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Abstract: There is a need for incidence assays that accurately estimate

HIV incidence based on cross-sectional specimens. Viral diversity-based

assays have shown promises but are not particularly accurate. We

hypothesize that certain viral genetic regions are more predictive of

recent infection than others and aim to improve assay accuracy by using

classification algorithms that focus on highly informative regions (HIRs).

We analyzed HIV gag sequences from a cohort in Botswana. Forty-

two subjects newly infected by HIV-1 Subtype C were followed through

500 days post-seroconversion. Using sliding window analysis, we

screened for genetic regions within gag that best differentiate recent

versus chronic infections. We used both nonparametric and parametric

approaches to evaluate the discriminatory abilities of sequence regions.

Segmented Shannon Entropy measures of HIRs were aggregated to

develop generalized entropy measures to improve prediction of recency.

Using logistic regression as the basis for our classification algorithm, we

evaluated the predictive power of these novel biomarkers and compared

them with recently reported viral diversity measures using area under the

curve (AUC) analysis.

Change of diversity over time varied across different sequence

regions within gag. We identified the top 50% of the most informative

regions by both nonparametric and parametric approaches. In both cases,

HIRs were in more variable regions of gag and less likely in the p24

coding region. Entropy measures based on HIRs outperformed previously

reported viral-diversity-based biomarkers. These methods are better

suited for population-level estimation of HIV recency.

The patterns of diversification of certain regions within the gag gene
imir Novitsky, MD, PhD, and Marcello Pagano, PhD

demonstrates the potential for improving accuracy when identifying

recent HIV-1 infections.

(Medicine 94(42):e1865)

Abbreviations: ART = antiretroviral therapy, AUC = area under

the curve, HIRs = highly informative regions, HRM = high

resolution melting, IQR = interquartile range, Q10 = the tenth

quantile, ROC = receiver operating characteristic, SE = segmented

entropy, SGA = single genome amplification.

INTRODUCTION

A ccurate HIV incidence assays are important for character-
izing HIV epidemics, and for designing and assessing

intervention efforts.1,2 An incidence rate is defined as the
number of new cases per population at risk in a given time
period. Given the long asymptomatic period for HIV infection,
diagnosis counts in standard surveillance systems cannot be
used reliably for this purpose. One approach is to rely on cohort
studies that follow sero-negative persons over time and docu-
ment HIV acquisition. This cohort approach is not only time-
consuming and expensive, but also subject to selection and
follow-up biases. In many cases, high-risk persons are also
those who are more likely to be lost-to-follow-up, which leads
to an underestimation of the incidence. The cohort approach can
also generate incidence estimates that are not generalizable to
the whole population, either because the study participants have
modified infection risk, or the cohort sample does not represent
the population of interest.3

An alternative approach based on a single, cross-sectional
survey can address many of these challenges. In this approach
biological samples are collected in a cross-sectional survey, and
host or viral biomarkers used to identify recent versus chronic
HIV infections.3 However, identifying recent infections is still a
challenge.3 In recent years, within-host viral genetic diversity
measures have stood out as a promising biomarker for this
purpose. The rationale is based on the observation that early in
infection, within-host viral genetic diversity increases in an
approximately linear fashion.4,5 Previous studies demonstrate
that the majority of HIV infections are caused by a single founder
strain.6 Over time, large quantities of distinct viral variants are
generated due to rapid viral replication, frequent mutation, and
recombination events.6,7 As a result, within-host viral genetic
sequences are usually homogeneous early on during infection.8,9

Over time the viral diversity increases and stabilizes or declines in
later stages of the disease.4,9,10 This sets a biological foundation to
use HIV genetic diversity as a potential biomarker to identify
recent infections. The minority of HIV infections caused by
multiple founder viruses presents a challenge that needs to be
addressed separately.11,12–15 Recent reports include using the
nucleotide calls obtained during popu-
apid diversity assay based on high resol-
technology12,16–18 as well as the quasi-
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was performed using muscle in the MEGA4 program.
species sequencing-based diversity measures. Particularly worth
noting are the tenth quantile (Q10) of the pairwise Hamming
genetic distance proposed by Park et al,13 the sequence clustering-
based diversity assay introduced by Xia et al,15 and the Segmen-
ted Entropy proposed by Exner and Pagano.19 However, the
ability of these biomarkers to classify recent versus nonrecent
cases accurately needs improvement.

In this study, we hypothesize that the change of within-host
diversity over time varies across different regions of the viral
genome. As a result, certain viral genetic regions should contain
stronger temporal signals, and thus be more informative for
comparing recent and chronic stages of infection. Con-
sequently, classification algorithms that focus on within-host
viral diversity of highly informative genetic regions (HIRs) can
display better accuracy.

We previously developed a viral diversity measure based
on a modified entropy definition.19 In the present study, we
build upon this method by using a generalized entropy measure
of within-host viral diversity. We first screen for genetic
regions that best differentiate recent versus chronic stages of
infection, to which we then apply our modified entropy
measure. Descriptive analyses show that change of entropy
over time varies across different gene sequence regions. As a
result, some regions are more predictive of time since infection
than others. To evaluate the levels of information in the
different genetic regions, we use both parametric and nonpara-
metric approaches, and construct our entropy metric giving
more weight to the regions identified as highly informative. We
find that this generalized version of entropy, which focuses
more on highly informative regions, can outperform other
previously proposed diversity measures. We also find that a
combined measure of diversity that includes both the new
generalized entropy and the skewness of the distribution of
within-host pairwise distances further improves prediction,
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whereas predictors such as the Q10, and minimum or maximum

of the pairwise distance distribution do not add sufficient
predictive power.

MATERIALS AND METHODS

Sequence Data Sources
We analyzed HIV gag sequences from the Primary HIV-1

Subtype C Infection Study in Botswana, collected in the Tshe-
dimoso study.20–23 Subjects with acute and recent HIV infection
were enrolled in a primary HIV-1 subtype C infection cohort in
Botswana from April 2004 to April 2008. The primary study, the
Tshedimoso study, was approved by the Institutional Review
Boards in both Botswana and the USA.20 The 42 subjects
included 8 acutely infected (Fiebig stage II) and 34 recently
infected (Fiebig stage IV or V) individuals.21 Time of serocon-
version (time zero) for acutely infected subjects was estimated
as the midpoint between the last ELISA-negative and the first
ELISA-positive test (within a week in most cases), and for
recently infected subjects it was estimated by Fiebig staging. As
described in our earlier paper,24 the beginning of Fiebig stage III
in HIV-1C infection coincides with the time of detectable
seroconversion (time 0), the mean duration of Fiebig stage
III is 3 days, for stage IV is 6 days, and for stage V is 70 days.
Thus, the time from seroconversion until detection was assumed
to average 6 days for subjects in stage IV (3 days of phase III and

3 days to the midpoint of phase IV), 44 days for subjects in stage
V (9 days of phases III and IV and 35 days to the midpoint of
phase V), and 79 days for stage V/VI (9 days of phases III and
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IV, and 70 days of phase V). Subjects identified within Fiebig
stage VI were excluded from analyses. The cohort included 9
males and 33 females. The median age at enrollment was 27
years. All subjects were nationals of Botswana, and all infec-
tions were HIV-1 subtype C.

Subjects were followed longitudinally through at most
500 days post-seroconversion. The median follow-up period
was 378 days post-seroconversion (p/s). At each time point,
sequences from the core structural gene gag were obtained
using single genome amplification (SGA) followed by direct
sequencing.21 The analyzed region of gag corresponded to
nucleotide positions 841 to 2217 of the reference strain HXB2
(amino acids 18 to 476 in relation to the gag coding DNA
sequence in HXB2). After aligning the sequences, hypermu-
tants were removed from the sample using Hypermut 2.0.25

The total length of the alignment was 1518 nucleotides.
Only samples with at least 5 sequences collected were con-
sidered for analysis. The codon-based sequence alignment
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The default penalties for gap opening and extension were
used.

Measuring Diversity
We previously developed a Segmented Shannon Entropy

measure that takes into account the length of the genetic
region.19 Briefly, suppose N viral genetic sequences have been
obtained from an HIV-infected individual at time t. Suppose
also that these sequences are segmented into S regions
with regions indexed 1,2... S. Then, for each segment k
2{1,2,.., S}, the Shannon entropy of that segment at time t
is determined by

Hk
t ¼ �

1

logðNÞ
Xn

a¼1

Pk
a;tlogðPk

a;tÞ (1)

where n is the number of distinct segment patterns (ie, regions

differing by at least 1 nucleotide base) within the N sequences,
and Pk

a;t is the proportion of sequence regions in the k region
with distinct pattern a at time t.

Sliding Window Analysis
Change of within-host diversity over time may vary across

different gene sequence regions, resulting in certain regions
being more predictive of time-since-infection than others.
Focusing on these informative regions should improve predic-
tion of recency of infection. To test this hypothesis, we first
conducted an initial screening for gene sequence regions where
diversity measures were consistently higher in chronic infec-
tions compared to recent infections. To that end, we used the
sliding window function slide analyses in the R package SPI-
DER version 1.05 (http://spider.r-forge.r-project.org/). This
function partitions a sequence alignment into windows (or
regions) of a chosen size and performs diversity measures on
each window26,27. We explored window sizes of 50 bp, 100 bp,
150 bp, 200 bp, and 250 bp and calculated Segmented Shannon
Entropy according to Eq. (1). To visualize the development of
within-host diversity over time at different nucleotide regions,
we plotted entropy measures for each patient on each genetic
sequence window within time periods of 0 to 3 months, 3 to 6

months, 6 to 9 months, and beyond 9 months. Here we defined
a recent case as a sample collected within 6 months from
seroconversion.

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.



Screening for Highly Informative Regions (HIR)
To evaluate the discriminatory abilities of sequence

regions, we developed 3 methods that relied on nonparametric
and parametric approaches. Our screening strategy was to look
for viral sequence regions where viral diversity consistently
increased over time across individual hosts.

In Method I, for each sliding window, we first compared
the Segmented Shannon Entropy in recent versus chronic stages
within each individual, assigned a score of 1 (if diversity is
larger in the chronic stage), 0 (if diversity is the same in both
stages), or �1 (if diversity is smaller in the chronic stage). We
then summed the scores over all individuals and rank the
sequence windows accordingly. Sequence windows were
ranked according to their overall scores.

In Method II we used the concept of information gain, a
well-known variable segmentation procedure.28 This method
helps us evaluate how well each region (segment) of the gene
splits the sample of infected people into recent and chronic. To
briefly describe this method, we focused on a region k of the gag
gene, whose predictive power we wanted to assess. We com-
puted the entropy of the 228 samples in that genetic region, and
then partitioned these 228 entropy values into a predefined
number of sets. We then proceeded to compute how much
information we gained subsequent to this partition. This
measures how predictive of recency status region k is. Similarly,
we computed the information gain for all of the other regions,
having then a metric to rank them, with the most informative
regions having larger information gain.

Finally, in Method III, for each sequence window, we used
all the 228 person-time samples and regressed entropy measures
over time points using linear mixed models and ranked the
sequence windows based on P values of the temporal trend.
Windows of lower P values were ranked higher. See the
appendix for details on all these approaches.

Generalized Entropy Measure as a Biomarker of
Recency of Infection

For each of the approachesdescribedabove, sequence regions
(ie, windows) within the top 50% rankings were considered as
HIRs. Using Eq. (1) we computed the Segmented Shannon
Entropy measures of the HIRs and averaged them to develop
combined entropy measures as biomarkers of recent infection. We
used a logistic regression scheme as the basis to our classification
algorithm, evaluated the predictive power of these newly devel-
oped biomarkers, and compared them against previous biomarkers
using AUC of the receiver operating characteristic (ROC) analysis.
To account for repeated measures in the dataset we also conducted
sensitivity analysis using mix-effect logistic regression. To further
improve the predictive power of the classification scheme, we also
explored other diversity-related biomarkers such as skewness of
the distribution of pairwise Hamming distances.

RESULTS
Forty-two subjects were observed at a total of 228 time

points with a median of 11 sequences per time point (range 5,
32). Among them 90 were defined as recent infections and 106
were chronic infections. The median time since infection was 80
days (interquartile range: 44, 122 days) for the recent cases and
323 days (interquartile range IQR: 240, 415) for the chronic
cases. Antiretroviral therapy (ART) was initiated in 10 of the 42
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subjects within the observed period of time due to a drop in CD4
T cells. The median time of ART initiation was 316 days p/s
(IQR 186�415 days p/s; range 112�491 days p/s).

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.
Both proviral DNA and viral RNA were included in the
analysis. In the preliminary analysis we compared diversity
(uncorrelated p-distances with pairwise deletion of gaps)
between HIV-1C gag quasispecies amplified from viral RNA
and proviral DNA in a subset of 18 subjects including 6 acutely
infected individuals and 12 recently infected individuals. A total
of 27 paired time points included 14 identical sampling points
and 13 cases sampled within 60 days. The range of analyzed
time points spanned from 4 to 755 days p/s (median of sampling
time points for viral RNA was 201 days p/s with IQR 78 to 347
days p/s; median of sampling time points for proviral DNA was
198 days p/s with IQR 104 to 347 days p/s). The HIV-1C gag
pairwise diversity predictably increased over time and remained
relatively low (medians ranged from 0–1.1%). In 11 of 27
comparisons viral RNA diversity was higher than proviral
DNA, in 8 cases proviral DNA was higher than viral RNA,
and in 8 cases no difference between viral RNA and proviral
DNA diversity was found (Wilcoxon rank-sum test).

Visualization of the development of within-host diversity
over time shows that change of diversity over time varied greatly
across different gene sequence regions, with certain regions being
more predictive of time since infection than others. As an
illustrative example Figure 1 shows the entropy profiles of 2
patients at time periods 0 to 3 months, 3 to 6 months, 6 to 9
months, and beyond 9 months, using regions of size 50 bp. In both
instances, sequence diversity between the fifth and tenth regions
was more predictive of time since infection than other regions.
These results suggest that indeed some genetic regions were more
informative for recency prediction.

We identified highly informative regions through the 3
methods described above. Figure 2 shows the overall scores for
each sequence region using the first nonparametric procedure,
with window sizes of 50 bp and 100 bp. In both cases HIRs were
in more variable regions (ie, regions of higher mutation rates),
such as p17 and p2/p7/p1/p6, and less likely in the more
conserved p24 coding region.

Park et al proposed a biomarker for recency prediction
based on the Q10 of the pairwise Hamming distance distri-
bution, which appeared to be robust to both viral subtype and
multiplicity of infection.13 We had also previously developed
another biomarker based on segmented entropy (SE) measure.19

We selected these 2 biomarkers as benchmarks for evaluating
the generalized entropy measures proposed in this work.

Table 1 reports these comparisons using AUC of the ROC
analysis subsequent to a logistic regression. We selected the
HIRs based on the 3 algorithms described above and in the
appendix. We also performed a sensitivity analysis for several
window sizes. Noteworthy, we do not expect for the HIRs to be
identical using different window sizes, but rather that the HIRs
were consistently located around the same gene regions regard-
less of window sizes.

To minimize the bias caused by correlated data, we created
another data set where only the first- and last-observations of
the 42 individuals were used. The corresponding results are
reported and compared in Table 2. We felt that this was a more
appropriate data set for a proper comparison between the AUC
of the different methods. In both cases, our newly developed
biomarkers based on highly informative regions outperformed
previously developed biomarkers, especially when sequences
were segmented into regions of 150 bp and 200 bp.

Figure 3 shows the AUC plots of the best performance of

A Generalized Entropy Measure
the newly developed biomarkers compared to the best perform-
ance of previously developed biomarkers, using first and last
observations only. Including skewness of the pairwise
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FIGURE 1. Entropy profiles of 2 patients at time periods 0 to 3 months, 3 to 6 months, 6 to 9 months, and beyond 9 months. Genetic
e, fo
nd
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Hamming distance distribution in the newly developed predic-
tion model further improved the AUC up to 89%. Our Method
III algorithm was significantly better than Q10 (P ¼ 0.01) and
SE (P¼ 0.02) based on the Delong test. Our Method I approach
was significantly better than Q10 (P¼ 0.05) but the improve-
ment over SE did not reach statistical significance (P¼ 0.11).

Noteworthy, we show the results when selecting the top
50% of the HIR. We conducted sensitivity analyses of this
percentage using 2 additional cutoffs: 75% and 33%. The
analysis indicates that the 50% cutoff rendered slightly better
prediction power, although predictive performance was not
greatly affected by the selection of cutoff within such range
of values.

To better understand the potential impact of ART use on
the performance of our viral diversity measure we conducted
sensitivity analyses excluding the samples from ART-exposed
subjects. We found that the recency prediction did not change

region: HIV1-C gag gene; length: 1518 bp; window size: 50 bp. Not
entropy increases consistently with time, whereas for regions arou
increase.
appreciably. The same HIRs were identified, and the resulting
AUCs were almost identical compared to the AUCs obtained
from the full set analysis (See Figure S4 in the appendix).

FIGURE 2. Screening for highly informative regions (HIR) using Metho
region: HIV1-C gag gene; length: 1518 bp; window sizes: 50 bp and 10
blue bars are those with the highest scores, that is, the most informa
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DISCUSSIONS
Good estimates of HIV-1 incidence are essential for

monitoring HIV transmission dynamics, designing and ascer-
taining the effectiveness of containment and prevention inter-
ventions, as well as informing resource allocation. Critical to
this enterprise is the development of novel assays that can
accurately identify recent HIV-1 cases. To further improve the
predictive accuracy of existing viral-diversity-based bio-
markers, we propose an approach based on differential predict-
ability of regions across viral genetic sequences. To that end, we
(1) used sliding window analysis to screen for the informative
genetic region, (2) identified highly informative regions using
nonparametric and parametric approaches, (3) averaged the
segmented entropy measures of these highly informative
regions to generate the generalized entropy biomarkers, and
(4) compared the prediction power of our new biomarkers with
2 previously developed biomarkers. Our generalized entropy

r example, that in both cases, around the 5th to 10th windows the
the 20th window, entropy does not show a systematic temporal
measure outperformed these 2 benchmarks, demonstrating
the potential for improving accuracy to identify recent HIV-1
infections.

d I. Performance scores were summed over all individuals. Genetic
0 bp. Sequence windows’ overall scores for the 2 window sizes. The
tive regions. HIR¼highly informative region.

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.



TABLE 1. Comparing the ROC AUC Values of Classification
Methods With All 228 Observations. The Best Performance of
Each Method is Highlighted in Bold Type

Method/Window Sizes 50 bp 100 bp 150 bp 200 bp 250 bp

Q10 [13] 68% 68% 68% 68% 68%

SE [19] 66% 66% 68% 68% 68%

Entropy HIR Method I 69% 69% 71% 70% 69%

Entropy HIR Method II 66% 67% 69% 69% 72%

Entropy HIR Method III 68% 69% 71% 72% 72%

AUC¼ area under the curve, HIR¼ highly informative region,
Q10¼ the tenth quantile (of the pairwise Hamming genetic distance),

TABLE 2. Comparing the ROC AUC Values of Classification
Methods With First and Last Observations Only. The Best
Performance of Each Method is Highlighted in Bold Type

Method/Window Sizes 50 bp 100 bp 150 bp 200 bp 250 bp

Q10 [13] 75% 75% 75% 75% 75%

SE [19] 76% 77% 79% 80% 80%

Entropy HIR Method I
�

80% 82% 84% 81% 80%

Entropy HIR Method II
�

76% 78% 82% 82% 85%

Entropy HIR Method III
�

80% 80% 85% 86% 84%

AUC¼ area under the curve, HIR¼ highly informative region,
Q10¼ the tenth quantile (of the pairwise Hamming genetic distance),
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We show that the patterns of genetic diversification of
certain sequence regions have higher predictive capacity for
recent infections and that, consequently, focusing on these
highly informative regions can improve predictive accuracy.
Moreover, we demonstrate in several ways how to screen for
highly informative genetic regions, and our procedures can be
extended to other regions of the viral genome, with the potential
for gaining additional information for prediction purposes. In
addition, we show that our generalized entropy measure based
on highly informative regions can be applied in combination

ROC¼ receiver operating characteristic, SE¼ segmented entropy.
with other predictive biomarkers, such as skewness measure of
the pairwise Hamming distance distribution, to further improve
the discriminatory ability. Moreover, this approach can be used

FIGURE 3. Comparing AUC plots of the best performance of the
different biomarkers with first and last observations only. The
newly developed biomarkers (HIR Skewness & HIR Method III)
outperform existing ones (Q10 [13] and SE [19]). AUC¼ area
under the curve, HIR¼highly informative regions, Q10¼ the
tenth quantile (of the pairwise Hamming genetic distance),
SE¼ segmented entropy.

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.
as part of a multiple-assay algorithm and in combination with
other biomarkers such as viral load. As a next step we would like
to compare our generalized entropy approach to serologic
biomarkers.

We used post-seroconversion of 180 days as the cut-off for
defining recent infection, but the same methods can be easily
extended to different time cut-offs. The accuracy of these models
might vary depending on the richness of within-host temporal
signals in comparison to the ‘‘noise’’ (ie, the between-host
variation) in the training data set and need further validations.

The choice of the HIV-1C gag gene was motivated by our
previous work on the complex dynamics of selective pressure
that affect viral mutations in gag. HIV-1 gag is a structural viral
protein able to induce potent virus-specific T cell responses
associated with control of viral replication, lower viral set point,
and more favorable disease prognosis.29–38 We have analyzed
gag diversity and evolution in the primary21,24,39,40 and
chronic32,33,41–43 HIV-1C infection. We addressed intra-host
evolutionary rates in HIV-1C gag in primary infection40 and
demonstrated that during primary infection, the median intra-
patient substitution rates within gag were 5.22E-03 (IQR 3.28E-
03–7.55E-03) substitutions per site per year of infection. Viral
sequences encoding partial gag (HXB2 nt positions 832–2217;
HXB2 Gag amino acid positions 15–476) were generated in our
study of primary HIV-1C infection,20–24,40,44 and used in this
study. Previously we examined the time of appearance, dom-
inance, completeness, and loss of different types of viral
mutations in gag soon after seroconversion,21 timing of gag
mutations21 including dynamics of viral mutations at gag
residue 242,39 and intrahost evolutionary rates in HIV-1C
gag.40 In future work, we plan to extend this methodology to
other genetic regions.

The results of our research provide insights into the
relationship between within-host diversity and time since infec-
tion. Longitudinal quasispecies sequence data that provide
valuable information on within-host viral evolution under no
antiretroviral pressure, such as the data we use here, are scarce.
These data were collected as part of an HIV primary infection
study in Botswana.20–23 Patients were recruited through a
referral strategy of expanded Voluntary Counseling and Test-
ing.20 The richness of the data provided us with a rare oppor-
tunity to examine the evolution of within-host viral diversity
since early infection. Prospective ‘‘seroconverter’’ cohort stu-

ROC¼ receiver operating characteristic, SE¼ segmented entropy.�
P values <0.05 when compared to Q10 by the Delong test.
dies are prohibitively expensive to conduct on a large scale and
have limited patient visit frequency. Previous work that aimed
to describe HIV viral genetic diversity had to rely on either meta
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sequence data sets downloaded from public sequence data-
bases45,46 or smaller follow-up studies with limited sampling
frequency.47,48 Yang45 and Li et al46 assessed the overall
sequence variability across the viral genome within and
between different HIV subtypes based on publically available
sequences. Although the studies were not designed to specifi-
cally examine within-host diversity evolution and differentia-
bility of regions in terms of recency, their observations
suggesting that the level of overall genetic diversity varies
greatly in different genetic regions is consistent with our
findings. It is interesting to note that the less informative genetic
regions we identify correspond to the more structurally con-
served ‘‘major homology region’’ within gag, providing a
potential biological explanation for our results. Certainly, there
are other highly informative genetic regions within the whole
HIV genome. Hence, applying our method to screen for
additional HIRs has the potential for further improving HIV
recency assays. In fact, Poon et al49 report estimating time of
infection based on phylogenetic tools and show differential
predictive accuracy across different genes. Our work further
illustrates that focusing on highly informative regions within
any given gene has the potential to further improve prediction
accuracy. Similar sequence variability patterns across HIV-1
subtypes have been observed,45 potentially making our method
generalizable to most of the circulating strains worldwide.
Further studies along this line are warranted.

It is known that ART use in chronically infected persons
reduces the individual’s viral load levels, which might lead to
false-recent classification when serological assays are used.50

There have been concerns that ART might also reduce viral
diversity, potentially resulting in false recency of some treated
patients when viral diversity-based biomarkers are used. How-
ever, studies on both subtype B51 and subtype C52 have shown
that HIV-1 population structure in ART-experienced individ-
uals might be indistinguishable from pre-therapy samples, even
following greater than 100-fold decreases in plasma HIV-1
RNA levels. To help us understand the potential impact of
ART use on the performance of our viral diversity measure we
conducted sensitivity analyses. In our sample, ART was
initiated in 10 of 42 subjects within the observed period of
time due to a drop in CD4þT cells. We repeated the previous
analyses but excluded the samples from ART-exposed subjects.
We found that the recency prediction did not change signifi-
cantly. The subset of individuals on ART did not have different
entropy profile patterns compared to the treatment-naive indi-
viduals. Cousins et al16 and Kouyos et al14 also report a lack of
association between ART use and viral diversity biomarkers. It
is worth noting, however, that the sample size of ART-exposed
person-times was rather small and the robustness of our method
to ART use warrants further evaluation.

Different sequence alignment parameter settings can lead to
different genetic segmentations and thus affect the determination
of HIRs so we explored several alignment parameter sets. The 2
major parameters for nucleotide-based alignment that were
explored were: penalty for gap opening (0–400) and penalty
for gap extension (0–50). We find that in all the different
alignment settings we explored, generalized-entropy-based
classification algorithms outperform the benchmarks. Nonethe-
less, we recognize that sequence alignment parameter setting
might depend on specific samples, and on the diversity of the
targeted region in the HIV-1 genome. Particularly, when applied

Wu et al
to the field, specific guidance in alignment procedures that are
appropriate to the population of interest should be in place to
ensure the proper usage of the assay.
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We also find that evaluation of assay performances can be
highly dependent on the sequence datasets used. We examined a
public sequence dataset previously used in Xia et al.15 This
dataset, namely D561, represents a meta database (freely avail-
able at Los Alamos HIV public database) containing viral
sequences from the env gene of 462 subjects (561 samples)
infected with subtype B and C. Our new diversity-based bio-
markers were similarly compared against the same benchmarks.
The new biomarkers outperform or match the previous ones
(data not shown). However it is important to note that when
assessing assay performance with the public dataset (D561), all
biomarkers achieved very high predictive accuracy, similar to
what was reported in Xia et al.15 Unlike the Botswana cohort
data set, which is representative of potential targeted popu-
lations for cross-sectional HIV incidence estimation, the D561
is a convenience sample consisting of all available SGA
sequences from the Los Alamos HIV database and it is unlikely
to be representative of targeted populations of interest. Caution
is needed when such data sets are used for validating assay
performances. Further investigations on how the structure of
data sets can impact assay’s performance are being carried out
and described elsewhere.

Among the limitations of our work is that, due to high
between-host variation, viral-diversity-based biomarkers in
general, including ours, might be unsuited for individual-level
classification. Rather this type of biomarker is more suitable
for population-level estimations, such as incidence esti-
mation. Also, our method is still in the stage of proof of
concept and collaborations are underway to further evaluate
this approach based on larger sequence data. We are currently
expanding our analysis to larger genomic regions, and formal
scanning based on functional regions is underway. Addition-
ally, single genome amplification and direct sequencing is
expensive and can be impractical for initial screening.
Although the screening methods we have developed and
the identification process for HIRs rely on SGA sequence
data, our concept can be applied to other types of genetic data.
For example, our approach can have great potential with next
generation sequencing data becoming more available and less
expensive. Our procedures provide a tool for whole genome
screening and guiding toward the optimal design of viral
diversity assays.

In summary, our work shows, as a proof of concept, that
focusing on highly informative viral genetic regions can
improve predictive accuracy for identification of HIV recent
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infection. Further studies are needed to evaluate the perform-
ance of this approach across other viral genetic regions and as
part of multiple-assay algorithms.
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