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Abstract

Background: Different complex systems behave in a similar way near their critical points of phase transitions which leads to
an emergence of a universal scaling behaviour. Universality indirectly implies a long-range correlation between constituent
subsystems. As the distributed correlated processing is a hallmark of higher complex cognition, I investigated a measure of
universality in human brain during perception and mental imagery of complex real-life visual object like visual art.

Methodology/Principal Findings: A new method was presented to estimate the strength of hidden universal structure in a
multivariate data set. In this study, I investigated this method in the electrical activities (electroencephalogram signals) of
human brain during complex cognition. Two broad groups - artists and non-artists - were studied during the encoding
(perception) and retrieval (mental imagery) phases of actual paintings. Universal structure was found to be stronger in visual
imagery than in visual perception, and this difference was stronger in artists than in non-artists. Further, this effect was
found to be largest in the theta band oscillations and over the prefrontal regions bilaterally.

Conclusions/Significance: Phase transition like dynamics was observed in the electrical activities of human brain during
complex cognitive processing, and closeness to phase transition was higher in mental imagery than in real perception.
Further, the effect of long-term training on the universal scaling was also demonstrated.
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Introduction

It is an accepted notion that human brain is one of the most

complex systems. The brain is complex at all organization levels

spanning from the morphology and activity patterns of the

individual unit (i.e. single neuron) to the formation and dynamics

of neuronal assemblies and finally to the circuitry and ensemble

activity of large-scale networks where each node represents the

collective dynamics of millions of neuronal assemblies. The

involvement of large-scale and distributed cortical networks in

higher complex cognition is supported by many studies using

diverse imaging modalities. However, it is further proposed that

co-activation of these multitude of brain areas are most likely to be

associated with functional co-operation between these areas. In

essence, brain regions do not act in isolation, rather they display

large-scale coherent patterns of activity in both space and time

(See, for reviews [1,2,3,4].

Even by a cursory look at the noninvasively obtained large scale

electrical brain responses (electroencephalogram, EEG, Fig. 1),

one could notice an intricate mixture of order (the presence of

strong oscillating components) and disorder (the time-varying

nature of the amplitude and frequency components of the

oscillations). It is known that the oscillatory, yet transient,

dynamics of neuronal assemblies emerges from the dense

interaction between excitatory and inhibitory sets of neurons,

and when modeled, they could produce chaotic oscillations [5],

and the flexible switching between multiple chaotic attractors was

earlier demonstrated in the olfactory bulb of rabbits [6]. Friston

[7] has suggested that brain dynamics could be characterized by a

series of flexible neuronal transients where transients represent an

essential metric of interaction between neuronal assemblies. In a

similar line, Kelso et al [8] showed in a now classic experiment

involving bimanual coordination that a phase transition like

phenomenon is observed in human brain, suggesting brain as a

self-organizing system which operates close to critical points of

instability, thereby allowing appropriate flexibility in switching

between different dynamical states; this is now known as

metastability [2,7].

Two important properties of complex systems close to their

critical points are [9,10]:

(i) scaling - correlation decays as a power-law C rð Þ*r{j where

j is the correlation length of the entire system, and the

system becomes scale-invariant;

(ii) universality - different complex systems have similar critical

exponents forming a universal class.

This latter property stems from the fact that a system near its

critical point is not very sensitive to the nature of the detailed

properties of its components subsystems or to the details of the
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microscopic interactions, instead it depends on the more

fundamental characteristics (i.e. symmetry, dimension, path of

order propagation) of the system [11].

The universal behaviour and scale invariance properties seem to

be present in numerous real-life systems including natural

[12,13,14], biological [15,16,17,18], sociological [19] and even

political [20] ones, most of which approximately belong to the

category of a complex system involving large numbers of

interacting subsystems that display the phenomenon of self-

organization [21].

In this study, I investigated these two features of criticality in the

electrical responses of human brain during higher complex

cognition. Towards this, I presented a new approach based on

the cumulative variation amplitude analysis [22] to estimate the

strength of the universal scaling structure in the time series of

multivariate EEG signals. Particularly, I put special emphasis on

the comparative analysis of universality during encoding phase

(visual perception) and retrieval phase (mental imagery).

Results

Multivariate EEG signals were recorded from two broad groups

– professional artists and non-artists – at three different conditions:

(i) visual perception (looking at a painting), (ii) mental imagery

(mentally imagining the painting shown before), and (iii) rest. The

duration of each condition was not less than 2 min, and after

artefact reduction and removal, I analyzed the first 50 sec of

spontaneous EEG signals recorded from 19 scalp locations. Fig. 1

shows an EEG signal recorded at scalp location Pz (midline

parietal electrode) from an artist (Vp.483) while she was mentally

imagining the painting by Holbein which was shown earlier (see

Materials & Methods). The wavelet transformed signal with

different scales a = 32, 18, 10, 5, 2 are shown afterwards. The

dominant frequency is not identical to the concept of wavelet scale

but they can be closely related: higher scale value is associated with

lower frequency and this fact is evident in the power spectra of the

wavelet transformed signals. The center frequencies of the wavelet

Figure 1. EEG and its (real) wavelet transformed components. Upper panel: Segment of electroencephalogram recorded at location Pz from a
participant (Vp.483) while imagining an object of visual art shown earlier. Middle: Wavelet transform Wx(a,t) of the signal shown above at five different
scales a = 32, 18, 10, 5, and 2, respectively. Lower: Power-spectral densities of the wavelet transformed signals.
doi:10.1371/journal.pone.0004121.g001

Universality in Imagery

PLoS ONE | www.plosone.org 2 January 2009 | Volume 4 | Issue 1 | e4121



transformed signals for these scale values roughly correspond to

the center frequencies of the standard five frequency bands

(range), namely, delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),

beta (12–30 Hz) and gamma (.30 Hz). Although the individual

power-spectrum of the wavelet transformed signal for a single scale

did contain, in addition to a peak at the center frequency,

components from neighbouring frequency bands, one could still,

for the ease of terminology, associate the wavelet transformed

signal predominantly with one of the standard frequency bands.

For example, Wx(a = 18,t) represents theta band oscillations,

whereas Wx(a = 2,t) represents gamma band oscillations. As

discussed earlier, the (real) wavelet transform reveals very local

properties of the signal by emphasizing the extrema or

discontinuities of the oscillations, so the wavelet transformed

signal captures the intrinsic local properties of the dynamics

masked by nonstationarity, which cannot be revealed by standard

stationary digital filtering technique which is globally applied to

the signal. For each EEG electrode and for each wavelet scale, I

calculated the instantaneous amplitudes m(t) of the wavelet

transformed signal as described in the Eq. (3) and estimated its

pdf (P(y)). Next I grouped pdfs either across different scalp

locations within one individual or across individuals at each scalp

location. The first one explored the universality across brain

regions, and the latter one explored the universality across

individuals.

Task Related Differences
Universality Across Brain Regions. Fig. 2(a)–(c) shows a set

of pdfs obtained from 19 EEG signals recorded from a non-artist

during resting condition, looking at a painting, and mentally

imagining the painting shown before, respectively. The wavelet

scale was a = 18. Inspection of the pdfs reveals marked differences

among different brain regions for each condition. These

discrepancies are not utterly surprising given the underlying

Figure 2. Universality across brain regions for all participants. Empiriical probability density functions P(y) of the envelope of wavelet
transformed coefficients at scale a = 2 for multivariate EEG signals recorded from 19 scalp locations from a participant (Vp.483) during (a) resting
condition, (b) perception of a visual art object, and (c) mental imagery of the same art object. All pdfs were normalized to unit area. (d–f) Same pdfs
are in (a–c) but after rescaling: P(y) by Pmax and y by 1/Pmax to preserve the normalization to unit area. The values in inset indicate the degree of data
collapsing as measured by the KL divergence measure (see the text for details). Lower divergence or higher data collapse was found during mental
imagery.
doi:10.1371/journal.pone.0004121.g002
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functionally segregative behavior of individual brain regions. To test

the hypothesis that there is a hidden, possibly universal structure to

these time series generated by distributed brain regions, I rescaled

each pdf and computed the Kullback-Leibler (KL) divergence

measure for the set of rescaled pdfs (see Methods for details). If the

rescaled pdfs collapse, i.e. they are scale invariant, KL measure for

the set will be minimal. Here, I found strongest scale invariance or

universal structure during mental imagery condition followed by

visual perception and resting condition.

The entire analyses were repeated with the chosen five wavelet

scales, and Fig. 3 shows the profiles of the Mean-Kullback-Leibler

(MKL) divergences averaged over all participants and over all

possible combinations of each electrode region for both visual

perception and mental imagery. The profiles were plotted after

subtracting the MKL values for resting condition. Scalp topogra-

phies of the differential (perception minus imagery) MKL are also

shown in Fig. 3. Following noteworthy points are found. (i) The

degree of universality was overall higher (i.e. MKL values are lower)

Figure 3. Universality across brain regions at different frequency bands for all participants. Mean Kullback Leibler (MKL) divergence
measure for five different scales (a = 32, 18, 10, 5, and 2) used in the wavelet transform which roughly correspond to five standard frequency bands:
delta (,4 Hz), theta (5–8 Hz), alpha (9–12 Hz), beta (13–30 Hz), and gamma (.30 Hz). Results were pooled across groups, participants, electrode
pairs.
doi:10.1371/journal.pone.0004121.g003
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in mental imagery than in visual perception condition (Wilcoxon

signed rank test, p = 0.038). (ii) Among frequency bands, this effect

was mostly pronounced in low frequency theta band (Wilcoxon,

p = 0.013, mean difference (perception – imagery) in MKL,

DMKL = 0.07, which is 11% if expressed in percentage changes

with respect to perception condition), followed but less significantly

in alpha (DMKL = 0.03, 5.1%) and beta bands DMKL = 0.01, 4.0%).

(iii) Among scalp locations, frontal brain regions, bilaterally, were

associated with least universality during visual perception. Since the

differences between visual perception and mental imagery were

most pronounced in the theta band (a = 18), I focussed the

subsequent analysis only at this frequency band.

Group Related Differences
Universality Across Brain Regions. The earlier results

emphasized the differences between perception and imagery after

pooling the data from all participants, where as the group related

effects are shown in Fig. 4. It is evident that the scale invariance

properties during mental imagery w.r.to visual perception was more

pronounced in artists than in non-artists. Further, artists also showed

higher (Wilcoxon p,0.0039) universality in mental imagery as

compared to resting condition (i.e. the MKL profile for artists was

mostly negative where as it was more positive for non-artists). On

topographic scales, bilateral frontal regions (F7, F8) in artists indicate

reduced (paired Wilcoxon p,0.002) universal structure during visual

perception from mental imagery. In non-artists, the least degree of

universality was found in right frontal region (F8, Wilcoxon p,0.037

for perception vs rest and p,0.013 for imagery vs rest).

Universality Across Participants. Next I grouped the pdfs of

each individual electrode region across participants within each

group; the results for electrode region O2 are shown in Fig. 5. For

this posterior brain region, data collapsing behaviour was

significantly enhanced for both perception and imagery conditions

from rest. Fig. 6 shows the degree of universality of individual brain

region across participants but within each group. For artists, task-

related increases (perception or imagery from rest) in the degree of

data collapsing were found in primarily posterior electrode regions

excluding T4. Non-artists also showed similar effect, but to a much

lesser extent, of weaker data collapsing at rest in the posterior

electrode regions. For artists, frontal regions bilaterally (F7 and F8)

showed least data collapsing during perception, where as this effect

was mostly right accentuated for non-artists.

Surrogate Analysis
As a further statistical control, I generated 19 sets of surrogate

signals for each set of 19 EEG signals obtained from each

Figure 4. Universality in theta band for artists and non-artists. MKL divergence measure in theta band oscillations for (a) non-artists and (b)
artists, respectively. The results were averaged across participants within group, electrode pairs. Note the overall decrease of divergence, i.e. increase
of universality for mental imagery condition as compared to visual perception condition. (c–d) Topographical profiles for (a–b). Strongest divergence
was observed in frontal regions in both hemispheres for the artists.
doi:10.1371/journal.pone.0004121.g004

Universality in Imagery

PLoS ONE | www.plosone.org 5 January 2009 | Volume 4 | Issue 1 | e4121



individual and for each condition, and compared the data collapse

(at a scale a = 18) behaviour of surrogates to the original data. Fig. 7

shows one such comparison for an artist (Vp.483) while looking at

a painting; the same comparison is displayed in Fig. 8 for mentally

imagining the same painting. If a pdf of any electrode region is

found to be significantly different from the set of pdfs of surrogates,

one can reasonably infer that the phase correlations in this

electrode region to be non-random and different from the phases

of other electrode regions. Interestingly, the frontal electrode

regions, bilaterally (F7, F8, Fp1, Fp2), showed long tailed

distributions which could not be reproduced by the surrogate

signals, thus suggesting these electrode regions most likely possess

not only non-random but also different phase structure from other

electrode regions. However, these effects were not found during

mental imagery (Fig. 8) since their pdfs were almost indistinguish-

able from those surrogate pdfs and also from pdfs of other

electrode regions. These effects were found to be remarkably

consistent across artists. These altogether suggest that, as

compared to other electrode regions, frontal electrode regions in

artists possess distinctly different phase correlation during visual

perception but similar phase correlations during mental imagery.

Discussion

The overall similarities in the topological profile of mean

Kullback-Leibler measure across several frequency bands during

visual perception and mental imagery support the hypothesis that

the diverse brain regions active during sensory-induced percep-

tions are reactivated during retrieval of such information

[23,24,25]. However, I also found that this similarity was less in

artists at the frontal regions for theta band oscillations where

mental imagery was found to induce stronger universal structure

than visual perception. Or conversely, the degree of universality at

frontal regions was minimal across all brain regions in artists

Figure 5. Universality across participants. (a),(c),(e) Empirical probability density functions P(y) of the instantaneous amplitude of wavelet
transformed coefficients at scale a = 18 for electrode O2 for a group of non-artists during resting condition, visual perception, and mental imagery,
respectively. (b),(d), (f) Same pdfs as earlier but after suitable rescaling: P(y) by Pmax, and y by 1/Pmax to preserve the normalization to unit area. The
values in inset indicate the degree of data collapsing as measured by the summed KL divergence measure (see the Materials and Methods for details).
(g)–(l) The same as in (a)–(f) but for the group of professional artists. Stronger data collapsing were found during mental imagery.
doi:10.1371/journal.pone.0004121.g005
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during visual perception. It could be explained as follows. Visual

perception of art broadly consists of three stages [25]: (i) extraction

of basic visual features, (ii) organization of these features into

coherent and fundamental forms, followed by (iii) addition of

meaning onto these forms through associations stored in long-term

memory. This last stage can be termed as top-down processing

where the brain adds the information to raw visual impressions

giving a richness of meaning well beyond the sensory stimuli [26].

Prefrontal cortex plays a crucial role by providing this top-down

control [27], and it is reasonable to assume that the involvement of

prefrontal cortex during perception of visual art would vary

substantially across artists due to their expertise and training in

visual art. However, the top-down control operation was

significantly reduced during mental imagery of the painting shown

before, thus leading to a substantial increase of universality in

frontal regions. Further, low frequency oscillation in theta band

plays a prominent role in mediating access to stored representation

in long term memory [28], and moreover, an increase in theta

band oscillation in frontal regions was found during concentrated

mental activity requiring higher memory load [29]. During

imagery, the extent of retrieved visual-art patterns from long-term

memory was assumed to be much higher in artists than in non-

artists which possibly led to an increase of universality.

Several studies have earlier shown that ongoing spontaneous

brain activity exhibits scale-free behaviour at resting condition

[30,31,32], where scale-free dynamics is primarily characterized by

a power-law scaling behaviour of amplitude fluctuations in raw

signal or in specific frequency bands. Recent evidence also indicates

that scale-free structure can be altered by external stimulus, such as

nerve stimulation [33], performance feedback [34], music [35],

imaginary and visual motor-tracking [36]. Noteworthy to mention

that all these studies report a stimulus related modulation, but not a

disruption, of the scaling activity. The present study extends this

finding by reporting that not only the scale-free properties but also

the underlying universality could be modulated by complex

cognitive tasks and by task-specific expertise.

But what can one conclude by finding such universal structure in

large scale brain responses? Before answering this question, let me

mention a few key details about universality. Universality, as

discussed here, refers to a phenomenon whereby different systems

exhibit very similar characteristic or critical exponents which

determine the correlation and scaling functions [9,37]. Since critical

exponents offer a complete description of the dynamics of a system

near a continuous phase transition including the emergence of a

long-range interaction out of paradoxical competition between

exponentially decaying correlation function and exponentially

increasing number of connecting paths. Two systems with similar

scaling functions and critical exponents belong to the same

universality class. Thus, if the critical properties of one system

could be known, it would theoretically be possible to predict the

critical properties of the other system belonging to the same

universality class [38]. The finding that the artists group showed a

stronger universality across brain regions during mental imagery

offer a surprising conclusion: despite the possibilities of wide

individual variations across many hidden degrees of freedom in the

group of artists, during mental imagery there exists a remarkable

consistency in dynamical scaling and correlation characteristics

across different brain regions distributed over the scalp.

Finally, I would like to leave two cautionary remarks. First,

Kadanoff showed [10] that scaling and universality of critical

exponents are primarily a consequence of the scale invariance of

physical systems near critical points, but the converse is not

essentially true; in other words, by observing some sort of

universality, one cannot prove the closeness to criticality and the

presence of a scale invariance. Second, the adopted experimental

paradigm involved a very highly abstract task of complex

cognition lasting for minutes, so one has to be careful with

interpretations before ‘‘overstretching’’ the findings. The very

nature, i.e. ecologically valid and naturally appropriate, of the

task/paradigm, and the nature of the recorded signals (i.e. from

large scale EEG signals, it is almost impossible to prove the

theoretical concept of universality as produced by two trajectories

Figure 6. Universality of individual brain regions across participants. Universality across participants as measured by MKL divergence
measure for the two groups, (a) artists and (b) non-artists, during three states, rest (dotted line), visual perception (solid), and mental imagery (dash-
dot), respectively.
doi:10.1371/journal.pone.0004121.g006
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of two neuronal populations, the local manifolds of which have

similar Jacobians close to their critical points though a novel way

was offered to find the closeness to the universality) impose the

constraints, yet a more pragmatic approach would be to look for

the consistency and systematic differences across tasks and groups.

In summary, a new method has been discussed to find the

hidden universal structure in a multivariate data set. The paper

also presents evidence that conceptual framework provided by the

theory of statistical mechanics to characterize complex systems

poised at criticality by twin pillars of scaling and universality may

be useful in providing new insights into the analysis of brain

electrical responses recorded under complex cognitive task

paradigm.

Materials and Methods

Participants and Stimuli
Forty three female participants were divided into two groups: (i)

artists (n = 19, mean age 38.4 yrs) with M.A. degree in Fine Arts,

and (ii) non-artists (n = 24, mean age 36.6 yrs) without any training

or prominent interest in visual art. Three conditions were

considered: (1) visual perception: looking at slides of four paintings

characterizing four different periods in the history of the Fine arts

(Bean-festival by Jordeans, a charcoal-etching by Rembrandt, a

portrait by Holbein, and an abstract figure by Kandinksy), (2)

mental imagery: mental imagination of these paintings shown before,

and (3) rest: resting with eyes opened. At the end of each condition,

the participants read a newspaper article for distraction. Each of

the condition lasted for at least 2 min and the orders of the tasks as

well as the orders of the paintings were randomized. All

participants gave informed written consent and the study was

formally approved by the local ethics committee of the Brain

Research Institute, University of Vienna, Austria.

Data recording
Multivariate (19 channels) EEG signals were recorded by 19

gold-cup electrodes (Fig. S1) which were equally distributed over

the scalp according to the standard 10–20 electrode placement

system [39] with respect to the forehead as ground. EEG signals

were amplified by Nihon-Kohden amplifier. The signals were later

algebraically re-referenced by the average signals of two ear-lobes.

The electrode impedance was kept below 8 kOhm, the sampling

frequency was 128 Hz and the A/D conversion was 12 bit.

Custom-made independent component analysis based software

Figure 7. Surrogate analysis during visual perception. Rescaled pdfs (in the semi-log scale) of the envelope of wavelet transformed
coefficients at scale a = 18 for multivariate EEG signals recorded from 19 scalp locations from a participant (Vp.483) during looking at a painting and
for the set ( = 19) of surrogates. The originals were shown in solid line and the surrogates in dotted lines. The long tail of the original pdfs in the
frontolateral electrode regions (F7, F8) is conspicuously absent in the pdfs of their surrogates, indicating non-random phase correlations. Note other
electrode regions produced.
doi:10.1371/journal.pone.0004121.g007
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was utilized offline to remove the eye-blink related components

and other artefacts.

Data processing
The data processing was composed of four steps as follows.

1. Wavelet analysis. The wavelet analysis is analogous in

nature to the Fourier analysis by which a signal is decomposed in

to a set of finite basis functions. The primary advantage of wavelet

is the local property of the chosen wavelet basis function which

may be appropriate to detect transient dynamics in the signal,

where as such transient is often obscured by the fixed

trigonometric basis function with infinite support used in the

Fourier analysis. Let x(t) be the signal and Y be the mother

wavelet. The wavelet coefficients Wx(a,t) are produced through

convolution of the scaled mother wavelet function with the

analyzed signal as follows:

Wx a,tð Þ~ 1ffiffiffi
a
p

ð?

{?

x tð ÞY t{t

a

� �
dt ð1Þ

where a is the scale of the wavelet which is inversely related to

frequency, and t is the local time origin of the analyzed wavelet.

The nature of oscillation with the continuous wavelet spectrum

will depend crucially on the nature, complex or real, of the mother

wavelet. The complex wavelet usually produces a constant power

across the entire time duration of the oscillation, whereas a real

wavelet produces power mostly at those times where the oscillation

is at an extreme or where a sharp discontinuity occurs.

In this study, I used real Morlet wavelet, which has [24,4] as

effective support, and is defined as an exponentially decaying

sinusoidal signal: Y tð Þ~e{x2=2cos 5xð Þ. There are numerous

other wavelets that could also be adopted [40]; however, the

Morlet wavelet is particularly suitable for oscillatory signals

generated by dynamical systems. Typically, complex Morlet

wavelet has been routinely used in estimating time-varying

spectral content in brain oscillations [41,42], whereas real wavelets

are better suited to detect sharp signal transitions. MatlabH
function cwt was used to compute the continuous wavelet

transformed coefficients.

2. Analytic signal formation. The second step of the

analysis was to extract the instantaneous variation amplitude of

Figure 8. Surrogate analysis during mental imagery. Same as in Fig. 7 but during mental imagery. Note that the pdfs for frontal electrode
regions being indistinguishable from those of surrogates and of other electrode regions, which is in sharp contrast with visual perception (Fig. 7).
doi:10.1371/journal.pone.0004121.g008
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the wavelet transformed signal by means of an analytic signal

approach [43]. For any wavelet transformed signal Wx(a,t) at scale

a, an analytic signal, z(t), is defined as

z tð Þ~Wx a,tð Þziy tð Þ~m tð Þeiw tð Þ ð2Þ

in which

m tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

x a,tð Þzy2 tð Þ
q

w tð Þ~tan{1 y tð Þ
Wx a,tð Þ

� � ð3Þ

Theoretically, there are infinitely main ways of defining the

imaginary part y(t), but the Hilbert transform provides a unique

way of defining the imaginary part so that the result would become

a complex analytic function. Further, Hilbert transform (H.T.) is

particularly attractive because it does not require any information

concerning the centre frequency of the signal. For the sequence

Wx(a,t), Hilbert transform is calculated as

y tð Þ~H:T: Wx a,tð Þ½ �~ 1

p
P:V:

ð?

{?

Wx a,tð Þ
t{t

dt ð4Þ

where P.V. means that the integral is taken in the sense of the

Cauchy Principal Value. From the above equation, the Hilbert

transform y(t) can be considered as the convolution of the

concerned time series with 1/pt, and does not produce a change

of domain unlike Fourier transform which changes from time

domain to frequency domain representation. Hilbert transform

can be realized by a ideal filter whose amplitude response is unity

and phase response is a constant p/2 lag at all frequencies [44].

MatlabH function hilbert was used to calculate the analytic

signal.

The concept of analytic signal may also be better understood by

comparing the role of phasors in simplifying manipulations of

current and voltages [45]. A rotating phasor is defined by

ei2pft~cos 2pftð Þzisin 2pftð Þ ð5Þ

Comparing Eq.(2) to Eq.(5), it is evident that the given real signal

Wx(a,t) and its Hilbert transformed version y(t) play analogous role

to the real part and the imaginary part of an unit phasor. This fact

can be explained as follows. Let us consider a point undergoing

uniform circular motion about the centre. The projection of the

motion of which onto axes at right angles to one another yields the

pair of sine and cosine waves, respectively. If the time axes are

combined, and the sine and cosine waves are included and their

instantaneous values are projected into the three dimensional

space, then the motion of the resulting point traces out the trip of

the vector originating at the time axis. The resulting vector is

termed as the analytic signal, and its length is the amplitude of the

analytic signal. Ideally the analytic procedure put the low

frequency content in to the amplitude a(t) and the high frequency

component in to the phase w(t) [43].

Here I investigated only the instantaneous amplitude compo-

nent and its empirical probability density function (pdf) was

studied next.

3. Empirical Probability Density Function (PDF)

analysis. For each electrode, task and participant, I computed

the pdf P(y) of instantaneous amplitudes of the wavelet transformed

signal and normalized it to unit variance. For individual task

condition (rest/perception/imagery), these individual pdf’s were

pooled together according to scalp locations or participants within

each group (artist/non-artist). To test the hypothesis that there is a

hidden, possibly universal, structure to these different pdf’s, the

pdf’s were rescaled as follows: P(y) by Pmax and y by 1/Pmax to

preserve the normalization to unit area [22]. If there exists, indeed,

a universal structure among all these pdf’s, the rescaled pdf’s

would collapse into a single pdf and the entire pool of pdf’s can be

described a single scaling parameter.

Such collapsing of density functions is reminiscent of a wide-

class of well-studied physical and natural systems with universal

scaling properties [9]. This stems from the fact that generalized

homogenous functions display this property of scale invariance

and data collapsing, and such functions were investigated in the

context of formalism to treat thermodynamic functions, static

correlation function, dynamic correlation function and universality

near the critical point [9].

Lets mention briefly the key features of generalized homogenous

function [46]. A function f(x,y,z, …) of any number of variables is

called homogeneous of degree m in these variables if multiplication

of each of the variables x, y, z, …by a positive scalar l results in

multiplication of the function by lm, i.e.

f lx,ly,lz, . . .ð Þ~lmf x,y,z, . . .ð Þ ð6Þ

where the parameter m is generally called the degree of

homogeneity. Now this function will be called a generalized

homogeneous function if one finds a set of numbers a, b, c, … not

all zero, such that

f lax,lby,lcz, . . .
� �

~lf x,y,z, . . .ð Þ ð7Þ

However, it needs to be stressed here that one would rarely

obtain a strict data collapsing behaviour of pdf’s when dealing with

real-life ongoing EEG signals, and even more so when the

underlying task was as complex as visual perception and mental

imagery of complex object like a painting. Therefore, it was more

appropriate to perform a comparative study, i.e. whether data

collapsing was more (or less) in visual perception than in mental

imagery. In order to quantify the degree of data collapsing, I used

Kullback-Leibler (KL) divergence measure [47] which is also

known as relative entropy or cross-entropy [48]. KL between two

pdfs P(x) and Q(x) over the same alphabet LX is

KLPQ P Qkð Þ~
X
x[LX

P xð Þlog
P xð Þ
Q xð Þ

� �
ð8Þ

KL is always non-negative and is zero iff P = Q. So the degree of

similarities between two pdfs is inversely related to the value of

KL. Therefore, if I computed the KL for all pair-wise pdf’s within

each pool, the averaged or mean-Kullback-Leibler (MKL)

measure approximately quantifies the degrees of universality or

scale invariance of that pool. The lower the values of MKL, the

higher the degrees of universality and scale invariance.

4. Surrogate Analysis. The final analysis was based on the

method of surrogate data analysis [49], which is an application of

the popular statistical bootstrapping technique [50]. The surrogate

series are generated from the original EEG signals on the basis of a

certain null hypothesis. A most basic null hypothesis is that EEGs

are completely random, and a more advanced null hypothesis is

that EEG signals are generated by filtered Gaussian linear

Universality in Imagery
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stochastic processes, which may be observed through a static

nonlinear but invertible transformation function. Here, surrogates

possess all the linear structure (mean, variance, power spectrum

and circular autocorrelation) but are devoid of any phase

correlations present in the original signal. Since multiple EEG

signals were measured simultaneously, it would be important to

incorporate also the phase correlation properties between multiple

EEG signals [51]. Here the set of surrogates not only possess the

earlier mentioned linear structure of individual EEG signals but

also their cross spectral information. In this study, I generated 19

surrogates for each EEG signal and their pdfs of the instantaneous

amplitude of the wavelet transform using the same scale (a) were

compared to the corresponding pdf of the original signal. If the

original pdf is indistinguishable from the set of surrogates, one can

accept the underlying null hypothesis of linear Gaussian process.

Supporting Information

Figure S1 Electrode locations. Topographical locations of the 19

electrodes and their designations according to the International

10–20 systems.

Found at: doi:10.1371/journal.pone.0004121.s001 (0.01 MB EPS)

Acknowledgments

I am thankful to Prof. Hellmuth Petsche for the EEG experiments, to
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