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Receiver arrays with a large number of coil elements are becoming progressively available because of their increased signal-to-
noise ratio (SNR) and enhanced parallel imaging performance. However, longer reconstruction time and intensive computational
cost have become significant concerns as the number of channels increases, especially in some iterative reconstructions. Coil
compression can effectively solve this problem by linearly combining the raw data frommultiple coils into fewer virtual coils. In this
work, geometric-decomposition coil compression (GCC) is applied to radial sampling (both linear-angle and golden-angle patterns
are discussed) for better compression. GCC, which is different fromdirectly compressing in 𝑘-space, is performed separately in each
spatial location along the fully sampled directions, then followed by an additional alignment step to guarantee the smoothness of
the virtual coil sensitivities. Both numerical simulation data and in vivo data were tested. Experimental results demonstrated that
the GCC algorithm can achieve higher SNR and lower normalized root mean squared error values than the conventional principal
component analysis approach in radial acquisitions.

1. Introduction

In the past two decades, with the introduction of multichan-
nel receivers, parallel imaging (PI) [1, 2] has experienced
rapid advance from basic technological development to a
wide range of clinical applications. This has significantly
accelerated data acquisitions in magnetic resonance imaging
(MRI) and led research to apply large coil arrays with up to
even 128 independent receiver channels [3–6]. As the number
of channels increases, however, problems of both data storage
and processing complexity have emerged.

In order to achieve improved data processing efficiency
in the large array systems, coil compression [7–10] was
proposed. The concept of coil compression is to reduce the
number of independent data streams before reconstruction
by linearly combining raw data from multiple receiver chan-
nels into fewer virtual channels or selecting a small set ofmost
important channels.

Coil compression can be applied in either hardware [10]
or software. King et al. implemented an efficient channel

reduction method through hardware by combining eight
head coil elements into three channels using the idea of
the noise covariance of the receiver arrays [10]. But coil
compression in hardware is not always optimal because it
does not take the spatial coil sensitivity variation or the
received data into consideration.

Software coil compression is more flexible and accurate.
Buehrer et al. demonstrated that array compression can be
very effective by optimizing the signal-to-noise ratio (SNR)
of the region of interest in the reconstructed image [7]. It
requires exact coil sensitivities; therefore, this kind of coil
compression is only fit for sensitivity-based PI reconstruc-
tions such as sensitivity encoding [1]. Doneva and Börnert
proposed a different method to select the best subset coils
by a ranking that quantifies the contribution of each coil
to the final reconstructed image [8]. This method requires
the coil sensitivities as well. Huang et al. developed a
channel compression technique which is based on principal
component analysis (PCA) [9]. This technique efficiently
reduces the size of parallel imaging data acquired from
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Figure 1: Traditional PCA-based coil compression method.

multichannel coil arrays, thereby significantly reducing the
level of computation cost without undermining the benefits
of multichannel arrays. This method is very fast and it can
work well with compressed sensing [11–14] and autocali-
brating PI. Feng et al. proposed a method of reducing the
computation burden in the k-domain PI, such as generalized
autocalibrating partially parallel acquisitions (GRAPPA) [2],
by utilizing localized sensitivity to calculate the cross-channel
correlation for channel selection [15]. A new coil compression
technique for Cartesian sampling was presented by Zhang et
al. and it had less signal loss andmore computation reduction
through exploiting the spatially varying coil sensitivities in
these nonsubsampled dimensions [16].

All the software coil compression methods above work
well with Cartesian data acquisitions. However, coil com-
pression applied in non-Cartesian sampling has been rarely
reported. In this work, the geometric-decomposition coil
compression (GCC), whichwas proposed byZhang et al. with
Cartesian sampling [16], was applied to accelerated imaging
with radial acquisition for better compression.

In radial acquisition, the readout direction is always fully
sampled and the variation of coil sensitivity along readout is
not used for accelerating data acquisition. GCC canminimize
the number of virtual coils by taking this spatially varying
information into consideration. Both simulated MRI radial
data from a 32-channel system and in vivo MRI radial data
from a 52-channel system were tested. The experimental
results show that the GCC method can achieve better recon-
struction image quality than the conventional PCA approach
in radial sampling in terms of SNR and normalized root
mean squared error (NRMSE) values. Besides, the method
is demonstrated using radial acquisition but is applicable to
more general non-Cartesian 𝑘-space sampling trajectories.

2. Methods

Thepurpose of coil compression is to remove the redundancy
which is caused by the correlation within receiver channels
by decorrelating the data from different channels. It aims to
reduce reconstruction time and data storage.

The traditional PCA-based coil compression method [9]
is shown in Figure 1. It is also called single coil compres-
sion (SCC) because of the identical compression matrix.
The calibration signal could be in 𝑘-space (before scan,
autocalibration signal (ACS), and data with acceleration) or
image space (low-resolution images, sensitivity profiles). The
output of this system is the 𝑘-space data compressed into𝑁𝑙
channels.

Straightforward coil compression in 𝑘-space using the
same compressionmatrix often requires a substantial number
of virtual coils. This is due to data redundancy in the fully
sampled direction. The following shows the steps of GCC
method.

At each location 𝑘 = [𝑘𝑥, 𝑘𝑦] in 𝑘-space, V(𝑘) = [V1(𝑘),
V2(𝑘), . . . , V𝑁(𝑘)]𝑇 represents data at this location from all the
original coils. The compression matrices 𝐴𝑥 in GCC can be
separately calculated by singular value decomposition (SVD)
at each 𝑥 (𝑥 is the readout direction which is fully sampled;
in this work, it represents the direction of 𝑘𝑟 in radial MRI
acquisitions) using the following steps [16]:

(1) Compute an inverse Fourier transform of the 𝑘-space
multichannel data along the readout direction into[𝑥, 𝑘𝑦] coordinates.

(2) At each 𝑥 location, construct a data matrix 𝑋𝑥 in
which each row consists of all the data V𝑥(𝑘𝑦) from
an individual original coil. Usually, ACS data are
sufficient.

(3) Perform SVD of𝑋𝑥:
𝑋𝑥 = 𝑈𝑥∑

𝑥

(𝑉𝑥)𝐻 . (1)

Take the first 𝑀 rows of (𝑈𝑥)𝐻 to form an initial
compression matrix 𝐴0𝑥.

(4) Repeat Steps 2 and 3 to obtain compression matrices
for all 𝑥.

In addition, using the solution 𝐴0𝑥 obtained by SVD as
the compression matrices is likely to introduce nonsmooth
virtual coil sensitivities along the 𝑥 direction. Therefore,
alignment is necessarywhich is also clarified inZhang’s paper.

After the compression, GRAPPA [2] or iterative self-
consistent parallel imaging reconstruction (SPIRiT) [17]
is applied to reconstruct the final image. The GRAPPA
reconstruction considers the parallel imaging reconstruction
as a translation variant interpolation problem in 𝑘-space.
GRAPPA is a self-calibrated channel-by-channel reconstruc-
tion method, which aims to reconstruct the individual
channel images directly. In the GRAPPA algorithm, the
nonacquired 𝑘-space value in the 𝑖th channel, at the position𝑟, denoted as 𝑥𝑖(𝑟), is calculated by a linear combination
of acquired neighboring 𝑘-space data from all channels.
The linear combination weights, or calibration kernel, are
obtained by calibration data from a fully acquired 𝑘-space
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Figure 2: The 𝑘-space trajectory of (a) linear-angle and (b) golden-angle.

region. The calibration chooses the set of weights that is the
most consistent with the calibration data under the least-
squares sense.

The SPIRiT is a general and efficient parallel imaging
approach for arbitrary trajectories. The key in SPIRiT is to
consider the consistencywith not only the calibration but also
the data acquisition. These constraints are formulated as sets
of linear equations. Although the acquired 𝑘-space data may
or may not be Cartesian, finally, the desired reconstruction is
a complete Cartesian 𝑘-space grid for each of the channels.
Consequently, we define the entire Cartesian 𝑘-space grid for
all the channels as the unknown variables in the equations,
making the formulation very general, which can be used for
non-Cartesian sampling or so. More details can be seen in
[17].

The GCC method was tested on a 32-channel dataset
and a 52-channel dataset. The first dataset was fully sampled
which was downloaded from the Internet (https://people
.eecs.berkeley.edu/∼mlustig/Software.html). According to
Arunachalam et al., radial 𝑘-space data can be obtained by
transforming the Cartesian 𝑘-space data into the Fourier
domain and interpolating it into the desired linear-angle
radial lines [18]. We obtained the radial data (192 readout
points and 302 spokes) through this method. Imaging
with the acceleration factors of 2, 3, 4, 5, and 6 was
corresponding to the reduced dataset with 151, 101, 76, 60,
and 50 spokes.The second dataset was acquired on a 3.0-tesla
MR system (Siemens Healthcare, Erlangen, Germany) with
golden-angle radial sampling using a 52-channel head
coil array. The imaging parameters were as follows: pulse
repetition time/echo time (TR/TE) = 4.08/2.03ms, flip angle
(FA) = 12∘, field of view (FOV) = 220 × 220mm2, slice
thickness = 3mm, number of readout points per spoke =
256, number of spokes = 400, and number of slices = 20.
Four-hundred spokes were chosen as the reference, and
the reduced dataset were 300 and 200 spokes, respectively.
The 10th slice of each coil was tested using both SCC
and GCC method. The third dataset was acquired on
the same scanner with golden-angle radial acquisition
using a body/spine coil array with 16 elements. Relevant
imaging parameters included the following: TR/TE = 3.84/
1.72ms, FA = 12∘, FOV = 385 × 385mm2, slice thickness =
3mm, number of readout points per spoke = 256, number of

spokes = 420, and number of slices = 10. Frequency-selective
fat suppression was used for both acquisitions. Gradient-
delay errors were corrected before image reconstruction.The
linear-angle radial trajectory [19, 20] and the golden-angle
radial trajectory [21, 22] were shown in Figures 2(a) and
2(b), respectively. Linear-angle sampling has a constant
azimuthal spacing of 𝜃 = 𝜋/spokes. Golden-angle sampling
has a constant azimuthal spacing of 111.25∘. Radial sampling
usually has undersampling tolerance and motion robustness.

The difference map, NRMSE, and SNR were used to
evaluate the quality of the reconstructed images. The square
root of sum-of-square (SSOS) image fromall the original coils
without acceleration was used as the reference. The NRMSE
and SNR were calculated using the formula as follows:

NRMSE = √∑ 𝐼recon − 𝐼ref2∑ 𝐼ref2 ,
SNR = 10 × log10( ∑ 𝐼recon2∑ 𝐼recon − 𝐼ref2) ,

(2)

where 𝐼ref is the reference image and 𝐼recon is the reconstructed
image.

3. Results

The number of virtual coils was empirically set to be 6 for
both SCC andGCC in the first dataset.The 𝑘-space trajectory
was in linear-angle pattern. The experimental results with
acceleration factor of 2 in angle direction of the first dataset
are shown in Figure 3. Compared with the reference image,
the SCC compression result shows more signal loss while the
GCC looks similar to the reference image. The 10x difference
map between SCC image and the reference image further
indicates large compression error owing to the nonoptimal
coil compression method. However, the compression error
in GCC image is smaller. The NRMSE values are 0.0632 for
SCC and 0.0577 for GCC.The SNR values are 15.8 dB for SCC
and 17.3 dB forGCC.The experimental results show that GCC
has much better compression performance than SCC for the
same number of virtual coils.

The same experiment was done at different acceleration
factors from 2 to 6. The NRMSE and SNR with different

https://people.eecs.berkeley.edu/~mlustig/Software.html
https://people.eecs.berkeley.edu/~mlustig/Software.html
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Reference 32 ch SCC 6 ch GCC 6 ch

Figure 3: Comparison of SCC and GCC for simulation results with acceleration factor of 2 in angle direction. SSOS images are compared.
The original image in the first column is used as the reference. The compression results of SCC and GCC with 6 virtual coils are shown in
the third and fourth column, respectively. Difference maps (10x in SCC and GCC) are shown in the second row. The 𝑘-space trajectory is in
linear-angle pattern. (The images and the difference maps are displayed in the same gray scale range, resp.; and Figures 5, 6, 8, and 10 are as
well.)
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Figure 4: Plot of (a) NRMSE and (b) SNR at different acceleration factors (2 to 6) of data from 32 original coils, 6 virtual coils in SCC, and 6
virtual coils in GCC. SSOS image of data from 32 original coils with full sampling is used as the reference.

acceleration factors are shown in Figures 4(a) and 4(b),
respectively. This quantitative analysis further confirms the
following observations: (a) theNRMSE and SNR values of the
reconstructed images with 32 original coils, 6 virtual coils in
SCC, and 6 virtual coils in GCC are always close; (b) when
the acceleration factor is low (2 or 3), data from 32 original
coils generate the least errors and the highest SNR; (c) when
the acceleration factor is high (5 or 6), data from 6 virtual
coils in GCC generate the least errors and the highest SNR.

These results imply that data from 32 original coils has better
PI performance at acceleration factor of 2 and 3. However, it
is interesting that data from 6 virtual coils in GCC generate
better results than those from 32 original coils at acceleration
factors 5 and 6.

The SSOS images of all the reconstructions in the denois-
ing experiment are shown in Figure 5. We added white
Gaussian noise (𝛿 = 0.005 for each coil). The number of
virtual coils (both SCC and GCC) was chosen to be 6 and
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Reference 32 ch SCC 6 ch GCC 6 ch

Figure 5: Results of denoising from noisy dataset of 32 original coils, 6 virtual coils in SCC, and 6 virtual coils in GCC. The SSOS image of
the noiseless dataset is used as the reference. Difference maps (4x enlarged view in red box) are shown in the second row.

Reference SCC 10 ch GCC 10 ch52 ch

Figure 6: Comparison of SCC and GCC results for in vivo undersampled 300 spokes’ data. SSOS images are compared. The original image
in the first column is used as the reference. The compression results of SCC and GCC with 10 virtual coils are shown in the third and fourth
column, respectively. Difference maps (4x enlarged view in red box) are shown in the second row. The 𝑘-space trajectory is in golden-angle
pattern. The reconstructions of the undersampled data are performed by SPIRiT.

the acceleration factor was 2.The denoising effect of SCC and
GCC can be seen as the background noise is reduced after
coil compression. The results of SCC and GCC with added
noise are also compared in the red box. GCC has better noise
suppression than SCC for the same number of virtual coils at
the same acceleration factor.

The radial data used above were all acquired in the
linear-angle pattern. Another widely used pattern is the
golden-angle radial sampling. Therefore, we use this kind
of radial data to further evaluate the effect of SCC and
GCC. The second dataset from 52 channels was used in this
experiment. The number of virtual coils was empirically set

to be 10 for both SCC and GCC. 300 spokes were used for
undersampling. The SSOS image of the data from 52 original
coils without acceleration of 400 spokes was used as the
reference. The results are shown in Figure 6. Compared with
the reference image, the SSOS image of the undersampled
data from 52 coils without compression has suffered more
noise which can be seen from the noisy background. And
its NRMSE value is 0.0453 and SNR value is 26.1 dB. The 4x
differencemap in the red box of Figure 6 between SCC image
and the reference image further indicates large compression
error due to the noisier background, while the compression
error in GCC image is smaller.TheNRMSE values are 0.0796
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Figure 7: Comparison of (a) NRMSE and (b) SNR at different numbers of spokes from 200 to 400 of data from 10 virtual coils in SCC and
10 virtual coils in GCC. SSOS image of data from 52 original coils with 400 spokes is used as the reference.

for SCC and 0.0686 for GCC. The SNR values are 21.4 dB for
SCC and 22.6 dB for GCC. The in vivo data results further
show that GCC has better compression performance than
SCC for the same number of virtual coils.

Figures 7(a) and 7(b) show the NRMSE and SNR values
at different numbers of spokes from 200 to 400 in SCC
and GCC, respectively. From the curve below, it is found
that GCC shows lower NRMSE and higher SNR than SCC
at all these different numbers of spokes. To achieve similar
NRMSE and SNR as in GCC, SCC should be applied to
smaller acceleration factor. GCC shows its obvious strength
in coil compression and it also has the advantage of great
undersampling robustness. In addition, it is obvious that the
result from 52 original coils without any compression has
become worse with the reduction in the number of spokes.
When the number of spokes reduces to 200, the NRMSE
of SSOS image from 52 coils increases to 0.0925 and SNR
decreases to 17.7 dB. Both the image quality of SCC (NRMSE
= 0.0876, SNR = 18.6 dB) and the image quality of GCC
(NRMSE = 0.0757, SNR = 19.2 dB) are better than the result
of 52 coils.

Figure 8 shows the results of SCC and GCC of the in vivo
fully sampled 16-channel abdomen dataset. SSOS image from
16 original coils is used as the reference. Compared with the
reference image, GCC has less compression loss with 7 virtual
coils, while SCC suffers from larger compression loss. The
NRMSE and SNR values of SCC and GCC are 0.0374 and
32.9 dB and 0.0363 and 33.2 dB, respectively.

4. Discussion

In this work, we have studied GCC in non-Cartesian parallel
imaging with radial acquisition. Figures 3, 4, 6, and 7 show

that the reduction of channels in SCC and GCC does not
degrade the final image quality in terms of NRMSE and SNR.
In addition, GCC has less image detail loss than SCC for
the same number of virtual coils at the same acceleration
factor. It is because that GCC takes the advantage of the
coil sensitivity variation in the readout direction which is
not used for acceleration in data acquisition. The acquired
data can be spatially separated in the readout direction.
Thus GCC can effectively minimize the number of virtual
coils at each location of readout direction to reduce the
reconstruction time. Figure 8 indicates that GCC can also
effectively compress abdomen dataset. Thus, GCC can also
be applied to effectively compress time-series data from large
arrays, for example, in many dynamic imaging experiments.

We have chosen 6 virtual coils for the first 32-channel
dataset, 10 for the second 52-channel dataset, and 7 for the
third 16-channel dataset. In fact, the number of effective
virtual coils can be determined by thresholding the singular
values in SVD at the third step. In addition, the NRMSE
and SNR can also be useful reference indexes to choose the
appropriate number of virtual coils.

The main purpose of coil compression is to reduce data
storage and the reconstruction time. For parallel imaging
reconstruction algorithms, such as GRAPPA and SPIRiT, the
introduction of SCC and GCC will significantly accelerate
the speed of image reconstruction. Taking the first dataset as
an instance, computation cost of SCC and GCC at different
acceleration factors is shown in Figure 9. SCC and GCC
are about six times less than the reconstruction without
compression from all the original coils. The reason for this
advantage is that both SCC and GCC use fewer channels
than the conventional reconstruction scheme. SCC is slightly
faster than GCC because GCC has an alignment procedure.
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Reference SCC 7 ch GCC 7 ch

Figure 8: Comparison of SCC and GCC with 7 virtual coils for in vivo abdomen data results in fully sampled golden-angle scheme. SSOS
image from 16 original coils is used as the reference. Difference maps are shown in the second row.
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Figure 9: Computation cost of SCC and GCC for the first dataset at different acceleration factors.

While adding noise into the original coils, SCC and
GCC show more noise tolerance than the conventional non-
compression method, as shown in Figure 5. The denoising
effect of coil compression can be considered as the selectively
discarded virtual coils do not contain significant signal and
are dominated by the added noise. Besides, GCC has better
noise suppression than SCC for the same virtual coils at the
same acceleration factor. This is because GCC can remove
more noise than SCC by taking the fully sampled direction
into consideration.

However, it is interesting that data from all the original
coils generate more signal loss than those from virtual coils
in SCC and GCC at a high acceleration factor, such as 5
and 6 in the first dataset and spokes of 200 in the second
dataset. This can be interpreted as the different noise levels
in the data before and after compression. Figure 10 shows
that the coils we selectively discarded have hardly any signal.
The noise in these coils is comparable to signal levels in
them. Data from 6 virtual coils in SCC and GCC have less
noise and fewer signals when compared to the data from
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Figure 10: Images and sensitivity maps of 32 coils before ((a) and (b)) and after ((c) and (d)) coil compression.

32 original coils. When the acceleration factor is low, the 𝑔-
factor is low. For example, when the acceleration factor is 2,
the 𝑔-factors of 32 ch, SCC 6 ch, and GCC 6 ch are 1.07, 1.18,
and 1.14, respectively.Therefore, the reconstruction errors are
dominated by the lost signal in the discarded coils. So it can
be concluded that the results of data from 32 original coils are
better.When the acceleration factor goes higher, for example,
when the acceleration factor is 6, the 𝑔-factors of 32 ch, SCC
6 ch, and GCC 6 ch are 3.15, 17.96, and 10.91, respectively.
The noise is dramatically increased and is more dominant in
the reconstruction errors. When the coils reduce, the SNR
increases as the noise suppression is more than the decrease
due to the signal loss. Therefore, the results of data from 6
virtual coils in SCC and GCC are better than those from 32
original coils. More noise will be introduced when the data is
much more undersampled. SCC and GCC have better noise
robustness owing to the fact that they can selectively discard
the useless virtual coils.

In this work, the GCC method was first applied to radial
parallel imaging to accelerate image reconstruction. GCC

was also tested with different acceleration factors in angle
direction, which further indicated its validity and robustness
in terms of NRMSE and SNR. Moreover, this feature is
particularly obvious in highly undersampled data.

5. Conclusion

We have extended the coil compression method GCC to
radial acquisitions in this work, and both linear-angle and
golden-angle patterns were studied in this paper. The image
quality of reconstructions using virtual coils in GCC is always
comparable to that of reconstructions using all the original
coils at all the tested acceleration factors. In addition, GCC
can achieve better compression result than SCC for the same
number of virtual coils.
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