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Considerable evidence suggests that during the progression of complex diseases, the deteriorations are not
necessarily smooth but are abrupt, and may cause a critical transition from one state to another at a tipping
point. Here, we develop a model-free method to detect early-warning signals of such critical transitions, even
with only a small number of samples. Specifically, we theoretically derive an index based on a dynamical
network biomarker (DNB) that serves as a general early-warning signal indicating an imminent bifurcation
or sudden deterioration before the critical transition occurs. Based on theoretical analyses, we show that
predicting a sudden transition from small samples is achievable provided that there are a large number of
measurements for each sample, e.g., high-throughput data. We employ microarray data of three diseases to
demonstrate the effectiveness of our method. The relevance of DNBs with the diseases was also validated by
related experimental data and functional analysis.

I
t has been identified that a sudden change of a system state exists widely in ecosystems1,2, climate systems3,4,
economics and global finance5,6. Such a change often occurs at a critical threshold, or the so-called ‘‘tipping
point’’, at which the system shifts abruptly from one state to another. This is well known in dynamical systems

theory as a bifurcation that results in a qualitative transition in states or attractors7,8. Recently, evidence has been
found suggesting that the similar phenomena exist in clinical medicine, that is, during the progression of many
complex diseases, e.g., in chronical diseases such as cancer, the deterioration is not necessarily smooth but
abrupt9–13. In other words, there exists a sudden catastrophic shift during the process of gradual health deteri-
oration that results in a drastic transition to a disease state. In order to describe the underlying dynamical
mechanism of complex diseases, their evolutions are often modeled as time-dependent nonlinear dyna-
mical systems, in which the abrupt deterioration is viewed as the phase transition at a bifurcation point, e.g.,
for prostate cancer14, asthma attacks9 and epileptic seizures15. We are particularly interested in the complex
diseases with sudden deterioration phases or critical transition points during their progressions. Depending
on the progression level of such illnesses, we divide the process into three stages: i.e., a normal state, a pre-disease
state (or a critical state), and a disease state (Figs. 1 a and b–d). The normal state is a steady state, representing a
relatively healthy stage during which the disease is under control, in an incubation period or in a chronic
inflammation period. The pre-disease state has been discussed in many previous works (e.g., Achiron et al.16).
It is usually defined as the limit of the normal state immediately before the tipping point is reached. In this pre-
disease stage (see Figs. 1 a and c), the process is usually reversible to the normal state if appropriately treated,
implying instability of the pre-disease state. However, it usually becomes irreversible to the normal state if the
system passes the critical point and enters another stable state, or the unique attractor at the disease stage (Figs. 1a
and d). Hence, it is crucial to detect the pre-disease state so as to prevent qualitative deterioration by taking
appropriate intervention actions.

Recently, topics on predicting the tipping point are increasingly receiving much attention in many scientific
fields17, e.g., in ecological systems1,18–20, climate systems3,21,22 and physiological systems10. Many such predictions
are mainly based on ‘‘critical slowing down’’23, a generic dynamical phenomenon occurring in the vicinity of a
bifurcation point where the system becomes increasingly slow when recovering from small perturbations back to

SUBJECT AREAS:
COMPUTATIONAL

BIOLOGY

BIOINFORMATICS

BIOPHYSICS

CANCER MODELS

Received
22 September 2011

Accepted
1 March 2012

Published
29 March 2012

Correspondence and
requests for materials

should be addressed to
L.C. (lnchen@sibs.ac.

cn)

SCIENTIFIC REPORTS | 2 : 342 | DOI: 10.1038/srep00342 1



its equilibrium state24,25. Considerable efforts have been made in
successfully finding general early-warning signals, ranging from
theoretical derivation to real data analysis, which have shown that
the increases in variance24, autocorrelation21, skewness26 and spatial
correlation27,28 are generally expected to occur as a system approa-
ches to a critical point.

However, in the case of complex diseases, it is notably hard to
predict such critical transitions for the following reasons. First,
because a pre-disease state is a limit of the normal state, the state
of the system may show little apparent change before the tipping
point is reached. Thus, the diagnosis by traditional biomarkers and
snapshot static measurements may not be effective to distinguish
those two states (Figs. 1b, c). Second, despite considerable research
efforts, no reliable disease model has been developed to accurately
detect the early-warning signals. In particular, deterioration pro-
cesses may be considerably different even for the same subtype of a
disease, depending on individual variations, which makes model-
based prediction methods fail for many cases. Third and most impor-
tantly, detecting the pre-disease state must be an individual-based
prediction, however, usually there are only a few of samples available
for each individual, unlike many other complex systems that are
measured over a long term with a large number of samples.

On the other hand, rapid advancements on high-throughput tech-
nologies have enabled us to observe gene expressions or even protein
expressions at the genome-wide scale29, i.e., with over thousands of

measurements in one sample. Such high-dimensional data not only
provides a global view with rich information on the concerned sys-
tem, but also represents the accumulated effects of its long-term
dynamics30, which implies that even a small number of samples
may characterize the dynamical features of a living organism. In this
work, by using time-course high-throughput omic data and based on
the principle of critical slowing down or a bifurcation process, we
proposed a novel model-free (network-based) method to detect
early-warning signals of complex diseases even with a small number
of samples. Specifically, we theoretically showed that a dynamical
network biomarker (DNB) can serve as a general early-warning sig-
nal indicating an imminent bifurcation or sudden deterioration
before the critical transition occurs. We successfully identified crit-
ical transitions as well as DNBs for lung injury disease, liver cancer,
and lymphoma cancer based on their microarray data. The relevance
of the identified DNBs with the diseases was also validated by path-
way enrichment analysis, functional analysis, bootstrap analysis and
related experimental data. It should be note that we aimed to detect
the pre-disease state by finding its associated DNB, rather than by
distinguishing between the disease state (e.g., disease samples) and
the normal state (e.g., control samples) by finding its biomarkers.

Results
Criteria for detecting early-warning signal. In particular, we
theoretically derived network-based dynamical criteria that serve

Figure 1 | Schematic illustration of the dynamical features of disease progression from a normal state to a disease state through a pre-disease state.
(a) Deterioration progress of disease. (b) The normal state is a steady state or a minimum of a potential function, representing a relatively healthy stage.

(c) The pre-disease state is situated immediately before the tipping point and is the limit of the normal state but with a lower recovery rate from small

perturbations. At this stage, the system is sensitive to external stimuli and still reversible to the normal state when appropriately interfered with, but a

small change in the parameters of the system may suffice to drive the system into collapse, which often implies a large phase transition to the disease state.

(d) The disease state is the other stable state or a minimum of the potential function, where the disease has seriously deteriorated and thus the system is

usually irreversible to the normal state. (e)–(g) The three states are schematically represented by a molecular network where the correlations and

deviations of different species are described by the thickness of edges and the colors of nodes respectively. When the system approaches the pre-disease

state, the deviations of (z1, z2, z3) increase drastically, and the correlations among (z1, z2, z3) also increase drastically whereas their correlations with other

nodes (z4, z5, z6) decrease drastically ((e) and (f)). We call (z1, z2, z3) as the dominant group or the DNB. (g) At the disease stage, the system settles down in

another steady state, i.e., the disease state, with lowered deviations and correlations for the DNB. (h) Graphs show an example of the dynamical

fluctuations of the molecular concentrations for the DNB in the pre-disease state, which dynamically change with strong temporal deviations but are

closely (positively or negatively) correlated.
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as a general early-warning signal indicating the imminent bifurcation
before a critical transition occurs. Based on theoretical analysis, we
proved that the following generic properties hold when the system
reaches the pre-disease state (see the derivation of DNBs in Methods,
Figs. 1e–h, and Supplementary Information A for details).

. There exists a group of molecules, i.e., genes or proteins, whose
average Pearson’s correlation coefficients (PCCs) of molecules
drastically increase in absolute value.

. The average PCCs of molecules between this group and any
others (i.e., between molecules inside this group and any other
molecules outside this group) drastically decrease in absolute
value.

. The average standard deviations (SDs) of molecules in this group
drastically increase.

If all of these three conditions are satisfied simultaneously, we call
this group a dominant group of the system, whose change will reflect
a transition of the system to the disease state. Actually, each of the
three conditions represents a criterion, and their combination is
naturally expected to be a strong signal or an indicator for the pre-
disease state. Because the dominant group characterizes dynamical
features of the underlying system and the molecules in the group are
also strongly and dynamically correlated in the pre-disease state, the
molecules in the group are expected to form a subnetwork from a
network viewpoint. Hence, we regard it as a dynamical network of
biomarkers, or a dynamical network biomarker (DNB). Unlike the
traditional molecular biomarkers used in medicine, whose expres-
sions reflect the presence or severity of the disease state and are
required to have consistent (or constant) values that are different
in the respective disease and normal states, the DNB is a strongly
correlated molecular subnetwork where the concentrations of mole-
cules, however, dynamically change without keeping constant values
in the pre-disease state as shown in Fig. 1h. In other words, the
concentrations of molecules in the DNB tend to increasingly fluc-
tuate when the system approaches to the pre-disease state, although
they behave dynamically in a strongly collective manner, which is a
key feature of the DNB. This is why it can be used to detect the early
signal of a complex disease in the early stage, which is not otherwise
possible using traditional biomarkers or methods. Hence, the exist-
ence of the DNB implies that the system is in the pre-disease state.
Note that each individual may have a different DNB even for the
same disease due to individual variations. Therefore, in contrast to
traditional biomarkers, a DNB is not necessarily composed of a fixed
bunch of molecules even for the same disease but may have different
members depending on individual features that are detected from
individual high-throughput data.

Composite index for pre-disease state. We then describe the
theoretical background of the DNB for model-free prediction, and
we derive a general quantitative index as an early-warning signal for
the pre-disease state regardless of the detailed differences among
systems.

Assume that the progression of a disease can be expressed by the
following dynamical system

Z kz1ð Þ~f Z kð Þ; Pð Þ: ð1Þ

Z(k) 5 (z1(k), …, zn(k)) represent observed data, i.e., concentrations
of molecules (e.g., gene expressions or protein expressions) at time k
(k 5 0, 1, …), e.g., hours or days, which are the variables describing
the dynamical state of the system. P are parameters representing
slowly changing factors, including genetic factors (e.g., SNP and
CNV) and epigenetic factors (e.g., methylation and acetylation),
which drive the system from one state (or attractor) to another
(see Supplementary Fig. S1). f 5 (f1, …, fn) are generally non-
linear functions of Z(k) with a fixed point Z~�Z, such that
�Z~f �Z; Pð Þ. Assume that there is a value Pc such that at least one

of the eigenvalues of the Jacobian matrix Lf Z;Pcð Þ
LZ

���
Z~�Z

equals 1 in

modulus, which implies that the system undergoes a bifurcation at
�Z when P reaches the threshold Pc. By analyzing the nonlinear
dynamics near the bifurcation point, we can theoretically derive
the above three criteria to detect the dominant group or DNB (see
Methods and Supplementary Information A). To obtain a strong
signal in the pre-disease state, we further combine the three criteria
together to construct a composite index I as follows:

I~:
SDd

:PCCd

PCCo
, ð2Þ

where PCCd is the average PCC of the dominant group in absolute
value; PCCo is the average PCC between the dominant group and
others in absolute value; and SDd is the average SD of the dominant
group.

Although the expression of each zi may stochastically change at
any time instant due to the fluctuation, the composite index is
expected to increase sharply whenever the system approaches to a
critical transition point, and therefore, it can serve as an effective
early-warning signal to identify the pre-disease state.

According to the derivation, the warning signal is generated by the
interdependent molecules in the dominant group, through their
dynamical interactions near the critical transition. Because the mole-
cules in the dominant group are strongly and dynamically correlated,
they behave as a dynamical subnetwork or a module in the pre-
disease state, forming the DNB, which will move to the disease state
first when the system undergoes further perturbations of parameters
into the disease stage. These properties should be generic and lie in
many complex diseases with sudden deterioration phenomena.
Clearly, analysis based on such a signal is applicable to diseases with
or without a model. The algorithm to numerically identify the DNB
from high-throughput data is given in detail in Supplementary
Information C. Note that the purpose of this work is not to identify
the parameters or factors that first drive the system into the disease
state, but to identify the responsive DNB which first moves into the
disease state driven by any known or unknown factors (or first
reflects such a critical transition). Some molecules related to the
driving factors (e.g., SNPs or CNVs) may or may not be in the DNB.

Numerical experiments. We simulated an example of a five-node
gene regulatory network (see Fig. 2a) illustratively to demonstrate the
DNB and the composite index. The detailed descriptions of the
network represented by a set of stochastic differential equations
are provided in Supplementary Information B, and numerical
simulations are shown in Fig. 2, which demonstrates the predictive
power of the DNB.

Application to complex diseases. We further conducted the
prediction for three real diseases using high-throughput expe-
rimental data, which are respectively the microarray data of a lung
injury with carbonyl chloride inhalation exposure (or acute lung
injury)31, the hepatic lesion by chronic hepatitis B (or HBV
induced liver cancer)32, and the B-cell lymphomagenesis of
transgenic murine (or lymphoma)33. The detailed algorithm and
data description are described in Supplementary Information C
and D, respectively. For the diseases of phosgene inhalation lung
injury and hepatic lesion, Fig. 3 shows that the composite indices
based on DNBs during the disease progression are consistent with
the observed biological phenotypes. The analysis for the B-cell
lymphomagenesis is presented in Supplementary Information D.
To explore the biological implication, functional analysis was
implemented on these identified DNBs from the gene expression
datasets respectively. Figures 4a–d show the DNBs with the
functional interactions (protein-protein interactions and TF-target
regulations) for the diseases. In particular, we take the acute lung
injury as a concrete example to present the calculation procedure in
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detail (see Supplementary Information D). The dynamical change in
the network structure and expression variations for the identified
DNB are shown in Figs. 4e–h. Clearly, the DNB forms a strongly
correlated subnetwork to provide the significant warning signal near
the critical state (8 h). The dynamical changes in the DNBs over
whole periods are shown in Supplementary Fig. S8.

To further compare the DNB dynamics with other molecules, we also
graphically demonstrate the dynamics of the whole mouse molecular
network (protein-protein interactions and TF-target regulations)
including the DNB in Figs. 4i–l (also see the whole mouse network
for other periods in Supplementary Fig. S9), which clearly shows the
significance of the DNB in terms of expression variations and network
structures near the critical state (8 h). In particular, before the disease
state, there are no significant differences between the members of the
DNB and other genes during all periods except at 8 h, when the mem-
bers of the DNB behave in a considerably different manner in terms of
their expression variations and network connections by satisfying our
three criteria. However, after the system is driven into the disease state,
interestingly the members of the DNB appear to behave in a manner
similar to other genes again (e.g., Fig. 4l).

In order to verify the biological significance of the identified
DNBs, we carried out bootstrap analysis respectively for the three
diseases, as described in Supplementary Information E. For the phos-
gene inhalation lung injury (or acute lung injury) and hepatic lesion

(or HBV induced liver cancer), some enriched GO functions and
dysfunctional pathways underlying the DNBs are listed in Table 1.
Part of the identified DNBs are also shown in Table 1 (see
Supplementary Table ‘Identified DNBs’ for complete lists). The
details and full lists are presented in Supplementary Information F.

The functional analysis of these cases shows that the DNBs are
closely relevant to the corresponding complex diseases, thereby val-
idating the effectiveness and advantage of our method. In the lung
injury study, we found that the dysfunctions of the DNB are consist-
ent with the corresponding mechanisms of the phosgene-induced
injury (or acute lung injury), especially for antioxidant reactions,
dysfunctional metabolic processes, inflammatory regulation, and
regulations of cell proliferation and death31. From pathway enrich-
ments, we found that pathways, such as pathways of repairing DNA
damage (e.g., p53 signaling pathways), pathways of inflammatory
(e.g., acute myeloid leukemia) and pathways of reducing oxidation
(e.g., glutathione metabolism), are highly related to the dysfunctional
mechanisms of the aggressive disease31. In particular, some genes
with the most significant changes are related to the antioxidant
reflections and the response of reducing DNA damage. Some of them
are involved in the related glutamine-metabolic activities (e.g., ASNS
and GCLC) and participate in oxidation reduction (e.g., SRXN1,
PGD, TXNL1, HMOX1, CYP51 and CH25H). Moreover, owing to
protection against the denaturation of proteins and lipoids caused by

Figure 2 | Numerical validation of theoretical results. (a) A five-gene model for a DNB and an early-warning signal. The network model and detailed

background are described in Supplementary Information B. The tipping point is at P 5 0 in the theoretical model, at which the system undergoes a critical

transition or a bifurcation detected by z1 and z2. (b)–(c) When the system approaches the tipping point (P 5 0), z1 and z2 become closely correlated with

increasingly strong deviations from P 5 0.4 to P 5 0.01. (d)–(e) Figures show the curves of SDs and PCCs for the variables against the parameter P, which

clearly indicate the tendency of z1 and z2, i.e., their fluctuations (SD(z1) and SD(z2)) and correlation ( | PCC(z1, z2) | ) increase drastically whereas their

correlations with other nodes ( | PCC(z1, z3) | ), | PCC(z1, z4) | , | PCC(z1, z5) | , | PCC(z2, z3) | , | PCC(z2, z4) | , and | PCC(z2, z5) | ) decrease drastically when the

system approaches the tipping point, which satisfies all three criteria for the DNB. (f) The curve shows the clear tendency of the composite index near the

tipping point for the DNB composed of (z1, z2), which can be used as the early-warning signal for predicting the imminent change in the concerned system.
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acylation of phosgene and tissue damage, heat shock protein activ-
ities (e.g., HSPA1A, HSPA1b, DNAJC5, DNAJB4) and regulation of
apoptosis (e.g., PMAIP1, GADD45G, EPHA2) were identified in the
DNB. Furthermore, 43 of the 262 genes and TFs (hypergeometric
test, p-value , 7.89e-36) were validated with significantly close rela-
tion with lung injury by phosgene31 (Supplementary Table ‘KEGG
enrichment analysis’).

In HBV infection and progression, the dysfunction of the regulation
system causes the hepatitis B disease, which may lead to cirrhosis and
hepatocellular carcinoma32. From the KEGG pathway enrichment
results, the DNB members are included in many HBV-related path-
ways, such as pathways in cancer, hepatitis C, inflammatory activation
(e.g., acute myeloid leukemia), and DNA repair (e.g., cytosolic DNA
sensing pathway). The enriched GO functions underlying the DNB
are particularly related to immune systems that are activated to protect
against HBV and inordinate dysfunctions associated with the per-
formance in the viral life cycle. In the DNB, HLA-DMA and B2M,
which play crucial roles in antigen presentation, and STAT6, which is
associated with the switch of antibody isotypes, undergo significant
changes during the disease development32. Further, some genes in the
basic cellular processes were expressed in a disorderly manner, e.g.,
HDAC10 and NAP1L1, which are associated with the regulation of cell
death and abnormal reaction in transcription and translation, and
GCC2 and CDH1, which are associated with transportation and local-
ization. Moreover, CDH1 has been identified as the target of HBV X
proteins, and 17 out of 56 genes and TFs (p-value , 8.51e24) have
been identified as DNB members (Supplementary Table ‘KEGG
enrichment analysis’). The findings are also highly related to the res-
ponse of HBV infection in vivo, which provides more evidence of the
vital functions of the DNB for the disease and further demonstrates
the effectiveness of our method. The DNB of HBV sheds light on the
progression of pathogen effects and also dynamically characterizes the
disease progression in the liver.

Discussion
To make a model-free prediction of the critical transition of diseases
using a small number of samples of high-throughput data, we pro-
posed a composite index serving as a leading early-warning indicator

based on the DNB. Different from the previous works, our method
for predicting complex diseases is based on searching for a particu-
larly interacted network or a DNB carrying reliable information
about dynamical variations. From the viewpoint of nonlinear
dynamics, this network is driven by certain factors or parameters
to first move to (or reflect the transition to) the disease state.
Therefore, the network can serve as a new type of biomarker to detect
the pre-disease state in a dynamical manner (Figs. 1f and h), in
contrast to the traditional gene- or protein-based biomarkers that
evaluate the system in a rather static manner.

On the other hand, because of disease complexities and personal
variations (e.g., genetic or epigenetic factors), each individual may
progress to the same disease through different underlying networks,
which hampers the discovery of effective molecule- or model-based
biomarkers. To overcome this difficulty, we have developed this
model-free method based on measured individual data, and therefore
we can theoretically detect specific signals for each individual or poten-
tially apply this method to personalized medicine. It should be noted
that our prediction merely requires a few samples in each sampling
period, in stark contrast to the consecutive time-series data over the
entire period required by the traditional methods. Such early-warning
signals can be applied to efficient prognosis as well as products of
nichetargeting medicine. In addition to the theoretical conditions, we
have also provided a computational algorithm to numerically identify
the DNB based on high-throughput data. As the first step, this theor-
etical work is to challenge the complicated problem of detecting the
pre-disease state by studying tissue based data. However, analyzing
peripheral blood or plasma-based data is a practical approach to dia-
gnosis at the molecular level, which we will consider in our future
work. In addition, because different driving factors may result in dif-
ferent DNBs even for the same disease, the analysis of the difference
and similarity of these DNBs is also an important future topic.

Methods
Derivation of DNB. The theoretical results were derived by considering the
linearized equations17,27 of Eq.(1) with the perturbations of noise near �Z. Namely,
introducing new variables Y(k) 5 (y1(k), …, yn(k)) and a transformation matrix S, i.e.,
Y kð Þ~S{1 Z kð Þ{�Zð Þ (Supplementary Information A1), we have

Figure 3 | Detecting early-warning signals for complex diseases. Detecting early-warning signals for diseases from two sets of high-throughput

experimental data for the lung injury with carbonyl chloride inhalation exposure, i.e., acute lung injury ((a), (b), (c), and (d)), and the hepatic lesion by

chronic hepatitis B, i.e., HBV induced liver cancer ((e), (f), (g), and (h)). In each sampling period, there are 2–5 samples for gene expressions. (a) and (e)

represent the mean SDs in the DNB (i.e., SDd in Eq.(2)), (b) and (f) are mean PCCs in the DNB (i.e., PCCd in Eq.(2)), (c) and (g) represent the PCCs

between the DNB and other molecules (i.e., OPCCs, or PCCo in Eq.(2)), and (d) and (h) represent the composite index/in Eq.(2). The dotted green line

indicates the period of the pre-disease state. Both cases demonstrate strong and significant early-warning signals before the diseases are eventually

deteriorated. The results of these diseases show the effectiveness of our method to detect the early-warning signals using a small number of samples.
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Y kz1ð Þ~L Pð ÞY kð Þzj kð Þ, ð3Þ

where L(P) is the diagonalized matrix of Lf Z;Pð Þ
LZ

���
Z~�Z

. j(k) 5 (j1(k), …, jn(k)) are

Gaussian noises with zero means and covariances kij 5 Cov(ji, jj). Actually, there are
typically three cases arising in the diagonalization process, and we present the detailed
derivation in Supplementary Information A2 and here only illustrate the diagonal
case with real eigenvalues for simplicity, i.e., L(P) 5 diag(l1(P), …, ln(P)) with each
jlij between 0 and 1. Among the eigenvalues of L, the largest one in modulus, say l1,
first approaches to 1 when parameter P R Pc. This eigenvalue characterizes the
system’s rate of change around the fixed point and is called the dominant eigenvalue.
Under the assump-
tion that Y(k) have zero means, the covariance and PCC are respectively represented
as

Cov yi,yj
� �

~
kij

1{lilj
,

PCC yi,yj
� �

~
kijffiffiffiffiffiffiffiffiffi
kiikjj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{l2
i

� �
1{l2

j

� �r

1{lilj
:

Note that the variance Var(yi) 5 Cov(yi, yi). Hence when the dominant eigenvalue
jl1jR 1 because of the change in the parameter values, Var(y1) R 1‘, but Var(yi) is
bounded for i ? 1 because 0 , jlij, jl1j, 1 (i 5 2, …, n). For any i ? j, Cov(yi, yj)
tends to have a positive bounded value.
Returning to the original variables Z whose values are directly measured as

high-throughput data, by zi~
Pn
j~1

sijyjz�zi where sij is the element of the linear

transformation S, we have (Supplementary Information A3)

Cov zi,zj
� �

~si1sj1Var y1ð Þz � � �zsinsjnVar ynð Þ

z
Xn

k,m~1,k=m

siksjmCov yk,ymð Þ,

PCC zi,zj
� �

~
Cov zi,zj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var zið ÞVar zj

� �q :

Notice that variable y1 is related to the dominant eigenvalue l1. From the above
equations, it is obvious that as jl1jR 1, the SD, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var zið Þ

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cov zi, zið Þ

p
increases greatly, or Var(zi) R 1 ‘ if si1 is not vanishing, and jPCC(zi, zj)j approaches
1 drastically if both si1 and sj1 are non-zero. In this case, variables zi and zj are directly
affected by the dominant eigenvalue. A group composed of such variables is called the
dominant group in the network. On the other hand, as jl1jR 1, jPCC(zi, zj)j between
the dominant group (e.g., including zi) and others (e.g., including zj, which does not
belong to the dominant group) reduces to zero if si1 ? 0 but sj1 5 0. Hence, we
theoretically derived the three criteria to detect the dominant group or the DNB (see
Supplementary Information A for more details). Clearly, a DNB can be viewed as a
temporally dynamical module (TDM), whose members are strongly correlated with
each other (i.e., a module feature) but their expressions stochastically fluctuate
without keeping constant values (i.e., a dynamical or stochastic feature) only during
the critical transition period (i.e., a temporal or transient feature). Hence, the presence
of the DNB can be observed by requiring the measurement of not only correlations
but also dynamics. In particular, it appears in the critical transition period but dis-
appears (or merges with other components) in other periods, thereby signaling the
upcoming critical transition. In addition to the disease progression, our theoretical
results based on the bifurcation and center manifold theory23 may be widely applied to
the detection of suddenly changing phenomena of various complex networks in a
similar manner.

Figure 4 | DNBs for two complex diseases. (a) and (c) show expression profiles of the DNB genes and other genes (randomly selected genes with two

times the size of the DNB) for the acute lung injury and the HBV induced liver cancer, respectively, which also indicate that genes in each DNB during the

pre-disease period are correlated with strong deviation. Each horizontal part boxed by lines is the DNB, and each vertical part boxed by lines is the pre-

disease period in (a) or (c) for the respective disease. The profiles for entire genes are described in Supplementary Information F. (b) and (d) show the

identified DNBs for the acute lung injury and the HBV induced liver cancer, respectively. The DNB and whole mouse network are linked by the

documented functional interactions from various databases (see Methods). Genes in each DNB are indicated in red and some of their nearest neighbors

are indicated by grey nodes in (b) and (d). For acute lung injury, we also show the dynamic evolution of the network structure for the identified DNB (220

genes and 1167 links) and the whole mouse network (3452 genes and 9238 links) including the DNB. (e) The DNB at 0.5 h. (f) The DNB at 4 h. (g) The

DNB at 8 h (the pre-disease state). (h) The DNB at 24 h. (i) The whole mouse network at 0.5 h. (j) The whole mouse network at 4 h. (k) The whole mouse

network at 8 h (the pre-disease state). (l) The whole mouse network at 24 h. The dynamic evolution of the DNB for total 8 time points is shown in

Supplementary Fig. S8 and the corresponding dynamics of the whole mouse network is shown in Supplementary Fig. S9.
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Functional analysis. Genes in the DNBs for the three diseases have been linked and
correlated by the combined functional couplings among them from various databases
of protein-protein interactions of STRING, FunCoup and BioGrid, transcriptional
regulations of TRED, and metabolic pathways of KEGG (Supplementary Information
F). Here, we considered the diseases of lung injury and HBV infection as examples to
show the detailed computing procedure. We also compared the differences between
our DNB-based method and the traditional methods, i.e., the fold-change method
and the random gene selection method, based on respective gene sets (Supplementary
Information E and G). Moreover, we also performed the pathway enrichment analysis
of the identified DNBs (Supplementary Information F). The applicable computer
program used for detecting the DNB from high-throughput data is described in the
Supplementary Information of this paper.
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