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Abstract

Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting around 8 million

people worldwide. After host cell invasion, the infective trypomastigote form remains 2–4

hours inside acidic phagolysosomes to differentiate into replicative amastigote form. In vitro

acidic-pH-induced axenic amastigogenesis was used here to study this step of the parasite

life cycle. After three hours of trypomastigote incubation in amastigogenesis promoting

acidic medium (pH 5.0) or control physiological pH (7.4) medium samples were subjected to

three rounds of centrifugation followed by ultrafiltration of the supernatants. The resulting

exoproteome samples were trypsin digested and analysed by nano flow liquid chromatogra-

phy coupled to tandem mass spectrometry. Computational protein identification searches

yielded 271 and 483 protein groups in the exoproteome at pH 7.4 and pH 5.0, respectively,

with 180 common proteins between both conditions. The total amount and diversity of pro-

teins released by parasites almost doubled upon acidic incubation compared to control.

Overall, 76.5% of proteins were predicted to be secreted by classical or non-classical path-

ways and 35.1% of these proteins have predicted transmembrane domains. Classical

secretory pathway analysis showed an increased number of mucins and mucin-associated

surface proteins after acidic incubation. However, the number of released trans-sialidases

and surface GP63 peptidases was higher at pH 7.4. Trans-sialidases and mucins are

anchored to the membrane and exhibit an enzyme-substrate relationship. In general,

mucins are glycoproteins with immunomodulatory functions in Chagas disease, present

mainly in the epimastigote and trypomastigote surfaces and could be enzymatically cleaved

and released in the phagolysosome during amastigogenesis. Moreover, evidence for fla-

gella discard during amastigogenesis are addressed. This study provides the first compara-

tive analysis of the exoproteome during amastigogenesis, and the presented data evidence

the dynamism of its profile in response to acidic pH-induced differentiation.
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Introduction

Trypanosoma cruzi is the etiologic agent of Chagas disease in Central and South America, with

more than 10,000 deaths annually worldwide [1]. An increasing number of cases are being

reported in non-endemic regions including the United States and Europe due to intense

migration of individuals from endemic areas of Latin America [2–6]. In humans, T. cruzi
infection usually develops from an acute phase characterized by high parasitemia and a robust

immune response, into a clinically variable chronic phase. In the absence of treatment during

the chronic phase, parasite proliferation is highly contained by a humoral and cellular immune

response. However the infection remains persistent, particularly in the myocardium and

smooth muscle, which may lead to the development of cardiac and digestive complications

[7,8]. The treatment of Chagas disease is currently based around chemotherapy, since no effec-

tive vaccine is available. Only two drugs are available: nifurtimox and benznidazole. Benznida-

zole is considered the first-line treatment in most countries due to its effectiveness for the

treatment of acute, congenital, reactive and early chronic infections. In many cases, this drug

is able to reduce disease progression, but the high toxicity has the potential to cause serious

side effects, leading to interruption of patient treatment. Additionally, the low efficacy of the

current drugs is low in adult patients with the chronic disease [9,10].

In order to carry out its lifecycle, infective T. cruzi trypomastigotes invade nucleated mam-

malian host cells and differentiate intracellularly into replicative amastigote forms (amastigo-

genesis). After internalization, trypomastigotes remain 2–4 h inside acidic phagolysosomes

[11], escaping into the host cell cytoplasm to complete its differentiation. To facilitate the

escape process, the parasite recruits trans-sialidase proteins and release pore-forming mole-

cules called Tc-TOX [12,13]. It has also been recently reported that T. cruzi infection blocks

the expression of host cell immunoproteasome subunits, proteasome activator protein PA28b,

TAP1 and MHC class I molecule by an unknown posttranscriptional control [14]. This indi-

cates that trypomastigotes release proteins and/or other molecules in response to processes

caused by or following the differentiation induction.

The secreted/excreted protein repertoire (here generically referred as exoproteome) plays

important roles in homeostasis, immune response, development, proteolysis, adhesion, cell

proliferation, cell differentiation, morphogenesis and cellular communication [15]. Further-

more, secreted/excreted proteins account for approximately 10% of the proteins encoded by a

genome [15–18]. Trypomastigotes are able to release membranous vesicles filled with virulent

factors such as trans-sialidases [19,20]. It is these extracellular vesicles that have been shown to

be involved in the pathogenesis of Chagas disease by increasing heart parasitism and inflam-

mation [20].

Classically secreted proteins can be identified by the presence of an N-terminal cleavable

signal peptide (SP) that is typically 15–30 amino acids long. Furthermore, a class of secretory

proteins, known as leaderless proteins, is exported from the cell without signal sequences

through non-classical secretion pathways. For example cell surface shedding and inclusion

into exosomes and other secretory vesicles [21], or even release from the plasma membrane

through the enzymatic cleavage of their lipid anchor [22].

The acidic milieu is a key step in triggering amastigogenesis and parasite molecular

response during this process and has been studied through high-throughput quantitative

proteomic and phosphoproteomic approaches [23]. Queiroz and colleagues, analysing intra-

cellular proteins 2 hours after induction, reported the overexpression of several proteins pre-

dicted to be secreted, indicating an increase in vesicular traffic. This observation leads us to

hypothesize a change in parasite exoproteome repertoire after acidic-pH induction. To address

this hypothesis, we evaluate the exoproteome changes of T. cruzi trypomastigote upon the first
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three hours of acidic-pH-induced axenic amastigogenesis compared to the exoproteome of

trypomastigote incubated at physiological pH for the same period.

Materials and methods

Trypomastigote cell culture

Trypomastigotes, Y strain [24], were maintained in monolayers of HeLa cells grown in

DMEM supplemented with 5% fetal bovine serum, at pH 7.4, according to [25,26]. The para-

sites of the outbreak from the 4th to 5th day after infection were carefully collected from the

supernatant, consisting of over 98% trypomastigotes [26].

Exoproteome samples

Trypomastigote cells were washed 3 times with DMEM, pH 7.4, without serum, by centrifuga-

tion at 2,500 × g for 10 min. Then, 1.0 × 109 washed parasites were resuspended in 5 mL

DMEM without serum at pH 7.4 or pH 5.0, (2.0 × 108 cells/mL final concentration) and incu-

bated in a 25 cm2 culture flasks at 37˚C for 3 h with gently shaking every 20 min. After incuba-

tion, the parasites motility was microscopically monitored and the samples were collected only

if ~ 95% of the cells remained mobile [27]. For pH 7.4 we obtained samples in duplicate and

for pH 5.0 in triplicate. In order to remove cells following incubation, the medium was centri-

fuged for 5 min at room temperature in 3 rounds to ensure complete removal of cells and

avoid mechanical cell lysis: firstly, at 2,000 × g, then at 4,000 × g and the last at 6,000 × g, with

the supernatants transferred to new tubes after each centrifugation. After cell removal, the

supernatants containing the exoproteomes were concentrated and buffer exchanged to 20 mM

triethylammonium bicarbonate using AmiconTM filter units with 3 kDa cut-off membrane

(Millipore, Billerica, MA, USA), dried and stored at -20˚C.

Sample preparation for LC-MS/MS

The exoproteome samples were resuspended in 20 mM triethylammonium bicarbonate,

reduced with 20 mM dithiothreitol at 56˚C for 45 min, alkylated with 40 mM iodoacetamide

in the dark at room temperature for 60 min and digested overnight at 37˚C with 1 μg modified

trypsin (Promega, Madison, USA). After digestion, the sample was acidified to 0.1% trifluora-

cetic acid (TFA), final concentration, and desalted with homemade microcolumns of Poros

Oligo R3 resin (PerSeptive Biosystems, Framingham, USA) packed (1 cm long) in p200 tips

(adapted from [28]). Prior to lyophilization, a Biochrom 30 amino acid analyzer (Biochrom,

Cambridge, U.K.) was employed to determine peptide concentration according to the manu-

facturers protocol [29].

LC–MS/MS and data analysis

Samples were analysed by an EASY-nano LC system (Proxeon Biosystems, Odense, Denmark)

coupled online to an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific, Waltham,

USA). The exoproteomes at physiological pH and acidic pH were analysed in duplicate and in

triplicate, respectively. Two μg of peptides from each fraction were loaded onto an 18 cm fused

silica emitter (75 μm inner diameter) manually packed with reverse phase capillary column

ReproSil-Pur C18-AQ 3 μm resin (Dr. Maisch GmbH, Germany) and eluted using a gradient

from 100% phase A (0.1% formic acid) to 35% phase B (0.1% formic acid, 95% acetonitrile) for

210 min for each sample, 35% to 100% phase B for 5 min and 100% phase B for 8 min in (a

total of 223 min at 250 nL/min) [29]. After each run, the column was washed with 90% phase

B and re-equilibrated with phase A. Mass spectra were acquired in positive ion mode applying
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data-dependent automatic survey MS scan and tandem mass spectra (MS/MS) acquisition.

Each MS scan in the orbitrap (mass range of m/z of 400–1800 and resolution 60,000) was fol-

lowed by MS/MS of the seven most intense ions in the LTQ. Fragmentation in the LTQ was

performed by HCD and selected sequenced ions were dynamically excluded for 30 s. Raw data

were viewed in Xcalibur v.2.1 (Thermo Scientific, Waltham, USA). Data processing was per-

formed using Proteome Discoverer v.1.3 (Thermo Scientific, Waltham, USA). Raw files were

generated, and these were searched using Proteome Discoverer with SequestHT algorithm

against Trypanosoma cruzi database containing the proteins of the parasite reference proteome

database downloaded from UniProt (early 2017). Contaminant proteins (several types of

human keratins, BSA and porcine trypsin) were also added to the database and all contami-

nant proteins identified were manually removed from the result lists. The searches were per-

formed with the following parameters: MS accuracy 10 ppm, MS/MS accuracy 0.5 Da, trypsin

digestion with up to 2 missed cleavage allowed, fixed carbamidomethyl modification of cyste-

ine and variable modification of oxidized methionine. The number of proteins, protein groups

and number of peptides were filtered for a false discovery rate (FDR) less than 1%; peptides

with rank 1 and proteins with at least 3 peptides using Proteome Discoverer. ProteinCenter™
software (Thermo Scientific, Waltham, USA) was used to generate FASTA formatted files of

groups of proteins of interest, GO annotation and statistical analysis between conditions (Fish-

er’s exact test). Improved annotation of the identified proteins was acquired using Blast2GO

software (http://www.blast2go.com/b2ghome) using default parameters. SignalP v.4.1 (http://

www.cbs.dtu.dk/services/SignalP/) and SecretomeP v.2.0 (http://www.cbs.dtu.dk/services/

SecretomeP/) were used to predict proteins secreted by classical and non-classical pathways,

respectively. The parameters, eukaryotes/mammal, gram positive and gram negative were set

to predict the secretion pathways. The TMHMM algorithm (http://www.cbs.dtu.dk/services/

TMHMM/) was used to predict the number of transmembrane helixes in the protein

sequences.

Results and discussion

In order to identify proteins secreted by T. cruzi during amastigogenesis, we performed a qual-

itative exoproteome analysis of trypomastigote in two different conditions. Thus, samples

from parasites incubated for 3 hours at pH 7.4 (control) or at pH 5.0 (amastigogenesis) were

investigated by shotgun/bottom-up proteomics (Fig 1). The computational analysis of LC-MS/

MS data identified 271 and 483 protein groups at pH 7.4 and pH 5.0 respectively, with 180

common protein groups being present in both conditions (Fig 2A; S1 Table).

The acidic pH-induced differentiation causes drastic metabolic and morphologic changes

in T. cruzi trypomastigotes [23], preparing the parasite for a replicative stage. As demonstrated

by Engel et al. (1985), the amastigote pre-replicative lag period spans from 18.2 to 34.2 hours,

depending on the cloned stock analyzed. In 1995, Tomlinson et al. showed that, 2 hours after

pH induction, almost no trypomastigotes were observed in culture and 4h after pH induction,

more than 90% of trypomastigotes were transformed into amastigotes. Focusing on the trans-

formation phase of this parasite, the exoproteome was analyzed at a time point of 3 hours after

pH-induced differentiation. After this time, the exoproteome reflects changes in the trypomas-

tigote transformation to amastigote and not the amastigote exoproteome "per se". In fact,

amastigogenesis dynamics after pH lowering was also evaluated by Hernández-Osorio [30]

and they found that, after 3 hours, intermediate forms were predominant (over 80%). There-

fore, the exoproteome analysed here can be related to early trypomastigote morphological

changes, microenvironment modulation to the next replicative phase and host cell metabolism

modulation to parasite survival and replication. In 2013, Caradonna et al. [31], demonstrated

Trypanosoma cruzi exoproteome during amastigogenesis
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Fig 1. Experimental setup. Tissue culture-derived trypomastigotes were harvested and washed before incubation in

DMEM without FBS at pH 7.4 or pH 5.0 for 3 h. After incubation, the parasites were removed by three cycles of

centrifugation and the proteins presented in the supernatant were TCA/acetone precipitated. Following protein

digestion, peptides were subjected to nanoLC-MS/MS analysis.

https://doi.org/10.1371/journal.pone.0225386.g001
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that several host metabolism and cytoskeleton modulations which support parasite intracellu-

lar growth. Energy production, nucleotide metabolism, pteridine metabolism and fat acid oxi-

dation were shown as interconnected pathways between host and parasite, regulated by host

Akt signaling. The capability of adaptation would be especially relevant in the context of a nat-

ural dynamic infection in the mammalian host as observed during amastigogenesis. Plasticity

within the same population could reflect the ability to change the environment in order to con-

trol growth rates. Some specific microenvironments can be a critical issue underlying tissue

Fig 2. Comparison of T. cruzi trypomastigote exoproteome at pH 7.4 and pH 5.0. Venn diagram of protein groups identified in each condition (A). Protein

categorization by GO annotation for cell compartment (B), molecular function (C) and biological activity (D). Y-axis represents the number of proteins present in each

GO term.

https://doi.org/10.1371/journal.pone.0225386.g002
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tropism and persistent infection [31]. An example of this can be observed during T. cruzi
infection in adipose tissue and muscle. The fatty acid rich environment and high metabolism

of energy production of these cells, provide a space against immune system [31]. The total

amount and diversity of proteins released by the parasites almost doubled upon acidic induc-

tion within the three hours of incubation (Fig 2A). While hundreds of proteins were identified

in both conditions, a significant number of identified proteins were specific for each one (Fig

2A). While 33.6% (91/271) of proteins were specific of pH 7.4 exoproteome, 62.7% (303/483)

were specific of pH 5.0 condition (S1 Table). It suggests that there is an increase in protein

diversity in exoproteome during amastigogenesis.

Overall, at pH 5.0 all GO categories increased except for proteasome complex and mito-

chondrion (cell compartment), cellular homeostasis (biological activity) and catalytic activity

and antioxidant activity (molecular function) (Fig 2B–2D). Fisher’s exact test between condi-

tions also showed proteins with catalytic activity and hydrolase activity (a subcategory of cata-

lytic activity) under-represented at pH 5.0 (Table 1). Fig 2B highlights the common membrane

components in exoproteome, particularly at pH 5.0—indicating potential parasite surface

remodeling. Metabolic process, regulation of biological process, response to stimulus and

transport (Fig 2C) are the most represented term of the biological activity category. In terms of

molecular function, the high number of proteins with catalytic activity corroborate the myriad

of metabolic processes in the exoproteome (Fig 2D). Altogether, it is likely that the parasite

renews its metabolism during the first hours of amastigogenesis.

Secretome analysis of T. cruzi epimastigotes and metacyclic trypomastigotes reported a

considerable amount of microvesicles and exosomes [32]. The parasite has different strategies

to mediate intercellular communication [33,34], and these vesicles can be used to interact

directly with host cells by transferring several small molecules such as proteins, mRNAs,

microRNAs and small molecules [33]. Vesicles can transport proteins in soluble form, associ-

ated or as integral components of membranes. Transmembrane domains were predicted in

27% of proteins (155/574), with 33 proteins exclusively detected at pH 7.4, 70 at pH 5.0 and 52

in both conditions. These proteins presented up to four predicted transmembrane helices (Fig

3A). Based on this analysis, our results indicate that cell-derived trypomastigotes in both pH

conditions could also release vesicles. Moreover, the increased proportion of transmembrane

proteins in the exoproteome at pH 5.0, compared to pH 7.4 condition, indicates that transition

of trypomastigotes to the early stage of amastigotes may trigger other types of secretion/excre-

tion besides vesicles. However, further experiments to confirm this hypothesis are necessary.

All 155 proteins with predicted transmembrane domains were also predicted to be secreted

(Fig 3B), suggesting that these proteins could be present in vesicles or being secreted/excreted.

In silico screening of excreted/secreted proteins based on genomic information cannot be

considered self-sustaining evidence for its secretion as the prediction accuracy is highly depen-

dent on the tool performance and quality of the genomic annotations. Furthermore, predicted

secretory proteins may not be expressed in the particular cell/condition under examination or

Table 1. Under-represented GO terms in parasites incubated at pH 5.0 compared to pH 7.4.

Description Count a Ref. Count b Raw p-value c FDR p-value d

Molecular Function catalytic activity 113 125 4.10E-07 2.75E-04

hydrolase activity 63 78 6.23E-05 2.09E-02

a number of times this feature occurs in the analysis data set.
b number of times this feature occurs in the reference data set.
c raw p-value indicating the significance of this difference in feature occurrence between the data sets.
d FDR corrected version of the raw p-value.

https://doi.org/10.1371/journal.pone.0225386.t001
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have a retention signal that prevents their secretion [15]. Integrating bioinformatic analysis to

predict secreted proteins with proteomic data reinforce the excreted/secreted status of a partic-

ular protein and provides validation for the subproteome enrichment and its quality. Herein,

in silico prediction of secretion through classical (SignalP) and non-classical pathways (Secre-

tomeP) of trypomastigote exoproteomes at pH 7.4 and pH 5.0 showed remarkably that 76.5%

(439/574) of all detected proteins are predicted to be secreted in both algorithms (Fig 4A).

Almost twice the number of proteins predicted to be secreted was identified in the acidic con-

dition (199 proteins at pH 7.4 versus 370 proteins at pH 5.0, Fig 4A). This corroborates the

hypothesis raised from previously published findings on over expression of several proteins

(e.g. some Rab proteins and ADP-ribosylation factors), within 2 hours of acidic induction,

indicating an increase in vesicular traffic [23]. In addition, most proteins were predicted to be

released through non-classical pathways at pH 5.0 (131 versus 109). While a modest difference,

it is in accordance with other findings for members of the kinetoplastidae order [35–37].

Despite computational prediction presents some issues (e.g. none of the algorithms were

designed specifically for Trypanosomatids), a very high percentage of predicted proteins

together with the GO annotation profiles are concordant synergic and ratify our sampling and

results.

Kinetoplastids database was explored with Blast2GO software in order to characterize the

total of proteins predicted to be secreted/excreted. The biological processes: translation,

response to stress, protein folding, biosynthetic process, generation of precursor metabolites

and energy displayed higher number of proteins at pH 5.0 (Fig 4B). DNA binding, ion binding,

structural constituent of ribosome and unfolded protein binding were molecular functions

predominantly represented at pH 5.0 and hydrolase activity acting on glycosyl bonds and pep-

tidase activity were under represented in this condition (Fig 4C). As expected, the most

assigned term was hydrolase activity on glycosyl bonds due to the extent of trans-sialidases fam-

ily members.

The most abundant proteins identified on classical secretory pathway analysis are shown

on Fig 5. Trans-sialidases (TS) are enzymes that transfer sialic acid to mucins and both macro-

molecules are anchored to the plasma membrane by glycosylphoshatidylinositol [38,39]. This

enzymatic reaction promotes protection to the parasite against the host immune system and

promotes cell invasion. TS function is also important for parasitic escape from parasitophor-

ous vacuole. The number of trans-sialidases identified in acidic conditions was lower than at

Fig 3. TMHMM analysis. Increased number of proteins predicted to possess transmembrane domain in pH 5.0 related to pH 7.4 (A) and all proteins with predicted

transmembrane domains are also predicted to be secreted/excreted (B).

https://doi.org/10.1371/journal.pone.0225386.g003
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pH 7.4 (35 and 44, respectively) (Fig 5). Furthermore, specific trans-sialidases were identified

in each condition, as previously reported [40]. Specific trans-sialidases, at pH 5.0, could be

involved in parasitophorous escape and, at pH 7.4, could be involved in immune system escape

and cell invasion (Fig 5).

Mucins repertory changes along parasite cell cycle [22] and, as expected, striking identifica-

tion differences between both conditions for mucin and mucin-like proteins were observed.

Fig 4. Secretory pathway prediction. Total number of predicted proteins secreted and by classical (SignalP) and non-

classical pathways (SecretomeP) (A). Blast2GO annotation of T. cruzi trypomastigote exoproteome at pH 7.4 and pH

5.0 and comparison of most abundant biological activity (B) and molecular function GO terms (C) of annotated

secrete/excreted proteins.

https://doi.org/10.1371/journal.pone.0225386.g004

Fig 5. Representative proteins from classical secretory pathway in T. cruzi. Most abundant proteins released through classical pathway within T. cruzi
trypomastigote exoproteome at pH 7.4 and pH 5.0.

https://doi.org/10.1371/journal.pone.0225386.g005
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These families jumped from 2 representatives in the exoproteome at pH 7.4 to 38 different pro-

teins at pH 5.0. Interestingly, a transcriptomic analysis showed a decrease in mRNA for

mucins during amastigogenesis and an increase of transcripts for membrane-bound/secreted

phospholipase A1 [41] and for surface-localized phosphatidylinositol-phospholipase C

(PI-PLC) [42]. This increase in phospholipase transcripts may explain the increase of mucins

in this secretome analysis [43]. Similarly, a study performed an analysis of glycoconjugate

mucin secretion in cultured rat conjunctival goblet cells, and observed an increase of mucin

secretion directly related to the phospholipase C and phospholipase A2 dependent-Ca2+ per-

formance under physiological conditions [43]. This mechanism may be employed as the same

manner in T. cruzi parasites, considering that many cellular processes are conserved among

eukaryotes. This data provides evidence that the parasite remodels the cell coat releasing sur-

face proteins during amastigogenesis.

Mucin-associated surface proteins (MASP) exhibited the same pattern of mucins with a

considerable increase in acidic pH, from 13 proteins identified specifically at pH 7.4 to 58 spe-

cifically at pH 5.0 and 56 in both conditions. The T. cruzi genome has approximately 1,300

clustered genes coding for MASPs and these proteins can be shed by circulating and infective

parasites [44,45]. Using anti-MASP antibodies, Bartholomeu et al., (2009), detected MASP in

the supernatant of PI-PLC treated trypomastigotes [44]. In this scenario, increased MASP lev-

els after acidification condition could be explained by increasing action of phospholipases, in

the same fashion for mucins, even with downregulation of MASP transcripts during early

amastigote development [46]. In addition, few members of these families (trans-sialidases,

mucins and MASP) were also predicted to be secreted through non-classical pathway.

In addition, some heat shock proteins (HSPs) and HSP-associated proteins, such as chaper-

onins, co-chaperones, prefoldins, calreticulin and cyclophilins or peptidyl prolyl isomerases

were found in both exoproteome conditions. In the acidic environment, 13 HSPs and HSP-

associated proteins were detected, and some of them playing important roles in the macro-

phage activity. For example, Hsp10 inhibits classical LPS-induced activation of macrophages

due to pro-inflammatory cytokine synthesis [47,48]. T. cruzi parasites also infect macrophages,

and require an ideal environment to replicate, nonetheless, this mechanism needs to be experi-

mentally demonstrated in this organism. Moreover (change), Hsp10 is considered a circulating

anti-inflammatory factor that possibly acts to contain macrophage activation [49].

Conversely, in both conditions, cyclophilins or peptidyl prolyl isomerases, Hsp70 and clus-

terin are involved in the classically activation of macrophages [50]. In Toxoplasma gondii,
cyclophilin-18 induced IL-12 production by dendritic cells and triggered cell signalling

through CCR5. This mechanism may provide a strong protective response to the parasite

allowing its transmission, avoiding host’s intermediates [51]. Interestingly, Hsp70 of Mycobac-
terium tuberculosis inhibits the infection of CD4+ T cells by HIV-1, blocking the CCR5 co-

receptor [52] in other words, despite its role as a chaperone in the activation of macrophages

[50] and protein folding, this protein may help the parasite in its survival and proliferation,

inhibiting invasion of competitive microorganisms. Further, clusterin is known as a secreted

extracellular chaperone capable to bind unfolded proteins, which could promote receptor-

mediated endocytosis and intracellular lysosomal degradation [53]. Likewise, prefoldin, only

found at pH 5.0, seems to act as a co-chaperone mediating chaperone-substrate interactions

[54]. These observations seem to be feasible to occur in vivo, considering the high acidic envi-

ronment of phagolysosome and the whole arsenal of T. cruzi HSP and HSP-associated

proteins.

Since proteases are involved in crucial steps of the biological life cycle of T. cruzi including

aspects of host-parasite interaction, these enzymes are subjects of special attention [55–57].

The most studied zinc-dependent metalloproteases, also termed as GP63 family in
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trypanosomatids, are described as major surface glycoproteins with acid protease activity and

virulence factors [58,59]. GP63 genes are present at high-copy-number [60] and encode pro-

teins involved in parasite-host interaction. After 3 hours of incubation, the number of specific

identifications at pH 5.0 and pH 7.4 was 2 and 7, respectively and 2 were present in both con-

ditions. GP63, MASP, mucin-like proteins are surface membrane proteins that compose extra-

cellular vesicles of trypomastigote [61] and of the early stages of amastigote differentiation

accordingly to our data. Besides its ability to interact with the host extracellular matrix, GP63

is also able to inhibit NK cellular function. In trypanosomatids, this promotes resistance to

antimicrobial peptides, intracellular amastigote survival in macrophages and degradation of

cytosolic proteins of host cells. Altogether it demonstrates the versatility of GP63 in parasite

survival in conditions of stress [62–64].

Calpain-like proteins is another family of proteins with a large number of different genes

present in trypanosomatid genomes [65]. Calpains are found as microtubule-interacting pro-

teins in T. cruzi and T. brucei [56]. Two calpain-like cysteine peptidases were only released at

pH 7.4 as well as at pH 5.0, respectively, and 2 more in both conditions. One calpain peptidase

and the calpain-like CAP5.5 (cytoskeleton-associated protein 5.5) were recently described as

immunoreactive proteins recognized by serum immunoglobulin from chagasic patients with

early cardiomyopathy [66]. Moreover, CAP5.5 was shown to be secreted/excreted by metacyc-

lic trypomastigotes [32]. According to our data, calpain cysteine peptidases and CAP5.5 are

released (associated or not to vesicles) during the trypomastigote differentiation into

amastigote.

Several proteins related to ubiquitin signaling were identified from the exoproteome at pH

5.0 and pH 7.4 (S2 Table). None of them were classified as secreted through classical pathway.

For the parasites, ubiquination and ubiquitin-proteasome pathway are crucial in key steps in

host colonization (proliferation and cell differentiation) [67] and for the host cells to modify

immunoregulatory functions [68]. Bacteria and viruses secrete ubiquitin signaling related pro-

teins into host cell. In T. cruzi, a protein related to ubiquitin signaling was shown to be secreted

into the host cell and to localize in the nucleus [69]. Our data suggests that such proteins may

function in the host cell nuclei orchestrating host regulatory elements towards parasite survival

inside the host cell.

Intraflagellar vesicle transport occurs via microtubules driven by motors such as proteins

belonging to the kinesin and the dynein family [70]. SNF-7 is a protein related to cargo trans-

port through cytoskeleton and vesicle coating, which was secreted at pH 5.0 conditions only.

Secretion profiles of transport and vesicle structures may indicate a dynamic parasite behav-

iour including an actively remodelling intracellular expression pattern related to the exporta-

tion of molecules during early stages of amastigogenesis. It fits with the idea that after cell

invasion, trypomastigote disassemble and discard their flagella into host cell cytoplasm where

it is degraded. This process releases flagellar proteins that enter the MHC-I processing pathway

and presentation to CD8+ T cells as demonstrated for paraflagellar rod protein PAR4. Addi-

tionally, it was demonstrated that TcPAR4 immunization in mice enhanced resistance to T.

cruzi [71]. Our results corroborate previous observations that TcPAR4 is released after parasite

cell invasion. Paraflagellar rod component Par4 putative (Q4CUM0) was found exclusively in

the parasite exoproteome at pH 5.0 (Table 2). This work provides 22 flagellar proteins exclu-

sively identified at pH 5.0 and 12 proteins shared at pH 5.0 and pH 7.4. Among these proteins,

kinesins and dyneins (or associated proteins) were found only at pH 5.0 or shared in both con-

ditions. Strikingly, no flagellar proteins were identified as being released exclusively at pH 7.4.

As demonstrated to TcPAR4, these proteins can be candidates for vaccines or good protein

targets for new chemotherapy strategies.
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Conclusion

Acidic-pH-induced axenic amastigogenesis creates a lysosome-like environment, mimicking

conditions when the parasite enters into the host cell. Exploiting this model, exoproteome

analyses of early stages of amastigogenesis allowed the identification of several exclusive pro-

teins at pH 5.0 related to cell communication, response to stimulus, regulation of biological

process and cell division. In this scenario, exclusive proteins identified at pH 5.0 have the

potential to modulate host cellular metabolism, allowing parasite survival, differentiation and

proliferation. T. cruzi exoproteome changes during its life stage may provide advantages to

Table 2. Flagellar and flagellar-associated proteins in the T. cruzi exoproteome.

UniProt Description pH 7.4 pH 5.0

Secreted proteins only detected from amastogogenesis early stages
Q4D2I4 putative ADP ribosylation factor 3 X

Q4DS99 paraflagellar rod component, putative X

Q4D0Q5 flagella associated protein X

Q4CQP1 putative STOP axonemal protein X

Q4DG71 putative Flagellar attachment zone protein 1 X

Q4D1B7 putative paraflagellar rod component X

Q4CUM0 paraflagellar rod component Par4, putative X

Q4DRP5 flagellar pocket cytoskeletal protein bilbo1 X

Q4DWL5 paraflagellar rod component X

Q4D113 flagellar member 7 X

Q4D8M9 putative paraflagellar rod proteome component 9 X

Q4DHQ3 flagellar radial spoke protein-like, putative X

Q4DSB9 T. brucei spp.-specific protein X

Q4CR32 hypothetical protein X

Q4CUF2 flagellar protofilament ribbon protein, putative X

Q4DRF1 putative paraflagellar rod component X

Q4DZQ3 putative flagellar antigen X

Q4DG38 putative dynein-associated protein X

Q4DFG6 kinesin-like protein X

Q4E1M8 kinesin, putative X

Q4DYM0 kinesin, putative X

Q4DWH2 dynein, putative X

Q4DCS6 outer dynein arm docking complex protein X

Secreted proteins detected from trypomastigote and amastogogenesis early stages
Q4DQ49 centrin, putative X X

Q4CTX0 flagellar calcium-binding 24 kDa protein X X

Q4DQS9 Flagellar attachment zone protein 10 X X

Q4D7Y4 kinetoplastid membrane protein 11 X X

Q4D634 paraflagellar rod protein 2 X X

Q4DGZ9 flagellar member 3 X X

Q4DUG1 flagellar member 3 X X

Q4DIP8 flagellar associated protein X X

Q4CP97 putative mitochondrial paraflagellar rod component (PFC16) X X

Q4DIF6 paraflagellar rod protein 2 X X

Q4D4E6 dynein intermediate chain, putative X X

Q4E2Q5 putative OSM3-like kinesin X X

https://doi.org/10.1371/journal.pone.0225386.t002
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parasites over host. Regarding trypomastigotes maintained in pH 7.4 or pH 5.0 for 3 hours,

this is the first study to investigate the T. cruzi exoproteome change during the amastigogen-

esis. Our data provide evidence and direction for further studies to explore exoproteome

changes during the first hours of amastigogenesis; highlighting the increase in number and

diversity of proteins in acidic condition. This corroborates previous studies on the increase in

vesicular trafficking during amastigogenesis. Furthermore, this work provides a list of vesicular

and flagellar proteins released after acidic induction that could be explored as potential candi-

dates to multitarget vaccines.
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