
de Lima et al. 
BMC Medical Informatics and Decision Making          (2022) 22:274  
https://doi.org/10.1186/s12911-022-02021-2

RESEARCH

Explainable machine learning methods 
and respiratory oscillometry for the diagnosis 
of respiratory abnormalities in sarcoidosis
Allan Danilo de Lima1†, Agnaldo J. Lopes2†, Jorge Luis Machado do Amaral3 and Pedro Lopes de Melo4* 

Abstract 

Background:  In this work, we developed many machine learning classifiers to assist in diagnosing respiratory 
changes associated with sarcoidosis, based on results from the Forced Oscillation Technique (FOT), a non-invasive 
method used to assess pulmonary mechanics. In addition to accurate results, there is a particular interest in their 
interpretability and explainability, so we used Genetic Programming since the classification is made with intelligible 
expressions and we also evaluate the feature importance in different experiments to find the more discriminative 
features.

Methodology/principal findings:  We used genetic programming in its traditional tree form and a grammar-based 
form. To check if interpretable results are competitive, we compared their performance to K-Nearest Neighbors, Sup-
port Vector Machine, AdaBoost, Random Forest, LightGBM, XGBoost, Decision Trees and Logistic Regressor. We also 
performed experiments with fuzzy features and tested a feature selection technique to bring even more interpretabil-
ity. The data used to feed the classifiers come from the FOT exams in 72 individuals, of which 25 were healthy, and 47 
were diagnosed with sarcoidosis. Among the latter, 24 showed normal conditions by spirometry, and 23 showed res-
piratory changes. The results achieved high accuracy (AUC > 0.90) in two analyses performed (controls vs. individuals 
with sarcoidosis and normal spirometry and controls vs. individuals with sarcoidosis and altered spirometry). Genetic 
Programming and Grammatical Evolution were particularly beneficial because they provide intelligible expressions to 
make the classification. The observation of which features were selected most frequently also brought explainability 
to the study of sarcoidosis.

Conclusions:  The proposed system may provide decision support for clinicians when they are struggling to give a 
confirmed clinical diagnosis. Clinicians may reference the prediction results and make better decisions, improving the 
productivity of pulmonary function services by AI-assisted workflow.
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Introduction
Sarcoidosis is an inflammatory disease characterized by 
granulomas, which can appear in practically any organ 
[1], although the lung is the most common site. Over 
150  years after its first clinical description, the cause of 
sarcoidosis remains unknown, and its treatment is gen-
erally unsatisfactory [2]. This disease is characterized by 
respiratory abnormalities associated with increased air-
way obstruction and reduced pulmonary compliance [3].
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Respiratory changes in these patients are usu-
ally evaluated using spirometry. However, these tests 
demand great effort in executing the forced expiratory 
maneuver, which can cause changes in bronchomotor 
tone. This negatively affects the quality of the results [4, 
5], and renders the obtained indices hardly physiologic 
[6]. In addition, it requires significant and coordinated 
inspiratory and expiratory efforts from the patients, 
and therefore, it is not suitable for people with serious 
illnesses [7].

Respiratory oscillometry (also known as the forced 
oscillation technique—FOT) is a non-invasive method 
that requires only passive patient cooperation [8]. This 
method allows the evaluation of the mechanical prop-
erties of the respiratory system using the concept of 
respiratory impedance. We can interpret this imped-
ance physiologically through models of pulmonary 
mechanics, such as the extended Resistance-Induct-
ance-Capacitance (eRIC) model [9]. This procedure 
allows us to obtain information concerning central and 
peripheral airways as well as respiratory compliance.

The FOT complements spirometric analysis by pro-
viding extra features for analysis, bringing a more 
detailed assessment [10], which can help diagnose 
abnormal changes in sarcoidosis and other respira-
tory diseases. Although there is increasing research on 
oscillometry and increased interest and feasibility in 
its clinical application, the benefits of oscillometry in 
medicine still need to be realized [8]. One of the main 
obstacles is that interpreting resistance and reactance 
curves and the features derived from these curves can 
be challenging tasks requiring training and experience. 
Thus, a good way is to use Machine Learning (ML) 
algorithms to generate interpretable results. However, 
there are still no studies in the literature using inter-
pretable ML methods associated with FOT measure-
ments to improve the diagnosis of respiratory changes 
associated with sarcoidosis.

In this context, our specific objectives were (1) to 
assess the ability of each FOT feature to diagnose respira-
tory changes associated with sarcoidosis properly; (2) to 
develop classifiers with different methods to achieve high 
accuracy on that issue; (3) to explore techniques that 
generate interpretable results and compare their perfor-
mance with the most accurate methods.

Methods
The Research Ethics Committee of the Pedro Ernesto 
University Hospital (HUPE) approved the study that 
obeys the Declaration of Helsinki. The written post-
informed consent of all volunteers was obtained before 
inclusion in the study.

Studied subjects
The data used in this work were obtained through the 
FOT. The examinations were carried out at the Biomedi-
cal Instrumentation Laboratory of the Rio de Janeiro 
State University. The exam with each volunteer was 
repeated three times, and each piece of data used in this 
work results from the average of these three measures. 
Seventy-two individuals took part in the study. Twenty-
five were healthy volunteers representing the control 
group, and 47 were patients with sarcoidosis. In the latter, 
spirometry verified that 24 had normal conditions, repre-
senting the normal spirometry group, and 23 had respira-
tory changes, representing the altered spirometry group.

Forced oscillation measurements and features
The FOT comprises applying oscillations with a low-
pressure amplitude to an individual’s respiratory system 
using an external device. While the individual remains 
seated, wearing a nose clip, and breathing spontane-
ously, pressure signals with frequencies multiple of 2 in 
the 4-32 Hz range are applied to the respiratory system’s 
entrance. We measured the applied pressure (P) and 
the airflow (V′) induced by it. Then, the Fourier trans-
form (F) was used to estimate the respiratory impedance 
(Zrs = F(P)/F(V′), from which we can generate resistance 
and reactance curves as a function of frequency.

To interpret the resistance data, we used a linear 
regression in the 4–16 Hz range to estimate resistance at 
the intercept (R0), the slope of this curve (S) and the aver-
age resistance in this range (Rm). R0 and S are related to 
the respiratory system’s total resistance and ventilation 
inhomogeneity, respectively, and Rm is related with cen-
tral airways’ resistance [11].

The resistance measured at low frequency is associated 
with the airways’ total resistance, while at high frequency, 
it is related with the central airways’ resistance. The dif-
ference between them is usually interpreted as an index 
of small airway obstruction and heterogeneity of ventila-
tion [12]. Then, the other features analyzed are the resist-
ance at 4 Hz (R4), the resistance at 20 Hz (R20), and the 
difference between them (R4–R20).

To interpret the reactive results, we calculated dynamic 
compliance (Cdyn) from the reactance obtained at 4  Hz 
[13]. In this same frequency, we calculated the absolute 
value of the respiratory impedance (Z4), a feature asso-
ciated with the respiratory muscles’ work to overcome 
resistive and elastic loads, to allow the airflow in the res-
piratory system [11]. The average reactance (Xm) is also 
associated with the inhomogeneity of the respiratory 
system, and we calculated it through the reactance curve 
based on the entire frequency range studied (4–32  Hz) 
[14]. We also evaluated the resonant frequency (Fr), 
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where respiratory elastance and inertance make equal 
and opposite contributions, resulting in a zero value for 
reactance). Finally, we measured the area under the nega-
tive part of the reactance curve (Ax), between 4 Hz and 
Fr, which reflects the elastic properties and ventilation 
heterogeneity of the respiratory system [15].

Extended RIC model features
The impedance curves provided by FOT may be inter-
preted using engineering concepts to correlate them with 
models composed of electrical components analogous to 
resistance, inertance, and complacency of the respiratory 
system. The extended RIC (eRIC) model used (Fig.  1) 
contains a peripheral resistance (Rp) associated in par-
allel with the respiratory compliance (C), in series with 
the central resistance (R) and the respiratory inertance (I) 
[12]. We define the total resistance (Rt) as the sum of R 
and Rp.

Several studies have already been carried out using this 
model, such as, associating model features with abnor-
malities in silicosis [16], showing that the models can aid 
in the early diagnosis of chronic obstructive pulmonary 
disease (COPD) [17] and using these features to detect 
mild obstruction in asthma [18]. We can calculate the 
impedance equivalent to the eRIC circuit according to 
Eq. 1.

Thus, it is necessary to find the values of the features 
to minimize the error between the impedance meas-
ured at discrete frequencies and its respective analytical 
result. We have estimated using the ModeLIB program 
developed in our laboratory, which estimated model 
parameters using the Levenberg–Marquardt algorithm to 

(1)

Z = R+
Rp

1+ ωRpC
2
+ j ωI −

ωR2
pC

1+ ωRpC
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determine the set of coefficients of the nonlinear model 
that best represents the input data set in the least-squares 
sense.

Datasets
This study carried out the experiments in a dataset with 
16 input features (11 FOT indexes and five eRIC model 
components) from 72 exams. The measurements were 
performed in 25 healthy volunteers and 47 patients with 
sarcoidosis: 24 with normal conditions according to the 
spirometry and 23 with respiratory changes.

Machine learning algorithms
Machine Learning (ML) is a field of Artificial Intelli-
gence that gives computers the ability to learn without 
being explicitly programmed to do so [19]. We can use its 
methodologies mainly in problems with no deterministic 
solution, using data so that the algorithms automatically 
discover the relationship between them. Artificial intel-
ligence/machine learning methods have been developed 
to improve pulmonary function analysis since the 1980s 
[20]. Previous works have reported that it is workable to 
use the features obtained by FOT to apply ML algorithms 
to improve the diagnosis of respiratory diseases [13, 21–
25]. Besides providing accurate results, the explanation 
of a classifier is relevant in the study of respiratory dis-
eases. Knowing how the classification is performed and 
the most important features can enhance our knowledge 
about the diagnosis and contribute to our understanding 
of the underlying pathophysiology. The development of a 
set of interpretable models and methodologies that result 
in more understandable models while maintaining excel-
lent prediction performance is the major goal of a new 
topic of study called Explainable Artificial Intelligence 
(XAI) [26]. Regrettably, there is no universally accepted 
definition of explainable. Some researchers use the terms 
interpretability and explainability interchangeably, while 
others distinguish between the two. Authors [27] define 
interpret as “to explain or present in language that 
humans can understand.” Authors in [28] define inter-
pretation as the translation of abstract concepts into a 
domain humans can understand, whereas explanation is 
the collection of the features of the interpretable domain 
that have led to the production of a choice in a specific 
example. The notion of explanation and interpretation in 
this work is aligned with [28].

Therefore, in this study, we want to explore Genetic 
Programming (GP) because of the classification being 
made by intelligible expressions that can be interpreted 
and also study the subset of optimal features selected 
by the feature selection methods to explain which FOT 
parameters are most discriminative.

R I

C

Rp

Fig. 1  Electrical representation of a two-compartment extended 
RIC (eRIC) model to analyze respiratory impedance. Resistance, 
inductance, and capacitance are mechanical resistance, inertance, 
and compliance analogs, respectively. R is analogous to central airway 
resistance, and Rp describes peripheral resistance. I is associated 
with lung inertance and C with respiratory compliance. This analysis 
also evaluated the total resistance (Rt = R + Rp), which included the 
effects of central and peripheral airways
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GP is a method used to build programs, which fits into 
the family of evolutionary algorithms. Each program is 
an individual whose fitness depends on the execution of 
that program. The most common representation for a GP 
individual is as a tree [29]. The terminal nodes (leaves) 
represent the features, and the internal nodes represent 
the functions that operate the leaves. Figure 2 shows the 
tree representation of the program y = ln(x1) + 5 × x2. as 
parent 1, and the program y = sin(x1) − x2/2 as parent 2. 
However, other forms of representation have become 
popular, such as graphs, lists, and grammars [30]. In 
each case, the genotype is the computational representa-
tion of the program, and the phenotype is its interpreta-
tion, more understandable to the user. Some of the most 
important characteristics of genetic programming are 
that it does not require or requires only minimal pre-pro-
cessing of inputs or post-processing of outputs, and it has 
a built-in feature selection mechanism that allows GP to 
select only the more useful features from the dataset. The 

evolutionary process takes place in the problem domain. 
Because the outputs are already expressed in this prob-
lem domain, there is no need for translation or mapping 
processes [29].

The proceeding followed by the GP comprises ran-
domly generating the first population and evolving it 
through generations until a stop criterion is reached, 
such as, for example, whether we found an optimal indi-
vidual or we have reached a maximum number of gen-
erations. Each generation consists of evaluating each 
individual’s fitness and selecting some of them to apply 
genetic operators generating offspring. Individuals are 
chosen on a probabilistic basis based on their aptitude. 
Individuals with higher fitness, therefore, have a bet-
ter chance of being chosen. The tournament method is 
the most commonly used selection method in genetic 
programming. This method involves selecting a sub-
set of individuals at random from the population. They 
are compared, and the best individual from this group is 

Fig. 2  Example of crossover operation in GP individuals
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chosen to be the parent. In terms of evolutionary opera-
tors, genetic programming favors the crossover operator. 
The subtree crossover operator is the most commonly 
used crossover operator. A crossing point (node) in two 
parents is chosen at random and independently in this 
method. The offspring is formed by removing from the 
parents the subtrees whose roots are the chosen crossing 
points. The rest of the trees are combined at these points. 
Figure  2 shows an example of this process, where the 
crossing points and the corresponding subtrees are high-
lighted. Then, parents 1 and 2 are combined to generate 
offspring 1 and 2. This process is done with copies of the 
selected parents, thus not eliminating the parents in the 
process. The most frequently used mutation operator is 
the subtree mutation. In this operator, a mutation point is 
chosen randomly and the subtree whose root is the muta-
tion point is replaced by a randomly generated subtree.

The Grammatical Evolution (GE) algorithm [30–32] is 
based on both the biological process of producing a pro-
tein from genetic material and the broader genetic evo-
lutionary process. The genome is composed of DNA that 
is transcribed into RNA as a string of building blocks. 
After that, the RNA codons are translated into amino 
acid sequences and used in the protein. The phenotype is 
the protein’s response to its surroundings. A phenotype is 
a computer program that is derived from a binary string 
genome. The genome is decoded into a series of integers 
that are then mapped onto the program’s pre-defined 
rules, known as grammar, which are defined in Backus–
Naur Form (BNF). To map genotype to phenotype, a one-
to-many process with a wrapping feature is used. This is 
analogous to the biological process that occurs in many 
bacteria, viruses, and mitochondria where the same 
genetic material is used to express multiple genes. The 
mapping increases the robustness of the process, both 
in terms of being able to use structure-agnostic genetic 
operators on the sub-symbolic representation during 
the evolutionary process and of being able to generate 
well-formed executable programs from the representa-
tion. Thus, even if the fundamentals are the same, using 
a different grammar can cause a model to produce sig-
nificantly different results. This adaptability allows gram-
mar to be applied to a wide range of problems, making it 
extremely useful.

We used GE and tree-based GP as interpretable classi-
fiers. They can derive a mathematical expression to com-
pute a score that indicates the probability that a patient 
belongs to a specific class, or they can synthesize Fuzzy 
Pattern Trees [33].

Because it allows data knowledge to be expressed in a 
comprehensible form, similar to natural language, fuzzy 
set theory has provided a framework for developing 
interpretable models [34, 35], giving the model a higher 

degree of interpretability. The majority of fuzzy models 
developed are rule-based fuzzy systems (FBRS), which 
can represent both classification and regression. It may 
be difficult to obtain fuzzy models based on easily inter-
pretable rules because, depending on the application, 
many rules with many antecedents may be required, 
making the model difficult to understand. A system with 
fewer rules, on the other hand, is easier to understand, 
but its predictive accuracy suffers as a result. Therefore, 
we decided to employ the Fuzzy Pattern Trees (FPT) 
method, which is based on the theory of fuzzy sets and is 
not based on rules but on a hierarchical method.

Terminal nodes in FPTs have fuzzy features, and inter-
nal nodes have fuzzy operators. FPTs can employ a vari-
ety of operators. Aggregation operators, which can be 
t-norms or t-conorms, exist. The first involves operators 
with the logical connector AND as the minimum opera-
tor and those with the connector OR as the maximum 
operator. The average operator, such as WA (weighted 
average) and OWA, is another type (ordered weighted 
average). There are also concentration and dilution oper-
ators that take only one input and reduce or increase 
their membership value. The square of the input value 
is the simplest concentrator, while the square root of the 
input value is the simplest dilator. Table  1 summarizes 
the expressions for the fuzzy operators used in this work, 
where a and b are their inputs and 0 < r < 1.

Fuzzy logic is used to build more meaningful trees in 
order to improve the interpretability of the evolved mod-
els. To that end, we adopted the most straightforward 

Table 1  Fuzzy operators

Operator Expression

Max (a,b) –

Min (a,b) –

WA (a,b,r) r x a + (1 − r) x b

OWA (a,b,r) r x max (a, 
b) + (1 − r) x 
min (a, b)

Dilator (a) √a

Concentrator (a) a2

X

µ

0

1

µlow

µmedium

Xmin Xexample Xmax

X low X medium X high

Fig. 3  Fuzzification scheme
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fuzzification scheme presented in Fig. 3, where X is any 
feature. X_max is the highest X value in the dataset, and 
X_min is the lowest. The membership functions are tri-
angular, and there are three fuzzy sets for X, which are 
set as shown in Table 2.

Figure 4 shows an FPT example where the tree repre-
sents the class "High Quality wine." The alcohol content, 
acidity, and concentrations of sulfur dioxide and sulfates 
are the input attributes. They are associated with a fuzzy 
term that represents a range in the discourse attribute 
universe. In Fig. 4, for example, the fuzzy term Alcohol_
Low represents the fuzzy set that indicates a low alcohol 
content. In fuzzy sets, the membership value is grouped 
by operators who keep the partial results in the range 
[0,1]. If the given attributes presented at the bottom of 
the tree accurately represent the class, the value obtained 
in the output after all feature groupings must be close to 
1.

In our previous research [13, 21–25] we have described 
and experimented with a wide diversity of algorithms 
such as K-Nearest Neighbors (KNN) [36], Support Vec-
tor Machine (SVM) [37], AdaBoost [38], Random For-
est (RF) [39], Light Gradient Boosting Machine (LGBM) 
[40], Extreme Gradient Boosting (XGB) [41], and Logis-
tic Regressor (LR) [42]. Here, we compared the results 
obtained by these algorithms with the ones achieved by 
classifiers synthesized by Decision Trees (DT), GP and 
GE to check if the results of the interpretable classifiers 
are competitive.

In addition, the fuzzification scheme employed in the 
FPTs is also employed as a feature engineering step to 

generate another representation of the original attributes 
(FOT parameters). The main motivation to perform the 
fuzzification is to verify if the fuzzy terms can emphasize 
the differences between the groups. Besides, the newly 
generated features can also be used to train the algo-
rithms from previous works to check if it is possible to 
improve the diagnostic accuracy.

Performance analysis
In medical diagnosis, the area under the receiver operat-
ing characteristics curve (AUC) can measure a model’s 
ability to discriminate whether a condition is present 
or not, so it is an appropriate metric for this work [43]. 
Generalization is what makes learning worthwhile. To 
assess the generalization capacity, we must test a classi-
fier in a different set from the one used for its training. 
Usually, we desire to use as much data as possible to train 
the model and the most considerable amount available 
to test its generalizability However, because our data-
set is small, we must use a practical approach, such as 
the k-fold cross-validation technique [44], to estimate 
generalization performance and perform hyperparam-
eter tuning. Unfortunately, because the performance 
estimate was directly optimized while tuning the hyper-
parameters, using single k-fold cross-validation to com-
plete both tasks may introduce an optimistic bias into 
the performance estimate. As a result, in our experimen-
tal approach, we employ Nested Cross-Validation. This 
procedure uses an outer cross-validation process to gen-
erate a performance estimate that is used to select the 
best model. To minimize an inner cross-validation esti-
mate of generalization performance, the model’s hyper-
parameters are tweaked independently in each fold of the 
outer cross-validation. The outer cross-validation is sim-
ply measuring the performance of a method for fitting 
a model. As the test data in each iteration of the outer 
cross-validation has not been used to optimize the per-
formance of the model in any manner, this avoids the bias 
produced by the flat cross-validation technique and may 
thus provide a more trustworthy criterion for selecting 
the best model.

Thus, we divided the dataset into ten folds with the 
same proportion of classes, enabling ten sub-experi-
ments, each using nine folds for training and one for test-
ing. All algorithms use the same training and test sets 
so that we can compare their results. In the beginning, 
we specify some options of hyper-parameters for a spe-
cific algorithm. An exhaustive search is made using the 
inner cross-validation to find the best hyper-parameters 
in each sub-experiment, which we apply to the respective 
test fold. After repeating that ten times, we take all test 
sets’ results, make a single ROC curve, and take the AUC 
for that algorithm.

Table 2  Linguistic terms used for input X

Fuzzy Sets Interval

X_low [X_min, (X_max + X_min)/2]

X_medium [X_min, X_max]

X_high [(X_max + X_min)/2, X_max]

WA (0.58)

WA (0.63) alcohol med

min OWA (0.14)

SO2 med sulfates med acidity med alcohol low

Fig. 4  FPT example
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Experimental scheme
We performed three experiments, each considering two 
distinct analyses with the dataset: Control group versus 
individuals with sarcoidosis and normal spirometry, and 
control group versus individuals with sarcoidosis and 
altered spirometry.

Experiment 1 consisted of assessing each FOT feature’s 
ability to diagnose correctly respiratory changes associ-
ated with sarcoidosis.

In the second experiment, we evaluated the accuracy 
of several classifiers in the diagnosis. We also evaluated 
interpretable methods and other ML algorithms to com-
pare their results. We investigated all techniques using 
the original dataset with the z-score normalization and a 
fuzzy dataset with the fuzzification scheme from Fig. 3. 
For each experiment, we normalized the data consider-
ing only the training set, and then the test set is normal-
ized following the same scale. Regarding the fuzzification 
scheme, we took the minimum and the maximum values 
for each attribute from the training set, and then when 
fuzzifying the test set, if there is a lower or a higher value 
than these limits, they are set up to 0 or 1, respectively.

We implemented KNN, SVM, AdaBoost (using Deci-
sion Trees as base estimator), RF, LGBM, XGB, LR, and 
DT classifiers with the library Scikit-Learn [45]. We can 
do a grid search to find a model’s best hyperparameters 
with a function from this library. The options provided 
for the search are in Table 3.

We performed GP classifiers with the library gplearn 
0.4.1, which is compatible with Scikit-learn; we can do 
a grid search with the previously mentioned function. 
Finally, we used ponyGE2 0.2.0 to carry out GE classifi-
ers, but that library is not compatible with Scikit-learn. 
Because of that, we developed a new interface that allows 
us to use Scikit-learn functions [46]. Table 3 also shows 
the options provided to GP and GE hyperparameters.

We used arithmetic functions when performing GP 
with normalized data. In this case, the model’s output 
results from the tree transformed through a sigmoid 
function. When performing it with fuzzy data, we used 
the functions shown in Table  1, and the output of the 
model is directly the result of the tree. Finally, we defined 
the grammar shown in Fig. 5 for the use of GE, in which 
rules (I)–(IV) are used in experiments with normalized 
data and rules (V)–(X) in those with fuzzy data.

Thirdly, we included a feature selection technique and 
rerun every procedure of experiment 2. We used a recur-
sive feature elimination to select the optimal subset of 
features. It is a backward method, in which the search 
starts with all features, eliminating at each iteration the 
one whose removal presents the most negligible loss of 
information. We put the same hyperparameters in the 
grid in Table  3 and another one, which is the number 

of features to select. There are 16 FOT indexes in total, 
so we put options 1–15 for that hyperparameter, except 
in GP and GE experiments. For these, we put only three 
alternatives (4, 8, 12) due to their execution time. In 
experiments with fuzzy data, there are 48 features, so we 
put options 1–47, except in GP and GE experiments, in 
which there are just three alternatives (12, 24, 36) again.

Employing feature selection to obtain a subset of the 
optimal features contributes to avoiding overfitting, 
especially in works with a small dataset like ours. Since 
reducing the number of features simplifies the model, 
our principal interest in feature selection is to achieve a 
better performance in the classification. However, experi-
ment 3 can also contribute to explaining the results by 
observing which features are selected most often. Each 
experiment consists of ten sub-experiments. As we use 
nine algorithms, each analysis shows 90 results in the fea-
ture selection. From these results, we can know which are 
the essential features. We elaborated 3D plots with the 
three most frequent ones in each analysis to evaluate the 
visual separation between classes.

We disclosed our code as well as its respective results 
on https://​github.​com/​danozu/​sarco​idosis. All experi-
ments were performed using a random seed equal to 7, 
which means that their results can be easily reproduced.

Table 3  Hyperparameters for grid search

Classifier Hyperparameters for 
tuning

Options

KNN Number of neighbors 1, 3, 5, 7, 9, 11, 13

SVM Regularization parameter 1, 2, 5, 7, 10, 50, 100, 200, 400

Kernel coefficient 0.001, 0.01, 0.05, 0.1, 1

AdaBoost Number of base estimators 10, 30, 60, 100, 200, 400

Max depth of base estima-
tors

1, 2, 3, 4, 5, 10, 15, 30, 60

RF Number of estimators 10, 30, 60, 100, 200, 400

Max depth of estimators 1, 2, 3, 4, 5, 10, 15, 30, 60

LGBM Number of estimators 1, 2, 3, 4, 5, 10, 15, 30, 60

Max depth of estimators 10, 30, 60, 100, 200, 400

XGB Number of estimators 1, 2, 3, 4, 5, 10, 15, 30, 60

Max depth of estimators 10, 30, 60, 100, 200, 400

LR Regularization parameter 0.001, 0.01, 0.1, 1, 10, 100, 1000

DT Max depth 2, 3, 4, 5, 10, 50

Criterion ‘gini’, ‘entropy’, ‘log_loss’

Splitter ‘best’, ‘random’

GP Population size 100, 300, 500, 1000, 3000

Number of generations 20, 50, 100, 200

Initial depth (2–2), (2–6)

Tournament size 2, 7, 20

GE Population size 100, 300, 500, 1000, 3000

Number of generations 50, 100, 200

https://github.com/danozu/sarcoidosis
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Statistics
Initially, the sample distribution characteristics were 
assessed using Shapiro–Wilk’s test. Since data were non-
normally distributed, non-parametric analyses (Mann–
Whitney test) were performed. Differences with p ≤ 0.05 
were considered statistically significant. These analyses 
were performed using R version 4.0.5 (R Foundation for 
Statistical Computing, Vienna, Austria).

Results
The studied subjects’ biometric and spirometric charac-
teristics are described in Table 4. With the exception of 
the height, the demographics show no significant dif-
ferences, which decreases the potential confounding by 
demographics.

Figure  6 shows the boxplots of the resistive features 
used in this work. A similar analysis for the reactive 

features is presented in Fig.  7, while Fig.  8 shows the 
results obtained from the eRIC model.

When comparing the control group with the sarcoido-
sis and normal spirometry group, we have found no sig-
nificant changes (p > 0.05) in the features S, R20, R4–R20, 
Xm, R, I, and C. Otherwise, Ax and Rt presented the best 
p-values (p < 0.001). When analyzing the control group 
with sarcoidosis and the altered spirometry group, there 
were no significant changes (p > 0.05) just in I. While 
the best p-values (p < 0.001) were found in R0, R4, Xm, 
Fr, Cdyn, Ax, Z4, and Rt. When examining individuals 
with sarcoidosis, we have found no significant changes 
(p > 0.05) between groups with normal and altered 
spirometry in most features, except Xm and Fr.

Fuzzifying data can improve the comparisons 
described in the previous section with new observations. 
As the fuzzification scheme in Fig. 3 triples the number 
of features, since we add the membership values obtained 

(I) <e> ::= <op>(<e>, <e>) | <op>(<e>, <c>) | x[<idx>]
(II) <op> ::= add | mul | sub | pdiv
(III) <idx> ::= GE_RANGE:dataset_n_vars
(IV) <c> ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9

(V) <e> ::= <f1>(<e>, <e>, <c>) | <f2>(<e>, <e>) | <f3>(<e>)
| x[<idx>] | <c>

(VI) <f1> ::= WA | OWA
(VII) <f2> ::= minimum | maximum
(VIII) <f3> ::= dilator | concentrator
(IX) <idx> ::= GE_RANGE:dataset_n_vars
(X) <c> ::= 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9

Fig. 5  Grammar used by GE

Table 4  Demographic and spirometric characteristics of the studied subjects

Control (n = 25) Sarcoidosis and normal 
spirometry (n = 24)

Sarcoidosis and altered 
spirometry (n = 23)

ANOVA p

Age (years) 59.1 ± 10.5 48.6 ± 11.2 47.8 ± 11.2 ns

Body mass (kg) 67.6 ± 15.1 68.2 ± 13.2 73.4 ± 15.5 ns

Height (m) 1.6 ± 0.1 1.6 ± 0.1 1.7 ± 0.1 0.019

BMI (kg/m2) 26.7 ± 5.0 26.8 ± 5.2 26.3 ± 4.5 ns

Male/Female 6/19 5/19 9/14 –

FVC (L) 3.1 ± 0.9 3.1 ± 0.8 3.2 ± 1.4 ns

FVC (%) 100.2 ± 20.3 99.2 ± 18.1 86.2 ± 28.8 ns

FEV1 (L) 2.5 ± 0.7 2.5 ± 0.7 2.2 ± 0.9 ns

FEV1 (%) 100.0 ± 21.3 96.4 ± 17.8 74.5 ± 23.8 0.0001

FEV1/FVC 80.3 ± 6.5 80.6 ± 6.8 72.0 ± 8.5 0.0001

FEV1/FVC (%) 99.8 ± 7.1 97.8 ± 8.3 87.3 ± 9.6 0.0001

FEF25–75% (L) 2.7 ± 1.2 2.9 ± 1.1 1.7 ± 0.7 0.0003

FEF25–75% (%) 110.7 ± 45.9 96.6 ± 44.0 51.0 ± 19.6 0.0001
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Fig. 6  Boxplots of the resistive parameters and their respective p-values
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Fig. 7  Boxplots of the reactive parameters and their respective p-values
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Fig. 8  Boxplots of the results obtained using the eRIC model and their respective p-values
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by the feature in each fuzzy set. Therefore, we decided 
not to present boxplots for fuzzy data. Table 5 shows the 
fuzzy features that present significant changes (p < 0.05) 
between groups, while Table  6 presents the quantity of 
non-zero values in the fuzzy features.

We analyzed each FOT parameter individually to test 
its performance in the classification of groups. Figure  9 
shows the results. In the control group versus sarcoido-
sis (altered) analysis, the best FOT parameter (BFP) was 
Fr, followed by Ax and Rt, which presented AUC equal to 
0.87, 0.87, and 0.82. In the analysis with normal spirom-
etry, no feature achieved an AUC greater than 0.80. The 
BFPs were Ax and Rt, both with AUC equal to 0.79.

Figure 10 shows the results of experiment 2 with both 
normalized and fuzzy data. Firstly, using normalized data 
in the control group vs. sarcoidosis (altered) analysis, the 
best results were XGB, ADAB, and LGR, which presented 
AUC equal to 0.94, 0.90, and 0.89, respectively. While 
in the analysis with normal spirometry, no algorithm 
achieved an AUC greater than 0.90, the best ones XGB 
and LGR, presented AUC equal to 0.88 and 0.85.

Next, using fuzzy data, we can see in the control group 
vs. sarcoidosis (altered) analysis that the best result was 
with XGB, which presented AUC equal to 0.93, followed 
by ADAB, with AUC equal to 0.89. In the analysis with 
normal spirometry, no algorithm presented an AUC 
greater than 0.85. Again, XGB was the best method, 
showing AUC equal to 0.85.

Figure 11 shows the results of experiment 3 with both 
normalized and fuzzy data. Concerning the perfor-
mance with all features, the main improvements refer 
to the KNN performance in the analysis with altered 
spirometry and RF with normal spirometry, both using 
fuzzy features.

Table 5  Fuzzy features with significant changes between groups. Note that Control versu s Sarcoidosis (altered) presents 33 features 
distributed in two columns

Control versus Sarcoidosis (normal) Control versus sarcoidosis (altered)

Feature p-value Feature p-value Feature p-value

Ax_low 0.00007 Ax_low 0.0000068 C_high 0.0036

Ax_medium 0.00007 Fr_low 0.000012 Rp_low 0.0039

Rt_low 0.00024 Ax_medium 0.000065 Rm_low 0.0042

Cdyn_low 0.0015 Rt_low 0.00014 S_high 0.006

Rt_medium 0.0023 Fr_high 0.0003 Rm_high 0.0077

Z4_low 0.003 Cdyn_low 0.00056 R4-R20_medium 0.0084

Z4_medium 0.0035 Z4_low 0.00068 Rt_medium 0.009

Fr_low 0.0067 Z4_high 0.00069 Z4_medium 0.011

Cdyn_medium 0.0072 Xm_high 0.0011 Xm_low 0.012

R_low 0.019 R0_low 0.0016 R4_high 0.015

Fr_medium 0.022 R4_low 0.0019 R4-R20_high 0.016

R0_low 0.028 Rt_high 0.0023 I_high 0.016

R4_low 0.028 C_low 0.0025 S_low 0.016

C_low 0.039 R0_high 0.003 R_low 0.017

C_medium 0.049 Cdyn_medium 0.0031 C_medium 0.029

Rp_medium 0.0032 Fr_medium 0.034

R4-R20_low 0.0034

Table 6  Quantity of non-zero values in the fuzzy features

Feature Qty Feature Qty Feature Qty

R0_low 55 R4-R20_medium 70 Z4_high 11

R0_medium 70 R4-R20_high 7 R_low 54

R0_high 17 Xm_low 11 R_medium 70

S_low 6 Xm_medium 70 R_high 19

S_medium 70 Xm_high 61 Rp_low 69

S_high 66 Fr_low 59 Rp_medium 70

Rm_low 55 Fr_medium 70 Rp_high 3

Rm_medium 70 Fr_high 13 Rt_low 58

Rm_high 17 Cdyn_low 67 Rt_medium 70

R4_low 57 Cdyn_medium 70 Rt_high 14

R4_medium 70 Cdyn_high 5 I_low 49

R4_high 15 Ax_low 68 I_medium 70

R20_low 53 Ax_medium 70 I_high 23

R20_medium 70 Ax_high 4 C_low 61

R20_high 19 Z4_low 61 C_medium 70

R4-R20_low 65 Z4_medium 70 C_high 11
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For experiments 2 and 3, we also provided the ROC 
curves as supplementary material. These graphs can be 
found in https://​github.​com/​danozu/​sarco​idosis/​tree/​
master/​resul​ts/​ROC_​curves.

It is worth mentioning that the first performance in 
the analysis with normal spirometry shows AUC ≥ 0.90, 
which we achieved with the XGB using fuzzy features.

We can further explain the results by observing which 
attributes are selected most frequently. According to our 
experimental scheme, we did each analysis with ten sub-
experiments. Thus, with nine methods and two analyses 
each, a total of 180 sub-experiments were carried out to 
present the results with normalized data and the same 
amount for fuzzy data. Table 7 displays the percentage of 
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Fig. 9  Results of experiment 1

https://github.com/danozu/sarcoidosis/tree/master/results/ROC_curves
https://github.com/danozu/sarcoidosis/tree/master/results/ROC_curves
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selection of each normalized feature in the respective 270 
experiments, while Table 8 shows the percentage of selec-
tion of the most frequent fuzzy features in each analysis.

In order to develop a visual and intuitive analysis of 
the differences between the groups, we used the three 
most frequent ones shown in Tables 7 and 8 to create 3D 
graphics, as presented in Fig. 12.

To corroborate the results shown in Tables 7 and 8, we 
picked the weights for each feature in the LR experiments 
and calculated the average. The features with the most 
significant averages in absolute values in experiment 

2 were Ax, Fr, and Cdyn for normal spirometry and nor-
malized data; Fr, Ax, and Cdyn for altered spirometry and 
normalized data; Xm_low, C_high, and Ax_low for nor-
mal spirometry and fuzzy data; and Fr_low, Fr_high and 
I_medium for altered spirometry and fuzzy data. These 
are the essential features according to the LR experi-
ments. The results for all features are in https://​github.​
com/​danozu/​sarco​idosis/​tree/​master/​resul​ts/​LR_​featu​
res_​weigh​ts_​avera​ge.

We also made public the expressions generated 
by interpretable models (DT, GP, and GE) for each 
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(b) Fuzzy data
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Fig. 10  Results of experiment 2

https://github.com/danozu/sarcoidosis/tree/master/results/LR_features_weights_average
https://github.com/danozu/sarcoidosis/tree/master/results/LR_features_weights_average
https://github.com/danozu/sarcoidosis/tree/master/results/LR_features_weights_average
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experiment in https://​github.​com/​danozu/​sarco​idosis/​
tree/​master/​resul​ts/​Inter​preta​ble_​expre​ssions. Then, 
we carried out a comparison between the results from 
the LR experiments with these results. For this, we nor-
malized between the minimum and maximum of the 
absolute values found in the LR experiments and nor-
malized the number of times each feature was used in 
the expressions found as final solutions in the DT, GP, 
and GE experiments. This comparison is presented in 
Figs. 13 and 14.

From Fig. 10, we know that for normalized data, the 
interpretable model with the best accuracy was DT 
for experiments with altered spirometry and GE for 
experiments with normal spirometry. However, in both 
cases, the experiments with LR presented better accu-
racy. Analyzing Fig. 13, the most significant differences 
between LR and DT results are related to frequent use 
of Fr, Cdyn, and Rt by LR, while DT presented a more 
frequent use of S and Rp. At the same time, analyz-
ing Fig.  14 to compare LR to GE, the most significant 
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(b) Fuzzy data
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Fig. 11  Results of experiment 3

https://github.com/danozu/sarcoidosis/tree/master/results/Interpretable_expressions
https://github.com/danozu/sarcoidosis/tree/master/results/Interpretable_expressions
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differences are related to more frequent use of Fr, Cdyn, 
R, and C by LR.

Discussion
To the best of our knowledge, this is the first study to 
develop ML classifiers to assist in the diagnosis of res-
piratory changes associated with sarcoidosis based on 
FOT exams. The results showed that automatic classifiers 
could increase sarcoidosis diagnosis accuracy, especially 
in individuals with normal spirometry. Genetic Pro-
gramming and Grammatical Evolution were particularly 

beneficial because they provide intelligible expressions to 
make the classification.

The three studied groups were of comparable age, 
weight, and BMI, showing only small differences in 
height (Table 4). The modifications in spirometric param-
eters were consistent with previous studies [3, 47, 48] 
showing reduced values in sarcoidosis.

Respiratory changes observed in Figs.  4 and 5 were 
consistent with previous studies from our group [49] and 
studies using impulse oscillation systems (IOS) to evalu-
ate the association of respiratory impedance, pulmonary 
function, and airway wall thickness [45]. They were also 
in line with the use of IOS to evaluate lung capacity dete-
rioration in sarcoidosis [46].

The results presented in Table 5 demonstrate that fuzz-
ification can contribute to the explanation of the results 
by looking at the importance of a feature, observing how 
many times the models choose that particular feature. 
For example, we realized that Fr is relevant in diagnos-
ing sarcoidosis, both with normal and altered spirometry. 
We learned that the fuzzy feature Fr_high is important 
in the analysis with altered spirometry and not with the 
normal one with fuzzification. Intrinsically, some piece 
of information in that term is perceived, i.e., there are 
few individuals with high Fr in the control and normal 
spirometry groups. Indeed, we can see that its highest 
values are concentrated in the group with altered spirom-
etry when analyzing the Fr boxplot in Fig. 7. Also, we can 
observe in Table  8 that this fuzzy feature is chosen by 
the feature selection mechanisms 86% of the time, which 
indicates that it is indeed an important feature. We can 
do the same observation regarding Rt, which is relevant 
in diagnosing sarcoidosis, both with normal and altered 
spirometry, but Rt_high is not relevant in the analysis 
with normal spirometry.

Another observation is that several fuzzy features have 
a lower p-value when compared to their respective FOT 
features, denoting greater significant changes between 
the groups. For example, between control and sarcoido-
sis (altered) groups, I presented p = 0.62, being the worst 
feature, while high_I presented p = 0.016 in the same 
analysis. Likewise, C presented p = 0.054 in the analysis 
with normal spirometry, while C_low and C_medium 
presented, respectively, p = 0.039 and p = 0.049. We can 
understand that a concentration of relevant information 
in certain fuzzy features reduces or eliminates outliers’ 
influence. In this case, the fuzzy features C_low and C_
medium provide a better description of the values of the 
FOT feature C. In this way, we can also understand why 
there are almost no features with their respective three 
fuzzy features in Table  5. There is none in the analysis 
with normal spirometry, and in the analysis with altered 
spirometry, there are only five (Fr, Rt, Z4, C, and R4–R20).

Table 7  Percentage of selection of normalized features

Feature Control versus sarcoidosis 
(normal) (%)

Control versus 
sarcoidosis (altered) 
(%)

R0 26 43

S 24 14

Rm 79 54

R4 26 76

R20 20 21

R4–R20 63 74

Xm 76 69

Fr 80 94

Cdyn 84 90

Ax 91 29

Z4 44 31

R 74 36

Rp 49 66

Rt 99 94

I 59 61

C 80 64

Table 8  Percentage of selection of fuzzy features

Control versus sarcoidosis 
(normal spirometry)

Control versus sarcoidosis 
(altered spirometry)

Feature Percentual (%) Feature Percentual 
(%)

Rt_low 89 Fr_low 99

Ax_low 84 I_medium 93

Fr_low 81 Fr_high 86

I_medium 80 C_high 79

I_low 77 I_low 66

C_high 77 Ax_low 63

Rm_low 76 C_medium 49

Rp_medium 69 Ax_medium 43

Rp_low 67 Rp_medium 39

Xm_low 66 R_medium 31

Ax_medium 56 R4-R20_medium 29
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The quantity of non-zero values in the fuzzy features 
described in Table  6 can be interpreted as measuring 
the amount of information present in each fuzzy fea-
ture. According to the fuzzification scheme presented 
in Fig.  3 which describes the fuzzification of a feature 
call X, we were already expecting that X_medium had 
70 non-zero values. There are 72 samples in our dataset, 
and only the highest and the lowest values of each fea-
ture have no membership value in X_medium, present-
ing value 1 in X_high and X_low. Additionally, if a feature 
X were equally distributed, above and below its average, 
so X_low and X_high would have each one around 36 
non-zero values. However, no feature comes close to this 
quantity due to their irregular data distribution, as seen 
in the boxplots. In extreme cases, notably R, Ax, Cdyn, S, 
and R4–R20, we can explain it by their respective box-
plots, in which these features are the ones that have the 
outliers more distant from the mean values. For example, 

in S, this leads to a S_min much smaller than the S’s aver-
age, and therefore few samples will have membership 
value in S_low. In the other mentioned cases, outliers 
much higher than the features’ average lead to a too high 
X_max, allowing few samples with membership values in 
X_high. The same occurs, to a lesser extent, with other 
features, so that many fuzzy features may be irrelevant. 
While this may appear to be a problem, it can be help-
ful in models with a feature selection step or methods 
with an embedded feature selection, such as the classifi-
ers synthesized by GP or GE. When fuzzifying a feature, 
it is true that it projects the data in a higher dimension 
space since one feature is now represented by three fea-
tures in this new space. However, if one can be irrelevant, 
the other two’s quality can be even higher than that of the 
original one since they have less information from outli-
ers. For example, the Ax’s highest outlier has a member-
ship value of 1 in Ax_high and 0 in the others, while the 

Fig. 12  Data representation with the three main features. Control group x sarcoidosis with normal spirometry using normalized (A) and fuzzy (B) 
data. Control group x sarcoidosis with abnormal spirometry using normalized (C) and fuzzy (D) data
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Fig. 13  Comparison between the importance of the features according to Logistic Regression, decision trees, genetic programming and 
grammatical evolution for experiments with altered spirometry
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Fig. 14  Comparison between the importance of the features according to Logistic Regression, decision trees, genetic programming and 
grammatical evolution for experiments with normal spirometry
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rest of the samples have their information concentrated 
in Ax_low and Ax_medium. Even the other three sam-
ples, which have a non-zero membership value in Ax_
high, also have a value in Ax_medium, influencing the 
results even if Ax_high is discarded.

Indeed, in terms of the p-values, we can observe 
extremely low p-values in some features. Ax stood out 
in the control group vs. sarcoidosis (normal) analysis 
(Fig.  7D p = 0.00007) and in the control group vs. sar-
coidosis (altered) analysis (p = 0.0000013). When fuzzi-
fying, it continued to stand out in both analyses with 
Ax_low (p = 0.00007 and p = 0.0000068, respectively) 
and Ax_medium (p = 0.00007 and p = 0.000065, respec-
tively), while Ax_high did not present significant changes 
between the groups (p = 0.33 and p = 0.069, respectively), 
being one of the worst features in this assessment. It indi-
cates that the fuzzy features better represent the range 
of values that are useful for class discrimination. The 
same observations can be made with Rt (p = 0.00011 
and p = 0.000049, respectively), becoming Rt_low 
(p = 0.00024 and p = 0.00014, respectively), and with 
Cdyn (p = 0.0012 and p = 0.00037, respectively), becom-
ing Cdyn_low (p = 0.0015 and p = 0.00056, respectively), 
among others.

In the first experiment (Fig. 9), we analyzed each FOT 
parameter individually to test its performance to distin-
guish between groups. When identifying patients with 
sarcoidosis and altered spirometry, the best FOT param-
eters (BFPs) were Fr and Ax, which presented AUC equal 
to 0.87. The BFPs were Ax and Rt in the normal spirom-
etry cases, both with AUC equal to 0.79. These results 
agree with Figs. 4, 5, 6, in which these features obtained 
the most significant changes in the cited comparisons. 
These results contrast with previous analysis suggest-
ing that the best feature to identify respiratory changes 
associated with sarcoidosis in individuals with altered 
spirometry was Z4, followed by R0 and Rm, while in 
individuals with normal spirometry, the best feature was 
R0 [49]. It is worth mentioning that this previous work 
did not analyze the eRIC model. In the present work, we 
included other features; some of them have shown prom-
ise, especially Ax and Rt.

In the second experiment (Fig.  10), we used auto-
matic classifiers to check if they could improve accu-
racy over BFPs. We observed that XGB, AdaBoost, and 
LGR achieved a higher accuracy with altered spirome-
try and normalized data. The same occurred with XGB, 
RF and AdaBoost when using fuzzy data. We verified 
that XGB, AdaBoost, LGR, GE, RF, and SVM achieved 
a higher accuracy with normal spirometry and normal-
ized data. The same occurred with XGB, RF, AdaBoost, 
SVM, and LGR when using fuzzy data. Data in Fig.  9 

demonstrates that many automatic classifiers incre-
mented the accuracy of sarcoidosis diagnosis. Some of 
them achieved high accuracy (AUC > 0.90).

In addition to correctly supporting a diagnosis 
achieving high accuracy, GP, an interpretable method, 
can also help to understand a bit more about sarcoido-
sis from intelligible expressions. For example, the 
expression WA (Fr_medium, Fr_high, I_medium) is an 
actual final GP individual from our experiments with 
fuzzy data, which achieved AUC equal to 0.94 in identi-
fying patients with altered spirometry. That expression 
means the average between Fr_medium and Fr_high, 
weighted by I_medium. Thus, if I_medium is greater 
than 0.5, Fr_medium has more influence on the result, 
else Fr_high is more influential.

An example from our experiments using GE to iden-
tify patients with normal spirometry is add(mul(Ax, 0.7), 
sub(Rt, Rm)), which achieved AUC equal to 0.84. That 
expression means (0.7 × Ax + Rt − Rm), which is easy to 
understand. Regarding our experiments with FPTs, an 
example of solution is OWA (concentrator(Rp_medium), 
Ax_medium, 0.6), which is the same as 0.6 × max(Rp_
medium2, Ax_medium) + 0.4 × min(Rp_medium2, 
Ax_medium). Most of the final individuals in our experi-
ments using GP or GE are tiny because our experimen-
tal scheme is directed to achieve generalization. Since we 
have a small dataset, the GP or GE individuals must be 
simple individuals to reach generalization. This is a cru-
cial point since sarcoidosis is a rare disease. Hence, it was 
tough to collect this small dataset. It is important to note 
that the explainable models achieve similar performance. 
LR is a less complex model, so that it can deal with a small 
number of samples. In the other explainable methods, we 
restricted the size of the trees to generate less complex 
models to avoid the overfit that might make it difficult 
to generalize the results. As in the comparisons between 
groups with FOT features, the number of features with 
significant changes (p < 0.05, Table  5) is much higher 
between the control and sarcoidosis groups with altered 
spirometry. We were already expecting more evident res-
piratory changes between these groups. When compar-
ing the control group with the sarcoidosis and normal 
spirometry group, we have found significant changes 
(p < 0.05) in 15 features, and Ax_low, Ax_medium, 
and Rt_low presented the best p-values (p < 0.001). It is 
worth noting that significant changes were observed in 
R_low, C_low, and C_medium, changes which were not 
observed in the respective original features. It is impor-
tant to note that when we are dealing with the fuzzy fea-
tures, we are actually comparing the membership values 
that the features has in each fuzzy. This membership val-
ues are numbers that go from 0 to 1 and therefore they 
can be compared to obtain the p-values.
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When analyzing the control group with sarcoidosis and 
altered spirometry group, there were significant changes 
(p < 0.05) in 33 features (Table  5), and Ax_low, Fr_low, 
Ax_medium, Rt_low, Fr_high, Cdyn_low, Z4_low, Z4_
high presented the best p-values (p < 0.001). Likewise, it 
is worth noting that significant changes were observed in 
I_high, while the same did not occur when we analyzed I.

In the third experiment (Fig.  10), we used a feature 
selection technique to verify if it could improve accuracy 
over BFPs and bring more interpretability. We verified 
that XGB and RF achieved higher accuracy in conditions 
of altered spirometry and normalized data. The same 
occurred with RF, AdaBoost, and XGB when using fuzzy 
data. We verified that XGB, AdaBoost, LGR, GE, RF, and 
SVM achieved a higher accuracy with normal spirometry 
and normalized data. The same occurred with RF, SVM, 
XGB, and LGR when using fuzzy data. These results dem-
onstrate that the feature selection incremented the accu-
racy in sarcoidosis diagnosis with several methods. Some 
of them achieved high accuracy (AUC > 0.90), including 
in the analysis in patients with normal spirometry, which 
happened twice.

From Table  7, we observed in control vs. sarcoido-
sis (normal) that the most frequent features were Rt, Ax, 
and Cdyn, which were precisely the three best in the indi-
vidual experiment (Fig.  9). Likewise, in control vs. sar-
coidosis (altered) analysis, the most frequent ones were 
Rt, Fr, and Cdyn, which are also among the best ones in 
the individual experiment (Fig. 9). However, Ax was the 
best in the individual one, and in this one was selected a 
few times. Although relevant individually, we can assume 
that a specific feature can contribute little when com-
bined with others. On the contrary, I was the worst in the 
two analyses and appeared far above the least frequent 
in this experiment. It is worth noting that the number 
of features selected in each experiment is a hyperpa-
rameter included in the grid search, which varies from 1 
to 15 in experiments with normalized data and 1–47 in 
those with fuzzy data, except in the cases of GP and GE, 
due execution time. We tried with 4, 8, or 12 normalized 
features and 12, 18, or 24 fuzzy features in these experi-
ments. Thus, without pre-establishing the number of 
features, they are not selected beyond the minimum nec-
essary. Therefore, observing the frequency of a particular 
feature in the experiments becomes something more rel-
evant to the results’ explanation. It is interesting to note 
that the backward method can eliminate an essential fea-
ture at the beginning when the contribution of each one 
to the performance is low.

From Table 8, we observed in control vs. sarcoidosis 
(normal) analysis that the most frequent features were 
Rt_low and Ax _low, which in Table  5 were among 

those with best p-values (p < 0.001), followed by Fr_low, 
which also had significant changes (p < 0.01). In control 
vs. sarcoidosis (altered) analysis, Fr_low, I_medium, 
and Fr_high were the most frequent. The first and the 
third ones were among those with the best p-values 
(p < 0.001) in Table  5, while the second one did not 
even show significant changes (p > 0.05). As in the pre-
vious analysis, we can assume that a specific feature 
can contribute much when combined with others, 
even though it is weak individually. The results when 
using fuzzification were, in general, close in compari-
son to experiments in which it was not used. However, 
there is a contribution to the explanation of the results, 
because as seen, the fuzzy terms bring more informa-
tion intrinsically.

The use of the three most frequent parameters shown 
in Tables  7 and 8 to create 3D graphics is presented 
in Fig. 12. As can be seen, it is hard to design a simple 
separation surface in conditions of normal spirometry 
(Fig.  12A, B). This discrimination is more straightfor-
ward in patients with altered spirometry (Fig. 12C, D). 
In this case, most of the data is slightly separated into 
different classes, especially using fuzzy data (Fig. 12D).

The best performances rose from 0.79 (Fig.  9B) to 
0.91 (Fig.  11B) in normal spirometry and from 0.87 
(Fig. 9A) to 0.94 (Fig. 10A) in the analysis with altered 
spirometry. Compared with previously published stud-
ies, this represents an improvement in AUC similar to 
that previously observed using automatic classifiers in 
other diseases and conditions performed by our group 
[22, 24, 25]. They were also similar to previous works of 
other researchers describing improvements in the diag-
nostic accuracy of respiratory exams based on mag-
netic resonance [50], spirometry [51], and pulmonary 
sounds [52].

Previous research has established that diagnostic 
easiness is a fundamental attribute for occupied non-
specialist clinicians [53]. Studies in radiology [54], oph-
thalmology [55], and cardiology [56] have shown that 
ML methods may contribute to improving the medical 
service by AI-assisted workflow. The present study con-
firms and extends these findings to respiratory physi-
ology showing that machine learning algorithms help 
diagnose respiratory abnormalities in sarcoidosis. That 
is especially true in patients with normal spirometry 
because the identification is more complicated, with-
out any feature in the individual experiment reaching 
an AUC of 0.80. In addition, of the exploration of the 
importance of features in the several experiments can 
contribute to identification of the more discriminative 
features to identify patients with sarcoidosis and to 
contribute to better comprehension of the disease.
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Conclusion
A clinical decision support system for the automatic 
diagnosis of respiratory abnormalities in patients with 
sarcoidosis was developed in the present study. This was 
the first study to propose such a system and evaluate its 
performance in sarcoidosis.

The best results for each attribute in the classification 
of the groups achieved only moderate accuracy in normal 
and altered spirometry. In close agreement with previ-
ous results, the use of ML methods resulted in increased 
performance, resulting in high diagnostic accuracy in 
patients with normal and abnormal spirometric exams.

The proposed system promises to provide decision 
support for clinicians when they are struggling to give 
a confirmed clinical diagnosis. Clinicians may reference 
the prediction results and make better decisions, improv-
ing the productivity of pulmonary function services by 
ML-assisted workflow.
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