (SVM). Subsequently, a soft-voting ensemble (ENS) classifier was constructed

by averaging the outputs of the highest-performing individual models in the validation set. To ascertain the most effective configuration for

the ENS classifier, we varied the number of top-performing individual models included in the ENS, ranging from one to eight, selecting the

ensemble that achieved the highest area under the ROC curve (AUROC) in the validation set. As a result, the five top-performing models, in

the order of XGB, ET, LGBM, RF, and GBC, were incorporated into the soft-voting ENS classifier. To reduce the complexity of reporting, Fig-

ure 2, Table 2, Figure S1, and Table S5 only report the performances of this ENS model and the five top-performing individual models

included in the ENS. The ENS model had the highest performance (prospective validation cohort: AUROC, 0 $ 887; area under the PR curve

[AUPRC], 0 $ 499; validation set: AUROC, 0 $ 782; AUPRC, 0 $ 290). The individual machine learningmodels had AUROCs of 0 $ 851–0$877 and
2 iScience 27, 109932, June 21, 2024



Table 1. Baseline clinical characteristics (demographic data and medical history), intraoperative durations and intraoperative biosignal characteristics

(cerebral oximetry and electroencephalogram) of the entire cohort

Missing Delirium negative (n = 1854) Delirium positive (n = 260) p-Value

Sex, male, n (%) 0 1144 (61.7%) 178 (68.5%) 0.041

Age, median [Q1-Q3] 0 65 [56–72] 72.0 [65–76] <0.001

Operation_type, n (%) 0 <0.001

No CPB 510 (27.5%) 110 (42.3%) <0.001

CPB, no TCA 1163 (62.7%) 120 (46.2%)

CPB, TCA 181 (9.8%) 30 (11.5%)

Height, cm, median [Q1-Q3] 0 164.0 [156.8–170.0] 163.6 [157.0–170.0] 0.702

Weight, kg, median [Q1-Q3] 0 64.3 [56.7–72.8] 63.6 [56.1–70.6] 0.149

Body surface area, m2, median [Q1-Q3] 0 1.71 [1.58–1.84] 1.70 [1.58–1.81] 0.177

Systolic blood pressure, mmHg, mean G SD 3 125.0 G 15.7 125.9 G 16.5 0.391

Diastolic blood pressure, mmHg, mean G SD 3 73.4 G 11.1 70.3 G 11.3 <0.001

Heart rate, bpm, median [Q1-Q3] 3 71.0 [63.5–79.0] 70.5 [63.0–80.0] 0.837

Emergency surgery, n (%) 0 14 (0.8%) 7 (2.7%) 0.01

Hypertension, n (%) 0 1063 (57.3%) 199 (76.5%) <0.001

Diabetes mellitus, n (%) 0 <0.001

No diabetes 1337 (72.1%) 156 (60.0%)

Diabetes, on oral medication 448 (24.2%) 85 (32.7%)

Diabetes, on insulin 69 (3.7%) 19 (7.3%)

Chronic kidney disease, n (%) 0 192 (10.4%) 79 (30.4%) <0.001

Old cerebrovascular accident, n (%) 0 225 (12.1%) 53 (20.4%) <0.001

Atrial fibrillation, n (%) 0 459 (24.8%) 62 (23.8%) 0.808

Liver cirrhosis, n (%) 0 42 (2.3%) 12 (4.6%) 0.041

Congestive heart failure, n (%) 0 263 (14.2%) 61 (23.5%) <0.001

COPD, n (%) 0 56 (3.0) 22 (8.5) <0.001

Acute MI (1 week), n (%) 0 55 (3.0%) 12 (4.6%) 0.218

Recent MI (3 months), n (%) 0 62 (3.3%) 16 (6.2%) 0.038

Old MI, n (%) 0 99 (5.3%) 32 (12.3%) <0.001

History of cognitive impairment, n (%) 0 20 (1.1%) 5 (1.9%) 0.222

History of alcohol abuse, n (%) 0 8 (0.4%) 4 (1.5%) 0.05

Functional capacity (R 4 METs)4, n (%) 4 499 (27.0%) 115 (44.2%) <0.001

NYHA classification5, n (%) 8

Class I 630 (34.1%) 59 (22.7%) <0.001

Class II 825 (44.7%) 110 (42.3%)

Class III 345 (18.7%) 70 (26.9%)

Class IV 46 (2.5%) 21 (8.1%)

EuroSCORE II6, median [Q1-Q3] 5 1.25 [0.82–2.29] 2.27 [1.25–4.34] <0.001

Anesthesia time, minutes, median [Q1-Q3] 0 275.0 [230.0–320.0] 305.0 [270.0–345.0] <0.001

Operation time, minutes, median [Q1-Q3] 0 207.0 [164.0.246.0] 231.0 [201.0.267.2] <0.001

CPB duration, minutes, mean G SD 620 104.6 G 53.1 132.7 G 64.4 <0.001

ACC duration, minutes, mean G SD 642 70.3 G 37.9 86.5 G 42.6 <0.001

TCA duration, minutes, mean G SD 1903 23.5 G 12.6 28.0 G 17.2 0.183

Baseline rSO2, %, median [Q1-Q3] 0 63.1 [57.2–68.3] 59.2 [52.7–64.3] <0.001

Lowest rSO2, %, median [Q1-Q3] 0 47.0 [40.0–52.5] 42.5 [34.4–49.5] <0.001

Average rSO2, %, median [Q1-Q3] 0 58.7 [54.2–62.9] 55.9 [49.4–60.4] <0.001

(Continued on next page)
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Table 1. Continued

Missing Delirium negative (n = 1854) Delirium positive (n = 260) p-Value

CV of rSO2, median [Q1-Q3] 0 0.080 [0.061–0.108] 0.084 [0.062–0.123] 0.127

ARV of rSO2, %, median [Q1-Q3] 0 0.301 [0.237–0.376] 0.288 [0.236–0.350] 0.052

Duration of rSO2 <50%, 3 5 s, median [Q1-Q3] 0 32.0 [0.0–658.0] 359.0 [1.8–1569.2] <0.001

Duration of rSO2 < 75% from baseline value

(relative decrease), 3 5 s, median [Q1-Q3]

0 0.0 [0.0–120.8] 2.5 [0.0–205.8] 0.041

AUC of rSO2 < 50%, 3 5 s*%, median [Q1-Q3] 0 47.0 [0.0–2039.8] 830.8 [1.0–8556.8] <0.001

AUC of rSO2 < 75% from baseline value

(relative decrease), 3 5 s*%, median [Q1-Q3]

0 0.0 [0.0–1004.3] 16.6 [0.0–1846.6] 0.059

Anesthetic depth measurement index, n (%) 0 0.009

BIS 1080 (58.3%) 174 (66.9%)

PSI 774 (41.7%) 86 (33.1%)

Duration of BIS<40 or PSI<25, 3 5 s,

median [Q1-Q3]

0 535.5 [169.0–1174.0] 1025.0 [333.0–2049.2] <0.001

Duration of SR>1%, 3 5 s, median [Q1-Q3] 0 102.0 [21.0–332.0] 236.000 [38.8–763.0] <0.001

AUC of SR>1%, 3 5 s*%, median [Q1-Q3] 0 317.9 [22.0–2334.0] 768.8 [65.0–4435.5] <0.001

CPB, cardiopulmonary bypass; TCA, total circulatory arrest; COPD, chronic obstructive pulmonary disease; MI, myocardial infarction; METs, metabolic equiva-

lents; NYHA, New York Heart Association; ACC, aortic cross clamp; rSO2, cerebral regional oxygen saturation; CV, coefficient of variation; ARV, average real

variability; AUC, area under the curve; BIS, bispectral index; PSI, patient state index; SR, suppression ratio; Q1, first quartile; Q3, third quartile; SD, standard de-

viation.
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AUPRCs of 0 $ 433–0$470 in the prospective validation cohort andAUROCs of 0 $ 751–0$769 andAUPRCs of 0 $ 265–0$281 in the validation set.

Tables 2 and S6 present the performances of the models at the optimal cutoff point in the prospective validation cohort and validation set,

respectively. Overall, the ENSmodel performed the best, achieving the highest accuracy (0 $ 881) and positive predictive value (PPV) (0 $ 609)

and the second-highest F1 score (0 $ 538) and specificity (0 $ 948) in the prospective validation cohort. The performances of the remaining

individual models (LR, ANN, and SVM) are separately reported in Table S7. Additionally, to provide a deeper insight into themodels’ learning

capabilities and to reflect further on the clinical benefits of the models, their performances in the training set are also documented separately

in Table S8. In the training set, the ENSmodel achieved high performance with an AUROCof 0.977, an AUPRC of 0.881, an accuracy of 0.907, a

PPV of 0.580, and an F1 score of 0.723.

The AUROCs of the Early PREdiction of DELIRium in ICu patients (E-PRE-DELIRIC)model, a widely used tool developed to predict delirium

development during intensive care unit (ICU) admission, for predicting postoperative delirium after cardiac surgery were 0 $ 831 and 0 $ 726 in

the prospective validation cohort and validation set, respectively.21,22 Although the AUROC of the ENS model was higher than that of the

E-PRE-DELIRIC model, the DeLong test showed no significant difference between them in the prospective validation cohort and the valida-

tion set (p = 0 $ 269 and 0 $ 143, respectively).

Figures 3 and S2 show the top 30 variables with the highest feature importance according to the SHapley Additive exPlanations (SHAP)

method. The top five variables were estimated glomerular filtration rate (eGFR), age, T3, duration of BIS <40 or PSI <25, and Katz grade 4.

Patients with lower eGFR, older age, lower T3, higher duration of BIS <40 or PSI <25, and Katz grade 4 tended to have higher SHAP values.

Among these variables, several biosignal features contributed significantly to model prediction. These features included duration of BIS <40

or PSI <25, average CI, AUC of PP < 60 mmHg, duration of SR > 1%, CV of rSO2, average rSO2, and ARV of mean arterial pressure (MAP).
DISCUSSION

In this study, we developed machine learning models to predict postoperative delirium after cardiac surgery using clinical and intraoperative

biosignal data. Our ENS model has the best performance for predicting postoperative delirium. The novelty of our study lies in the use of

features extracted from intraoperative biosignals to predict postoperative delirium, which, to the best of our knowledge, is unprecedented.

In the feature importance analysis using SHAP values, the duration of BIS <40 or PSI <25, calculated from the intraoperative electroencephalo-

gram, was among the top five important features that contributed significantly to themodel’s predictive ability. Moreover, several other intra-

operative biosignal features, namely, average CI, AUC of PP < 60 mmHg, duration of SR > 1%, CV of rSO2, average rSO2, and ARV of MAP,

were among the top 30 important features.

Numerous studies have attempted to develop machine learning models for predicting postoperative delirium. Koster et al., 2008, devel-

oped amachine learningmodel to predict postoperative delirium in 300 patients who underwent elective cardiac surgery.23 Their model used

only preoperative variables and showed an AUROC of 0 $ 75 (95% CI, 0 $ 66-0$85). Katznelson et al., 2009, developed a model using data

collected from 1,059 patients who underwent cardiac surgery with CPB, and themodel’s C-statistic was 0 $ 774.24 Song et al., 2023, developed

and comparedmachine learningmodels for predicting postoperative delirium in elderly patients using perioperative medical data, achieving
4 iScience 27, 109932, June 21, 2024



Figure 2. ROC and PR curves of the machine learning models in the prospective validation cohort

ROC: receiver operating characteristic, PR: precision recall, ENS: ensemble classifier, XGB: XGBoost, ET: extra trees classifier, LGBM: light gradient boosting

machine, RF: random forest, GBC: gradient boosting classifier.
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an AUROCof 0.783.25 However, intraoperative vital signs and biosignals were not included in these predictivemodeling. Rapid hemodynamic

fluctuations can occur during surgery, especially cardiac surgery, which may contribute to the development of delirium.26 To our best knowl-

edge, our study is the first to use machine learning algorithms to predict postoperative delirium after cardiac surgery by modeling hemody-

namic fluctuations reflected in intraoperative biosignals.

Intraoperative hypotension and fluctuations in blood pressure are known risk factors for delirium. In a study by Hirsch et al., 2015, increased

blood pressure fluctuations, rather than absolute or relative hypotension, were predictive of postoperative delirium in non-cardiac surgery

patients.12 Ushio et al., 2022, also showed that the longer the duration of hypotension after CPB, the higher the incidence of postoperative

delirium.27 Zhang et al., 2023, also showed that increased intraoperativeMAP variabilitymay be a predictor of postoperative delirium after hip

fracture surgery.28 Extensive measurements of intraoperative biosignals may best reflect comprehensive hemodynamic fluctuations during

surgery; however, including these biosignals as variables in predictive models is difficult because they require the collection of vast amounts

of intraoperative time series data with conventional monitoring equipment.26 In the present study, data were collected using VitalRecorder, a

system that automatically collects time-series data from monitoring equipment, and a model that included intraoperative vital signs as vari-

ables was developed. Particularly, intraoperative vital signs, such as blood pressure, are highly likely to be modifiable risk factors that can be

controlled through interventions during cardiac surgery. Therefore, the results showing the importance of intraoperative vital signs indicated

that intraoperative patient management is crucial in preventing delirium after cardiac surgery.

Our study included intraoperative time-series data such as rSO2, EEG values, and MAP. Extracted at a sampling rate of 0 $ 2 Hz, these

variables generated high-resolution data. Consequently, there was a need to reduce the dimensionality when these variables were incorpo-

rated as inputs into themachine learningmodels. A substantial amount of information was lost during this process. Previous studies that used

vital signs established features based on simple criteria such as the duration by which values fell outside a specific target range.13,15 However,

our study aimed to minimize information loss by defining features using various methods. These features were designed and selected to

reflect the patients’ overall or baseline status (e.g., average, baseline, or lowest values), the extent of unfavorable conditions encountered

during surgery (e.g., duration and area under the curve falling below or above a certain value), and beat-to-beat variability within the data

(CV and ARV).20 Notably, this study used ARV as a model feature to quantify blood pressure variability. Many studies revealed that blood

pressure variability as well as simple blood pressure values were associated with the occurrence of cardiovascular complication.20,29,30 In a

feature analysis based on SHAP values, the ARV of the MAP was among the top 30 variables, indicating that intraoperative blood pressure

variability influences delirium development following cardiac surgery.

BIS and PSI are dimensionless numbers derived from the frontal lobe EEG signal that reflects the level of consciousness, with BIS <40 or PSI

<25 indicating excessively deep anesthesia.31,32 Burst suppression refers to an EEG pattern in which the EEG signal alternates between iso-

electric patterns and bursting slow waves that occur in a comatose mental state or during overly deep anesthesia.33 In this study, the SHAP

value analysis indicated that patients with a higher depth of anesthesia (measured via EEG [BIS or PSI]) or a higher burst SR (measured via EEG)

during surgery had a higher risk of postoperative delirium occurrence. This finding is consistent with those of previous studies suggesting an
iScience 27, 109932, June 21, 2024 5



Table 2. Model performances at maximum Youden J Index in the prospective validation cohort

Accuracy Sensitivity Specificity PPV NPV F1 score

ENS 0.881 0.483 0.948 0.609 0.916 0.538

XGB 0.851 0.621 0.890 0.486 0.933 0.545

ET 0.812 0.690 0.832 0.408 0.941 0.513

LGBM 0.871 0.345 0.960 0.588 0.897 0.435

RF 0.663 0.931 0.618 0.290 0.982 0.443

GBC 0.827 0.448 0.890 0.406 0.906 0.426

PPV, positive predictive value; NPV, negative predictive value; ENS, ensemble classifier; XGB, XGBoost; ET, extra trees classifier; RF, random forest; LGBM, light

gradient boosting machine; GBC, gradient boosting classifier.
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association between intraoperative BIS and postoperative deliriumor cognitive dysfunction.34–36 Although the exact pathophysiology has not

yet been elucidated, it is likely due to the deterioration of physical brain function and the impairment of brain network connectivity resulting

from deep anesthesia.37

Furthermore, features related to rSO2 were among the top 30most important features in our model. rSO2 indicates regional oxygen satu-

ration in the brain tissue, and low rSO2 levels are associated with increased mortality and several neurological complications, including post-

operative cognitive dysfunction.38–40 Evidence regarding the association between perioperative rSO2monitoring and postoperative delirium

has been inconsistent. Several studies have demonstrated an association between preoperative rSO2 levels and postoperative delirium.41,42

Meanwhile,meta-analyses showed no correlation between intraoperative rSO2 levels and postoperative delirium. However, these resultsmay

have been influenced by the small number of included trials.40,43 In a prospective study conducted by Wang et al., 2019, intraoperative rSO2

desaturation was associated with postoperative delirium.44 Our findings suggest that intraoperative rSO2monitoringmay have an impact on

the prediction of postoperative delirium. More clinical trials are needed to draw definitive conclusions.

The variables with high feature importance, obtained using the SHAP method, include both modifiable and non-modifiable risk factors.

Althoughmost variables related to preoperative patient characteristics, such as age, preoperative laboratory results, and other comorbidities,

are non-modifiable, the comprehensive incorporation of these variables could enhance the predictive performance of ourmodel. This, in turn,

promotes the identification of patients at high risk and the implementation of a multimodal, multidisciplinary approach for the prevention of

postoperative delirium.45 Furthermore, several intraoperative variables, especially those related to the depth of anesthesia or hemodynamics,

are highly controllable. The identification of these modifiable variables, particularly those associated with intraoperative hemodynamic fluc-

tuations and depths of anesthesia, is of paramount importance in clinical practice, given their potential for modification by physicians to pre-

vent the occurrence of postoperative delirium. For example, an anesthesiologist can avoid inadequately deep anesthesia (indicated by low

BIS and PSI, and high SR) through vigilant monitoring and titration of anesthetics. Additionally, rSO2 can be improved by optimizing hemo-

dynamics, blood oxygen content, and cerebral blood flow.

In conclusion, our study introduces a novel approach that uses intraoperative biosignals to predict postoperative delirium.Our bestmodel

was the ENS model, with an AUROC of 0 $ 887, AUPRC of 0 $ 499, accuracy of 0 $ 881, and an F1 score of 0 $ 538. This model will enable

prediction of delirium after cardiac surgery and initiation of preventive treatment, thereby improving patient prognosis and outcomes and

reducing medical costs.
Limitations of the study

This study had some limitations. First, it was conducted at a single institution. Specific clinical practice protocols can vary from one institution

to another. At Severance Cardiovascular Hospital, where the research was conducted, all isolated coronary artery bypass surgeries were per-

formed off-pump, which resulted in a higher incidence of delirium in patients without CPB. In contrast, at other institutions, coronary artery

bypass surgery may be performed either on-pump or off-pump. Additionally, at Severance Cardiovascular Hospital, delirium was assessed

using the IntensiveCareDelirium ScreeningChecklist (ICDSC).46 In contrast, a significant number of institutions employ theConfusion Assess-

ment Method for the Intensive Care Unit (CAM-ICU) for delirium screening.47 Although both tools are effective, well-validated, and widely

used, due to the retrospective nature of our model development, the results may not be directly interchangeable. Therefore, caution is war-

ranted in generalizing our results, and further validation in other institutions is necessary to ensure the validity and robustness of our model in

external environments. Second, owing to the inherent characteristics of our model development process, the model training in this study uti-

lized retrospectively collected data. However, we attempted to offset this limitation by prospectively collecting additional data for model

validation and using these data to evaluate the final performance of the model. Finally, the inclusion of a large number of features as model

inputs, specifically over 100 features frompre- and intraoperative clinical data and 38 features from intraoperative biosignal data, could hinder

the real-world application of our model. A supplementary platform that can automatically extract input variables, including clinical and intra-

operative biosignal data; calculate predefined features; and perform risk calculation using a machine learning model is necessary for real-

world implementation.
6 iScience 27, 109932, June 21, 2024
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Figure 3. SHAP summary plot (dot)

eGFR: estimated glomerular filtration rate, BIS: bispectral index, PSI: patient state index, CPB: cardiopulmonary bypass, TCA: total circulatory arrest, CI: cardiac

index, AUC: area under the curve, PP: perfusion pressure, SR: suppression ratio, ACC: aortic cross clamp, CV: coefficient of variation, rSO2: cerebral regional

oxygen saturation, ARV: average real variability, MAP: mean arterial pressure, SHAP: SHapley Additive exPlanations.
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KEY RESOURCES TABLE
RESOURCE SOURCE IDENTIFIER

Software and algorithms

python https://www.python.org/ Version 3.10.6

scikit-learn https://scikit-learn.org/ Version 1.3.0

matplotlib https://matplotlib.org/ Version 3.7.2

xgboost https://xgboost.readthedocs.io/en/stable/ Version 2.0.0

lightgbm https://lightgbm.readthedocs.io/en/stable/ Version 4.1.0

shap https://shap.readthedocs.io/en/latest/ Version 0.43.0

miceforest https://pypi.org/project/miceforest/ Version 5.6.3

R https://www.r-project.org/ Version 4.2.0

pROC https://github.com/cran/pROC/ Version 1.18.4

VitalRecorder https://vitaldb.net/ Version 1.8.16.8

VitalUtils https://vitaldb.net/ Version 1.0.1

Original code of this study https://github.com/CMI-Laboratory/PODEC_ML/ N/A
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Dukyong Yoon (dukyong.yoon@yonsei.ac.kr).

Materials availability

This study did not generate any new materials.

Data and code availability

� The data cannot be made publicly accessible due to hospital regulations. Distributing these data without the necessary consent could

potentially breach patient confidentiality and contravene the approval granted by the Institutional Review Board for this study. Any

additional information required to reanalyze the data reported in this paper is available from the lead contact on request.
� All original code has been deposited at https://github.com/CMI-Laboratory/PODEC_ML/ and is publicly available as of the date of

publication.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participant information

Patients aged R19 years who underwent cardiac surgery at the Severance Cardiovascular Hospital, Yonsei University Health System, Seoul,

South Korea with or without cardiopulmonary bypass. Data used for developingmachine learningmodels were collected fromDecember 14,

2018 to December 22, 2021, whereas those for prospective validation were collected fromMarch 28, 2022 to June 28, 2022. All participants in

this study were of Korean ethnicity. In total, 2,179 adult patients were included: among them, 1,969 and 210 patients belonged to the training

and validation sets and to the prospective validation cohort, respectively. After excluding 62 patients (55 patients from the training and vali-

dation sets and 7 patients from the prospective validation cohort) with missing cerebral oximetry or electroencephalogram data and 3 pa-

tients who were already included in the training set (2 patients from the validation set and 1 patient from the prospective validation cohort),

2,114 patients were included. The median age of these patients was 66 years (interquartile range 57-73), and 1,322 (62.5%) were male.

METHOD DETAILS

Study design and ethics approval

This study was conducted at the Severance Cardiovascular Hospital, Yonsei University Health System, Seoul, South Korea. The Department of

Anesthesiology at Severance Cardiovascular Hospital has been developing an institutional cardiac surgery registry that collects perioperative

clinical data and intraoperative biosignal data measured by VitalRecorder, a software that stores high-resolution biosignal waveforms and
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vital signs.18 The Institutional Review Board (IRB) of Severance Hospital and Yonsei University Health System approved the collection of pro-

spective data for the establishment of this institutional cardiac surgery registry upon informed consent from cardiac surgery patients (approval

number: 4-2018-1002). The machine learning models were developed using data gathered during the approved collection period. The IRB

approved the retrospective data analysis and the development of machine learning models using this data (Approval number: 4-2021-0799).

Additional approval was obtained from the IRB for prospective data collection upon informed consent from cardiac surgery patients

(Approval number: 4-2022-0093), and the model was prospectively validated using this data.

Data sources and labeling

Patients agedR19 years who underwent cardiac surgery with or without CPB were included. Patients who had undergone congenital heart

surgery were excluded. Clinical data including preoperative (comorbidities, blood test results, medications), intraoperative (medications, sur-

gical procedure times, input and output during surgery), and postoperative (medications, postoperative complications) information were

collected from an institutional cardiac surgery registry (Figure 1). In the current study, data used for developing machine learning models

were collected from December 14, 2018 to December 22, 2021, whereas those for prospective validation were collected from March 28,

2022 to June 28, 2022. As inputs for machine learningmodels, preoperative or intraoperative variables reflective of patient status and possible

predictors of postoperative delirium were included. The specific variables are listed in Table S1. For patients who had undergone multiple

surgeries, only data from the first surgery was included to avoid data leakage and performance overestimation.

Vital signs recorded via VitalRecorder and stored in the registry include (1) rSO2 on cerebral oximetry, (2) depth of anesthesia as evaluated

according to the BIS (BIS Quarto Sensor, Medtronic Corp, Minneapolis, MN, USA) or PSI (RD SedLine EEG sensor, Masimo Corp, Irvine, CA,

USA) on the EEG monitor, (3) arterial blood pressure, etc.18,48,49

We extracted the intraoperative biosignals stored in the registry. The specific parameters used as inputs for the machine learning models

are listed in Table S2. Patients with missing cerebral oximetry or EEG data in the VitalRecorder files were excluded because these two param-

eters were directly related to the brain and would therefore have a strong association with postoperative delirium (Figure 1).50,51

Patients who were diagnosed with delirium within 7 days following cardiac surgery were labeled as positive for postoperative delirium.

Delirium was identified using either the ICDSC, which was assessed three times daily during the ICU stay, or through a multidisciplinary psy-

chiatry consultation.46

Intraoperative biosignal data extraction and feature calculation

The original sampling frequency for each parameter stored in the VitalRecorder file varied, with the lowest sampling frequency of 0$2 Hz for

rSO2. Thus, the remaining study parameters were also extracted at 0$2 Hz into CSV (comma-separated value) files via VitalUtils. Briefly,

VitalUtils is a utility program designed for convenient handling of VitalRecorder files, wherein the files can be extracted as a CSV file according

to a desired sampling frequency. VitalUtils was used for two reasons. First, we hypothesized that extracting values every 5 s would sufficiently

reflect the patient’s physiological status given the considerably longer operation time. Second, we aimed to reduce the computation time

required for the calculation of the study features.

Raw VitalRecorder waveform data may be prone to unprocessed artifacts, which could have a detrimental effect on data analysis because

they are not indicative of the patient’s true physiological status and should be eliminated.18,52,53 We extensively reviewed the VitalRecorder

files to identify patterns of unwanted artifacts (e.g., those caused by sensor detachment or disconnection) and found that critical artifacts

could be removed using a rule-based approach. Figure S3 shows examples of the artifacts, and Table S9 lists the rules adopted to remove

these artifacts. After extraction, we calculated features from these parameters for use as inputs for the machine learning models (Table S2).

These features were designed and selected to reflect the patients’ overall or baseline status (e.g., average, baseline, or lowest values), extent

of unfavorable conditions encountered during surgery (e.g., duration and area under the curve falling below or above a certain value), and

beat-to-beat variability within the data (CV and ARV).20

Feature calculation from intraoperative biosignal parameters is further described in supplemental methods in Supplemental Information.

The features were calculated in a predeterminedmethod instead of adopting an end-to-end algorithm (e.g., using the raw data to be trained

with an artificial neural network-based algorithm) owing to the following reasons. First, the raw data of these parameters were too heteroge-

neous (e.g., the operation time and type varied according to the application of CPB or TCA). Second, the sample size of our cohort was not

sufficiently large to handle heterogeneous data using an end-to-end algorithm. A significantly large dataset is required for ANN-based end-

to-end algorithms to learn meaningful features when the dataset is exceedingly complex.54,55

During CPB, normal physiological functions are taken over by the CPB machine as extracorporeal circulation; thus, VitalRecorder param-

eters related to circulation do not reflect the physiological status during that period. Therefore, for patients who underwent cardiac surgery

with CPB, data for all parameters, except for cerebral oximetry and EEG (as these two parameters were not directly related to circulation),

were excluded during the duration of the CPB (Figure 1).

Data preprocessing

Variables with missing values exceeding 50% of the training set were excluded. We one-hot encoded the categorical variables; for variables

with missing values, a dummy variable (coded as 1 if the value was missing and 0 otherwise), replacing the original one-hot encoded vector

with a vector filled with zeros, was created. Continuous variables with missing values were managed using Multiple Imputation by Chained

Equations with the random Forest method.56 The imputation model was trained in the training set and applied in the validation set during
12 iScience 27, 109932, June 21, 2024
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both the model development phase and prospective validation. Z-score normalization, scaling values to obtain a mean of 0 and standard

deviation of 1, was used for continuous variables. The z-score normalization formulas were determined based on the training set and subse-

quently applied to the validation set. For variables quantifying the depth of anesthesia, we created a separate dummy variable (0 for BIS and 1

for PSI) owing to potential measurement differences arising from vendor differences.48,49
Machine learning model training and performance evaluation

For the model development, the collected data were temporally split into the training and validation sets. Data of patients who underwent

cardiac surgery between December 14, 2018 and May 31, 2021 and between June 1, 2021 and December 22, 2021 were assigned to the

training and validation sets, respectively.Weprospectively validated the developedmodel using data collected frompatients who underwent

cardiac surgery between March 28, 2022 and June 28, 2022.

Eight machine learningmodels were used, namely, the RF, XGB, ET, GBC, LGBM, SVM, LR, and ANN. For eachmodel, an extensive grid of

hyperparameter values were created, and the model were trained on the training set for each hyperparameter combination, thereby vali-

dating the model against a validation set. The model with the hyperparameter combination yielding the highest performance based on

the AUROC was selected for final validation with the prospective validation cohort.

Ensemblemodels such as soft-voting ensemble classifiers often outperform individual classifiers by aggregating individual results, thereby

addressing the individual classifiers’ weaknesses.57,58 Accordingly, we constructed a soft-voting ENS classifier by averaging the outputs of the

highest-performingmodels in the validation set. To identify themost effective ENS classifier, the number of top-performing individualmodels

(from one to eight) included in the ENS were varied, selecting the ensemble that achieved the highest AUROC in the validation set. We calcu-

lated themodel’s accuracy, sensitivity, specificity, PPV, negative predictive value (NPV), and F1 score at the optimal cutoff point, defined as the

highest Youden J index.59 The SHAPmethodwas used to interpret individual predictions and quantify the contribution of each variable to the

model’s predictive ability.60 We then compared our model’s performance with that of E-PRE-DELIRIC, a widely used tool developed to pre-

dict delirium development during ICU admission.21,22
QUANTIFICATION AND STATISTICAL ANALYSIS

For continuous variables, the normality of distribution was assessed using the Shapiro–Wilk test, and normally and non-normally distributed

variables were compared between the groups using the independent samples t-test and the Mann–Whitney U test, respectively. For com-

parisons among three or more groups, normally and non-normally distributed continuous variables were compared using the analysis of vari-

ance (ANOVA) test and the Kruskal–Wallis test, respectively. Meanwhile, categorical variables were compared using the chi-square test or

Fisher’s exact test, as appropriate. Normally distributed variables are presented asmeanG standard deviation, whereas non-normally distrib-

uted variables are reported as median [IQR of Q1–Q3]. AUROCs were compared using the Delong test.61 Statistical significance was set at

p < 0$05 for all tests. The Delong test was conducted using the pROC library (version 1.18.4) in R (version 4.2.0). All other statistical tests were

conducted using the scikit-learn library (version 1.3.0) in Python (version 3.10.6).
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